Poly-SiGe Surface Micromachining
Carrie W. Low
TDK InvenSense, 1745 Technology Dr., San Jose, CA, 95110 USA
Search for more papers by this authorSergio F. Almeida
DiDi Labs, 450 National Ave., Mountain View, CA, 94043 USA
Search for more papers by this authorEmmanuel P. Quévy
ProbiusDx Inc., 39355 California St., Suite 207, Fremont, CA, 94538 USA
Search for more papers by this authorRoger T. Howe
Stanford University, Department of Electrical Engineering, 330 Jane Stanford Way, Stanford, CA, 94305 USA
Search for more papers by this authorCarrie W. Low
TDK InvenSense, 1745 Technology Dr., San Jose, CA, 95110 USA
Search for more papers by this authorSergio F. Almeida
DiDi Labs, 450 National Ave., Mountain View, CA, 94043 USA
Search for more papers by this authorEmmanuel P. Quévy
ProbiusDx Inc., 39355 California St., Suite 207, Fremont, CA, 94538 USA
Search for more papers by this authorRoger T. Howe
Stanford University, Department of Electrical Engineering, 330 Jane Stanford Way, Stanford, CA, 94305 USA
Search for more papers by this authorMasayoshi Esashi
Search for more papers by this authorSummary
Micro-electro mechanical system (MEMS) technologies have enabled chip-scale sensors, actuators, and resonators, which are fabricated using the tools of semiconductor manufacturing. Using low-temperature low-pressure chemical vapor deposition poly-SiGe as the structural material, MEMS resonators can be built directly on top of an advanced mixed-signal complementary metal oxide semiconductor (CMOS), achieving MEMS+CMOS integration in a single chip. Poly-SiGe has been investigated as alternative structural material for surface micromachining. One major drawback of poly-SiGe compared to poly-Si is its cost. Germane is an expensive gaseous precursor needed for poly-SiGe deposition. CMEMS® technology enables the modular post-processing of MEMS devices directly on top of advanced RF/mixed-signal CMOS circuitry. CMEMS® oscillators have superior long-term aging performance when compared with two-chip MEMS oscillators and quartz oscillators. CMEMS® oscillators combines the advantages of MEMS-based timing solutions while retaining and improving many of the best characteristics of traditional quartz crystals.
References
- Franke, A.E. (2000). Polycrystalline silicon-germanium films for integrated microsystems. Ph.D. Thesis, University of California at Berkeley.
- Heck, J.M. (2001). Polycrystalline silicon germanium for fabrication, release, and packaging of microelectromechanical systems. Ph.D. Thesis, University of California at Berkeley.
- Low, C.W., King Liu, T.-J., and Howe, R.T. (2007). Characterization of polycrystalline silicon-germanium film deposition for modularly integrated MEMS applications. IEEE/ASME J. Microelectromech. Syst. 16 (1): 68–77.
- Witvrouw, A., Mehta, A., Verbist, A. et al. (2005). Processing of MEMS gyroscopes on top of CMOS ICs. Proceedng of 52nd IEEE International Solid-State Circuits Conference, San Francisco, CA, (6–10 February 2005), 88–89.
- Sedky, S., Fiorini, P., Baert, K. et al. (1999). Characterization and optimization of infrared poly SiGe bolometers. IEEE Trans. Electron Devices 46 (4): 675–682.
- Gonzalez, P., Rakowski, M., San Segundo, D. et al. (2012). CMOS-Integrated poly-SiGe piezoresistive pressure sensor. IEEE Electron Device Lett. 33 (8): 1204–1206.
- Qian, C., Peschot, A., Osoba, B. et al. (2017). Sub-100 mV computing with electro-mechanical relays. IEEE Trans. Electron Devices 64 (3): 1323–1329.
- Iyer, S.S., Patton, G.L., Delage, S.S. et al. (1987). Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy. Proceedings of International Electron Devices Meeting, New York, 874–876.
- Cressler, J.D. and Niu, G. (2003). Silicon-Germanium Heterojunction Bipolar Transistors. Artech House.
- Kistler, N. and Woo, J. (1993). Symmetric CMOS in fully-depleted silicon-on-insulator using P+-polycrystalline SiGe gate electrodes. Proceedings of International Electron Devices Meeting, 727–730.
- Takeuchi, H., Lee, W.-C., Ranade, P., and King, T.-J., (1999). Improved PMOSFET short-channel performance using ultra-shallow Si0.8Ge0.2 source/drain extensions. Proceedings of International Electron Devices Meeting, 501–504.
- King, T.-J. and Saraswat, K.C. (1994). Polycrystalline silicon-germanium thin-film transistors. IEEE Trans. Electron Devices 41 (9): 1581–1591.
- Strasser, M., Aigner, R., Franosch, M., and Wachutka, G. (2002). Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining. Sens. Actuators A 97–98: 535–542.
- Van Gerwen, P., Slater, T., Chévrier, J.B. et al. (1996). Thin film boron-doped poly-crystalline silicon70%-germanium30% for thermopiles. Sens. Actuators A 53: 325–329.
- Lin, B.C.-Y, King, T.-J., and Muller, R.S. (2006). Poly-SiGe MEMS actuators for adaptive optics. Photonics WEST, sponsored by SPIE, The International Society for Optical Engineering, Conference, San Jose, CA, (25 January 2006) 6113–6128.
- Quévy, E.P., San Paulo, A., Basol, E. et al. (2006). Back-end-of-line Poly-SiGe disk resonators. 19th IEEE Micro Electro Mechanical Systems Conference (MEMS-06), Istanbul, Turkey, January 2006, 234–237.
