Science and Technology of Nanomaterials: Introduction
Merin Sara Thomas
Mar Thoma College, Department of Chemistry, Kuttapuzha P.O., Tiruvalla, Kerala, 689103 India
Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Mahatma Gandhi University, School of Chemical Sciences, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Mahatma Gandhi University, School of Energy Materials, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Search for more papers by this authorLaly A. Pothen
Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
CMS College Kottayam (Autonomous), Department of Chemistry, CMS College Road, Kottayam, Kerala, 686001 India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Department of Chemistry, Kuttapuzha P.O., Tiruvalla, Kerala, 689103 India
Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Mahatma Gandhi University, School of Chemical Sciences, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Mahatma Gandhi University, School of Energy Materials, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
Search for more papers by this authorLaly A. Pothen
Mahatma Gandhi University, International and Interuniversity Centre for Nanoscience and Nanotechnology, Priyadarsini Hills P.O., Kottayam, Kerala, 686560 India
CMS College Kottayam (Autonomous), Department of Chemistry, CMS College Road, Kottayam, Kerala, 686001 India
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorMerin Sara Thomas
Mar Thoma College, Kuttapuzha P.O., Tiruvalla, India
Search for more papers by this authorLaly A Pothen
Mahatma Gandhi University, Priyadarshini Hills P.O., Kottayam, India
Search for more papers by this authorSummary
This chapter provides a brief idea about nanoscience and nanotechnology. It deals with classification of nanomaterials, its properties, characterization, risk factors, safety issues, etc. of different nanomaterials. This chapter can be treated as an introduction to nanotechnology, an emerging field in the study of nanomaterials.
References
- Feynman , R.P. ( 1960 ). There's plenty of room at the bottom. Caltech Engineering and Science, February 1960. This is a transcript of Feynman's talk given on December 29 . 1959 at the Annual Meeting of the American Physical Society .
- Nikolova , M.P. and Chavali , M.S. ( 2020 ). Metal oxide nanoparticles as biomedical materials . Biomimetics 5 ( 2 ): 27 .
- Gessner , I. and Neundorf , I. ( 2020 ). Nanoparticles modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy . International Journal of Molecular Sciences 21 ( 7 ): 2536 .
- Waghmode , M.S. , Gunjal , A.B. , Mulla , J.A. et al. ( 2019 ). Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation . SN Applied Sciences 1 ( 4 ): 1 – 9 .
- Ong , C.B. , Ng , L.Y. , and Mohammad , A.W. ( 2018 ). A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications . Renewable and Sustainable Energy Reviews 81 : 536 – 551 .
- Qi , L. , Xu , Z. , Jiang , X. et al. ( 2004 ). Preparation and antibacterial activity of chitosan nanoparticles . Carbohydrate Research 339 ( 16 ): 2693 – 2700 .
- Ghorbani , H.R. ( 2014 ). A review of methods for synthesis of Al nanoparticles . Oriental Journal of Chemistry 30 ( 4 ): 1941 – 1949 .
- Hassanpour , P. , Panahi , Y. , Ebrahimi-Kalan , A. et al. ( 2018 ). Biomedical applications of aluminium oxide nanoparticles . Micro & Nano Letters 13 ( 9 ): 1227 – 1231 .
- Pohanka , M. ( 2021 ). Current biomedical and diagnostic applications of gold micro and nanoparticles . Mini Reviews in Medicinal Chemistry 21 ( 9 ): 1085 – 1095 .
- Hasany , S.F. , Abdurahman , N.H. , Sunarti , A.R. , and Jose , R. ( 2013 ). Magnetic iron oxide nanoparticles: chemical synthesis and applications review . Current Nanoscience 9 ( 5 ): 561 – 575 .
- Zou , H. , Wu , S. , and Shen , J. ( 2008 ). Polymer/silica nanocomposites: preparation, characterization, properties, and applications . Chemical Reviews 108 ( 9 ): 3893 – 3957 .
- Alsaba , M.T. , Al Dushaishi , M.F. , and Abbas , A.K. ( 2020 ). A comprehensive review of nanoparticles applications in the oil and gas industry . Journal of Petroleum Exploration and Production Technologies 10 ( 4 ): 1389 – 1399 .
- Natsuki , J. , Natsuki , T. , and Hashimoto , Y. ( 2015 ). A review of silver nanoparticles: synthesis methods, properties and applications . International Journal of Materials Science and Applications 4 ( 5 ): 325 – 332 .
- Din , M.I. and Rehan , R. ( 2017 ). Synthesis, characterization, and applications of copper nanoparticles . Analytical Letters 50 ( 1 ): 50 – 62 .
-
Rafique , M.
,
Shaikh , A.J.
,
Rasheed , R.
et al. (
2017
).
A review on synthesis, characterization and applications of copper nanoparticles using green method
.
Nano
12
(
04
):
1750043
.
10.1142/S1793292017500436 Google Scholar
- Dhall , A. and Self , W. ( 2018 ). Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications . Antioxidants. 7 ( 8 ): 97 .
- Hoseinpour , V. and Ghaemi , N. ( 2018 ). Green synthesis of manganese nanoparticles: applications and future perspective – a review . Journal of Photochemistry and Photobiology B: Biology 189 : 234 – 243 .
- Sana , S.S. , Singh , R.P. , Sharma , M. et al. ( 2021 ). Biogenesis and application of nickel nanoparticles: a review . Current Pharmaceutical Biotechnology 22 ( 6 ): 808 – 822 .
- Attarilar , S. , Yang , J. , Ebrahimi , M. et al. ( 2020 ). The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective . Frontiers in Bioengineering and Biotechnology 8 : 822 .
- Yuan , X. , Zhang , X. , Sun , L. et al. ( 2019 ). Cellular toxicity and immunological effects of carbon-based nanomaterials . Particle and Fibre Toxicology 16 ( 1 ): 1 – 27 .
- Collavini , S. and Delgado , J.L. ( 2018 ). Fullerenes: the stars of photovoltaics . Sustainable Energy & Fuels 2 ( 11 ): 2480 – 2493 .
- Umeyama , T. and Imahori , H. ( 2019 ). Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells . Accounts of Chemical Research 52 ( 8 ): 2046 – 2055 .
- Vidal , S. , Marco-Martínez , J. , Filippone , S. , and Martín , N. ( 2017 ). Fullerenes for catalysis: metallofullerenes in hydrogen transfer reactions . Chemical Communications 53 ( 35 ): 4842 – 4844 .
- Gopiraman , M. , Saravanamoorthy , S. , Ullah , S. et al. ( 2020 ). Reducing-agent-free facile preparation of Rh-nanoparticles uniformly anchored on onion-like fullerene for catalytic applications . RSC Advances 10 ( 5 ): 2545 – 2559 .
- Skipa , T.A. and Koltover , V.K. ( 2019 ). Fullerene trend in biomedicine: expectations and reality . Neuroscience Research 86 ( 16 ): 3622 – 3634 .
- Jiang , Z. , Zhao , Y. , Lu , X. , and Xie , J. ( 2021 ). Fullerenes for rechargeable battery applications: recent developments and future perspectives . Journal of Energy Chemistry 55 : 70 – 79 .
- Jiang , G. , Tian , H. , Wang , X.-F. et al. ( 2019 ). An efficient flexible graphene-based light-emitting device . Nanoscale Advances 1 ( 12 ): 4745 – 4754 .
- Suwandi , J.S. , Toes , R.E.M. , Nikolic , T. , and Roep , B.O. ( 2015 ). Inducing tissue specific tolerance in autoimmune disease with tolerogenic dendritic cells . Clinical and Experimental Rheumatology 33 : 97 – 103 .
- Trusek , A. , Kijak , E. , and Granicka , L. ( 2020 ). Graphene oxide as a potential drug carrier – chemical carrier activation, drug attachment and its enzymatic controlled release . Materials Science and Engineering: C 116 : 111240 .
- Dastani , N. , Arab , A. , and Raissi , H. ( 2021 ). DFT study of Ni-doped graphene nanosheet as a drug carrier for multiple sclerosis drugs . Computational & Theoretical Chemistry 1196 : 113114 .
- Masjedi-Arani , M. , Ghiyasiyan-Arani , M. , Amiri , O. , and Salavati-Niasari , M. ( 2020 ). CdSnO 3 -graphene nanocomposites: ultrasonic synthesis using glucose as capping agent and characterization for electrochemical hydrogen storage . Ultrasonics Sonochemistry 61 : 104840 .
- Alhajji , E. , Zhang , F. , and Alshareef , H.N. ( 2021 ). Status and prospects of laser-induced graph ene for battery applications . Energy Technology 9 ( 10 ): 2100454 .