- Sedky, S., Fiorini, P., Caymax, M. et al. (1998). Structure and mechanical properties of polycrystalline silicon germanium for micromachining applications. IEEE/ASME J. Microelectromech. Syst. 7 (4): 365–372.
- Low, C.W. (2007). Novel processes for modular integration of silicon-germanium MEMS with CMOS electronics. Ph.D. Thesis, University of California at Berkeley.
- Mehta, A., Gromova, M., Czarnecki, P. et al. (2005). Optimization of PECVD poly-SiGe layers for MEMS post-processing on top of CMOS. Proceedings of 13th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 05), Seoul, Korea (5–9 June 2005) 1326–1329.
- Gonzalez, P. and Rottenberg, X. (2015). Thin films on silicon: poly-SiGe for MEMS-above-CMOS applications. In: Handbook of Silicon Based MEMS Materials and Technologies, 2nde (eds. M. Tilli, M. Paulasto-Krockel, T. Motooka and V. Lindroos), 141–154. Elsevier.
- Guo, B., Severi, S., Bryce, G. et al. (2010). Improvement of PECVD silicon-germanium crystallization for CMOS compatible MEMS applications. J. Electrochem. Soc. 157 (2): 103–110.
- Sedky, S., El Defrar, I., and Mortagy, O. (2006). Pulsed laser deposition of boron doped Si70Ge30 . Proceedings of Materials Research Society Meeting, San Francisco, CA.
- Silicon Clocks, Inc. (2008). Documentation. http://www.Siliconclocks.com.
- Sedky, S., Gromova, M., Van der Donck, T. et al. (2006). Characterization of KrF excimer laser annealed PECVD SixGe1-x for MEMS post-processing. Sens. Actuators A 127: 316–323.
- Sedky, S., Howe, R.T., and King, T.-J. (2004). Pulsed laser annealing, a low thermal budget technique for eliminating stress gradient in poly-SiGe MEMS structures. IEEE/ASME J. Microelectromech. Syst. 13 (4): 669–675.
- Air Liquide (2019). Private communication. https://www.airliquide.com.
- Ogawa, K., Mino, Y., and Ishihara, T. (1989). Performance of a new vertical LPCVD apparatus. J. Electrochem. Soc. 136 (4): 1103–1108.
- Low, C.W., Wasilik, M.L., Takeuchi, H. et al. (2000). In-situ doped poly-SiGe LPCVD process using BCl3 for post-CMOS integration of MEMS devices. Proceedings of Electrochemical Society SiGe Materials, Processing, and Devices Symposium, Honolulu, HI (3–8 October 2000) 1021–1032.
- Quevy, E.P. (2013). CMEMS® Technology: Leveraging High-Volume CMEMS Manufacturing for MEMS-Based Frequency Control. A White Paper Published by Silicon Laboratories.
- Howe, R.T., Quevy, E.P., and Gu, Z. (2015). Gas diffusion barriers for MEMS encapsulation. US Patent 9,018,715 B2, 28 April 2015.
- Quevy, E.P. (2009). IC-compatible MEMS structure. US Patent 7,514,760, 7 April 2009.
- Quevy, E.P., Low, C.W., Hui, J.R., and Gu, Z. (2014). Technique for forming a MEMS device. US Patent 8,852,984 B1, 7 October 2014.
- Quevy, E.P. and Bernstein, D.H. (2007). Method for temperature compensation in MEMS resonators with isolated regions of distinct material. US Patent 7,639,104, 9 March 2007.
- Bernstein, D.H., Howe, R.T., and Quevy, E.P. (2007). MEMS structure having a compensated resonating member. US Patent 7,591,201, 9 March 2007.
- Howe, R.T., Quevy, E.P., and Bernstein, D.H. (2007). MEMS structure having a stress inverter temperature-compensated resonating member. US Patent 7,514,853, 10 May 2007.
-
Fouad, O.A., Rumaiz, A.K., and Shah, S.I. (2009). Reactive sputtering of titanium in Ar/CH4 gas mixture: Target poisoning and film characteristics.
Thin Solid Films
51 (19): 5689–5694.
10.1016/j.tsf.2009.02.119 Google Scholar
- Lam, C.S. (2008). A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry. 2008 IEEE Ultrasonics Symposium, Beijing, China, November 2008, 694–704.
- Quevy, E.P. (2013). CMEMS® Oscillator Architecture. A White Paper Published by Silicon Laboratories.
- Nathanael, R. (2012). “ Nano-electro-mechanical (NEM) relay devices and technology for ultra-low energy digital integrated circuits. Ph.D. Thesis, University of California at Berkeley.
- Ye, Z.A., Almeida, S., Rusch, M. et al. (2018). Demonstration of 50-mV digital integrated circuits with microelectromechanical relays. Proceedings of 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA (December 2018), 4-1.
- Chen, Y., Nathanael, R., Yaung, J. et al. (2013). Reliability of MEM relays for zero leakage logic. Proceedings of Reliability, Packaging, Testing, and Characterization of MOEMS/MEMS and Nanodevices XII. International Society for Optics and Photonics, San Francisco, CA, USA, March 2013. Vol. 8614, 861404.
- Fathipour, S., Almeida, S.F., Ye, Z.A. et al. (2019). Reducing adhesion energy of nano-electro-mechanical relay contacts by self-assembled Perfluoro (2, 3-Dimethylbutan-2-ol) coating. AIP Adv. 9 (5): 055329.