- Lai , C. , Gong , M. , Zhou , Y. et al. ( 2020 ). Sulphur modulated Ni 3 FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn-air battery performance . Applied Catalysis B: Environmental 274 : 119086 .
- Al-Tabbakh , A.A. ( 2020 ). The behavior of Fowler–Nordheim plot from carbon nanotubes-based large area field emitters arrays . Ultramicroscopy 218 : 113087 .
- Zarghami , S. , Mohammadi , T. , Sadrzadeh , M. , and Van der Bruggen , B. ( 2020 ). Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment . Science of the Total Environment 711 : 134951 .
- Haghighat , N. and Vatanpour , V. ( 2020 ). Fouling decline and retention increase of polyvinyl chloride nanofiltration membranes blended by polypyrrole functionalized multiwalled carbon nanotubes . Materials Today Communications 23 : 100851 .
- Prajapati , S.K. , Malaiya , A. , Kesharwani , P. et al. ( 2020 ). Biomedical applications and toxicities of carbon nanotubes . Drug and Chemical Toxicology 45 : 1 – 16 .
- Deshmukh , M.A. , Jeon , J.-Y. , and Ha , T.-J. ( 2020 ). Carbon nanotubes: an effective platform for biomedical electronics . Biosensors & Bioelectronics 150 : 111919 .
-
Negri , V.
,
Pacheco-Torres , J.
,
Calle , D.
, and
López-Larrubia , P.
(
2020
).
Carbon nanotubes in biomedicine
. In:
Surface-Modified Nanobiomaterials for Electrochemical and Biomedicine Applications
(ed.
A.R. Puente-Santiago
and
D. Rodríguez-Padrón
),
177
–
217
.
Springer
.
10.1007/978-3-030-55502-3_6 Google Scholar
- Khan , D. , Ali , Z. , Asif , D. et al. ( 2021 ). Incorporation of carbon nanotubes in photoactive layer of organic solar cells . Ain Shams Engineering Journal 12 ( 1 ): 897 – 900 .
- Qin , H. , Wang , Y. , Wang , B. et al. ( 2021 ). Cobalt porphyrins supported on carbon nanotubes as model catalysts of metal-N 4 /C sites for oxygen electrocatalysis . Journal of Energy Chemistry 53 : 77 – 81 .
- Wang , S. , Wu , T. , Lin , J. et al. ( 2020 ). Iron–potassium on single-walled carbon nanotubes as efficient catalyst for CO 2 hydrogenation to heavy olefins . ACS Catalysis 10 ( 11 ): 6389 – 6401 .
- Deyab , M.A. and Awadallah , A.E. ( 2020 ). Advanced anticorrosive coatings based on epoxy/functionalized multiwall carbon nanotubes composites . Progress in Organic Coatings 139 : 105423 .
- Wang , X. , Zhang , X. , Fu , G. , and Tang , Y. ( 2021 ). Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis . Materials Today Energy 22 : 100850 .
- Li , Q. , Guo , J. , Xu , D. et al. ( 2018 ). Electrospun N-doped porous carbon nanofibers incorporated with NiO nanoparticles as free-standing film electrodes for high-performance supercapacitors and CO 2 capture . Small 14 ( 15 ): 1704203 .
- Zheng , J. , Zhang , H. , Zhao , Z. , and Han , C.C. ( 2012 ). Construction of hierarchical structures by electrospinning or electrospraying . Polymer 53 ( 2 ): 546 – 554 .
- Xu , Y. , Zhang , C. , Zhou , M. et al. ( 2018 ). Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries . Nature Communications 9 ( 1 ): 1 – 11 .
- Levitt , A.S. , Alhabeb , M. , Hatter , C.B. et al. ( 2019 ). Electrospun MXene/carbon nanofibers as supercapacitor electrodes . Journal of Materials Chemistry A 7 ( 1 ): 269 – 277 .
- Wang , H. , Niu , H. , Wang , H. et al. ( 2021 ). Micro-meso porous structured carbon nanofibers with ultra-high surface area and large supercapacitor electrode capacitance . Journal of Power Sources 482 : 228986 .
- Abdo , G.G. , Zagho , M.M. , Al Moustafa , A.E. et al. ( 2021 ). A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers . Journal of Biomedical Materials Research Part B: Applied Biomaterials 109 ( 11 ): 1893 – 1908 .
- Yadav , D. , Amini , F. , and Ehrmann , A. ( 2020 ). Recent advances in carbon nanofibers and their applications – a review . European Polymer Journal 138 : 109963 .
- Jeong , G. , Oh , J. , and Jang , J. ( 2019 ). Fabrication of N-doped multidimensional carbon nanofibers for high-performance cortisol biosensors . Biosensors & Bioelectronics 131 : 30 – 36 .
- Erden , P.E. , Selvi , C.K. , and Kılıç , E. ( 2021 ). A novel tyramine biosensor based on carbon nanofibers, 1-butyl-3-methylimidazolium tetrafluoroborate and gold nanoparticles . Microchemical Journal 170 : 106729 .
-
Poikelispää , M.
,
Das , A.
,
Dierkes , W.
, and
Vuorinen , J.
(
2015
).
The effect of coupling agents on silicate-based nanofillers/carbon black dual filler systems on the properties of a natural rubber/butadiene rubber compound
.
Journal of Elastomers & Plastics
47
(
8
):
738
–
752
.
10.1177/0095244314538436 Google Scholar
- Ding , X. , Yu , M. , Wang , Z. et al. ( 2019 ). A promising clean way to textile colouration: cotton fabric covalently-bonded with carbon black, cobalt blue, cobalt green, and iron oxide red nanoparticles . Green Chemistry 21 ( 24 ): 6611 – 6621 .
- Lee , D.-M. , Kao , C.-W. , Huang , T.-W. et al. ( 2016 ). Electrospinning of sheath-core structured chitosan/polylactide nanofibers for the removal of metal ions . International Polymer Processing 31 ( 5 ): 533 – 540 .
- Ha , D.-H. , Islam , M.A. , and Robinson , R.D. ( 2012 ). Binder-free and carbon-free nanoparticle batteries: a method for nanoparticle electrodes without polymeric binders or carbon black . Nano Letters 12 ( 10 ): 5122 – 5130 .
- Ammala , A. , Hill , A.J. , Meakin , P. et al. ( 2002 ). Degradation studies of polyolefins incorporating transparent nanoparticulate zinc oxide UV stabilizers . Journal of Nanoparticle Research 4 ( 1 ): 167 – 174 .
- Cheng , J. , Sun , Z. , Yu , Y. et al. ( 2019 ). Effects of modified carbon black nanoparticles on plant-microbe remediation of petroleum and heavy metal co-contaminated soils . International Journal of Phytoremediation 21 ( 7 ): 634 – 642 .
- Gatoo , M.A. , Naseem , S. , Arfat , M.Y. et al. ( 2014 ). Physicochemical properties of nanomaterials: implication in associated toxic manifestations . BioMed Research International 2014 : https://doi.org/10.1155/2014/498420 .
- Zou , B. , Huang , C.Z. , Wang , J. , and Liu , B.Q. ( 2006 ). Effect of nano-scale TiN on the mechanical pro perties and microstructure of Si 3 N 4 based ceramic tool materials . In: Key Engineering Materials (ed. Z. Yuan , X. Xu , D. Zuo , et al.), 154 – 158 . Trans Tech Publications .
- Wang , X.H. , Xu , C.H. , Yi , M.D. , and Zhang , H.F. ( 2011 ). Effects of nano-ZrO 2 on the microstructure and mechanical properties of Ti (C, N)-based cermet die materials . In: Advanced Materials Research (ed. Z.Y. Jiang , X.H. Liu and J. Bu ), 1319 – 1323 . Trans Tech Publications .
- Al Ghabban , A. , Al Zubaidi , A.B. , Jafar , M. , and Fakhri , Z. ( 2018 ). Effect of nano SiO 2 and nano CaCO 3 on the mechanical properties, durability and flowability of concrete . In: IOP Conference Series: Materials Science and Engineering , 12016 . IOP Publishing .
- Thomas , M.S. , Pillai , P.K.S. , Faria , M. et al. ( 2020 ). Polylactic acid/nano chitosan composite fibers and their morphological, physical characterization for the removal of cadmium(II) from water . Journal of Applied Polymer Science 137 ( 34 ): 48993 .
- Li , Y. , Lim , C.T. , and Kotaki , M. ( 2015 ). Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system . Polymer (United Kingdom) 56 : 572 – 580 .
- Augustine , R. , Dominic , E.A. , Reju , I. et al. ( 2014 ). Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing . RSC Advances 4 ( 47 ): 24777 – 24785 .
- Saleh , T.A. ( 2020 ). Nanomaterials: classification, properties, and environmental toxicities . Environmental Technology and Innovation 20 : 101067 .
- Wang , L. , Hasanzadeh Kafshgari , M. , and Meunier , M. ( 2020 ). Optical properties and applications of plasmonic-metal nanoparticles . Advanced Functional Materials 30 ( 51 ): 2005400 .
- Sakhno , O. , Yezhov , P. , Hryn , V. et al. ( 2020 ). Optical and nonlinear properties of photonic polymer nanocomposites and holographic gratings modified with noble metal nanoparticles . Polymers (Basel) 12 ( 2 ): 480 .
-
Lakshmiprasanna , H.R.
,
Angadi , V.J.
,
Babu , B.R.
et al. (
2019
).
Effect of Pr
3+
-doping on the structural, elastic and magnetic properties of Mn–Zn ferrite nanoparticles prepared by solution combustion synthesis method
.
Chemical Data Collections
24
:
100273
.
10.1016/j.cdc.2019.100273 Google Scholar
- Berkowitz , A.E. , Kodama , R.H. , Makhlouf , S.A. et al. ( 1999 ). Anomalous properties of magnetic nanoparticles . Journal of Magnetism and Magnetic Materials 196 : 591 – 594 .
- Wu , K. , Su , D. , Liu , J. et al. ( 2019 ). Magnetic nanoparticles in nanomedicine: a review of recent advances . Nanotechnology 30 ( 50 ): 502003 .
- Shabatina , T.I. , Vernaya , O.I. , Shabatin , V.P. , and Melnikov , M.Y. ( 2020 ). Magnetic nanoparticles for biomedical purposes: modern trends and prospects . Magnetochemistry 6 ( 3 ): 30 .
-
Smith , D.J.
(
2015
).
Chara
cterization of nanomaterials using transmission electron microscopy
. In:
Nanocharacterisation
(ed.
A.I. Kirkland
and
S.J. Haigh
),
1
–
29
.
Royal Society of Chemistry
.
10.1039/9781782621867-00001 Google Scholar
- Susi , T. , Pichler , T. , and Ayala , P. ( 2015 ). X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms . Beilstein Journal of Nanotechnology 6 ( 1 ): 177 – 192 .
-
Kolahalam , L.A.
,
Viswanath , I.V.K.
,
Diwakar , B.S.
et al. (
2019
).
Review on nanomaterials: synthesis and applications
.
Materials Today: Proceedings
18
:
2182
–
2190
.
10.1016/j.matpr.2019.07.371 Google Scholar
- Zhao , X. , Liu , C. , Yu , J. et al. ( 2020 ). Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing . Nanophotonics 9 ( 16 ): 4761 – 4773 .
- Stark , W.J. , Stoessel , P.R. , Wohlleben , W. , and Hafner , A. ( 2015 ). Industrial applications of nanoparticles . Chemical Society Reviews 44 ( 16 ): 5793 – 5805 .
-
Lyshevski , S.E.
(
2018
).
Nano and Molecular Electronics Handbook
.
CRC Press
.
10.1201/9781315221670 Google Scholar
- Jensen , T.R. , Malinsky , M.D. , Haynes , C.L. , and Van Duyne , R.P. ( 2000 ). Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles . The Journal of Physical Chemistry B 104 ( 45 ): 10549 – 10556 .
- Sengul , A.B. and Asmatulu , E. ( 2020 ). Toxicity of metal and metal oxide nanoparticles: a review . Environmental Chemistry Letters 18 ( 5 ): 1659 – 1683 .
- Cushen , M. , Kerry , J. , Morris , M. et al. ( 2012 ). Nanotechnologies in the food industry – recent developments, risks and regulation . Trends in Food Science and Technology 24 ( 1 ): 30 – 46 .
-
Sahoo , M.
,
Vishwakarma , S.
,
Panigrahi , C.
, and
Kumar , J.
(
2021
).
Nanotechnology: current applications and future scope in food
.
Food Frontiers
2
(
1
):
3
–
22
.
10.1002/fft2.58 Google Scholar
- McClements , D.J. and Xiao , H. ( 2017 ). Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles . npj Science of Food 1 ( 1 ): 1 – 13 .