Phytoplankton Glycerolipids: Challenging but Promising Prospects from Biomedicine to Green Chemistry and Biofuels
Josselin Lupette
Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble CEA-Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CNRS, CEA, INRA, 17 rue des Martyrs, 38000 Grenoble France
Search for more papers by this authorEric Maréchal
Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble CEA-Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CNRS, CEA, INRA, 17 rue des Martyrs, 38000 Grenoble France
Search for more papers by this authorJosselin Lupette
Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble CEA-Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CNRS, CEA, INRA, 17 rue des Martyrs, 38000 Grenoble France
Search for more papers by this authorEric Maréchal
Université Grenoble Alpes, Institut de Biosciences et Biotechnologies de Grenoble CEA-Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CNRS, CEA, INRA, 17 rue des Martyrs, 38000 Grenoble France
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorSummary
The biodiversity of phytoplankton makes them an attractive source of microalgal species and strains that could be a feedstock for the production of a variety of biomolecules. In this chapter, we focus on the molecular diversity of fatty acids and glycerolipid classes containing fatty acid esters, including phosphoglycerolipids, galactoglycerolipids, and triacylglycerols. In the first part, we describe the general structures of the main fatty acids and glycerolipids found in photosynthetic cells. We then summarize the general metabolic pathways in the different taxa representing the biodiverse phytoplankton. Finally, we detail some general questions that should be addressed to exploit phytoplankton glycerolipids in applications ranging from feed, food, and biomedicine to green chemistry and biofuels.
References
- Guiry, M.D. (2012) How many species of algae are there? J. Phycol., 48, 1057–1063.
- de Vargas, C., Audic, S., Henry, N. et al. (2015) Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science, 348, 1261605.
- Petroutsos, D., Amiar, S., Abida, H. et al. (2014) Evolution of galactoglycerolipid biosynthetic pathways – from cyanobacteria to primary plastids and from primary to secondary plastids. Prog. Lipid Res., 54, 68–85.
- Hosseini Tafreshi, A. and Shariati, M. (2009) Dunaliella biotechnology: methods and applications. J. Appl. Microbiol., 107, 14–35.
- Spolaore, P., Joannis-Cassan, C., Duran, E. et al. (2006) Commercial applications of microalgae. J. Biosci. Bioeng., 101, 87–96.
- Larkum, A.W., Ross, I.L., Kruse, O. et al. (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol., 30, 198–205.
- Jouhet, J., Marechal, E., and Block, M.A. (2007) Glycerolipid transfer for the building of membranes in plant cells. Prog. Lipid Res., 46, 37–55.
- Boudiere, L., Michaud, M., Petroutsos, D. et al. (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim. Biophys. Acta, 1837, 470–480.
- Botte, C.Y. and Marechal, E. (2014) Plastids with or without galactoglycerolipids. Trends Plant Sci., 19, 71–78.
- Botté, C.Y., Yamaryo-Botté, Y., Janouskovec, J. et al. (2011) Identification of plant-like galactolipids in Chromera velia, a photosynthetic relative of malaria parasites. J. Biol. Chem., 286, 29893–29903.
- Simionato, D., Sforza, E., Carpinelli, E.C., et al. (2011) Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Bioresour. Technol., 102, 6026–6032.
- Jouhet, J., Dubots, E., Maréchal, E. et al. (2010) Lipid trafficking in plant photosynthetic cells, in Lipids in Photosynthesis (eds H. Wada and N. Murata), Springer, Dordrecht, pp. 349–372.
- Michaud, M., Gros, V., Tardif, M. et al. (2016) AtMic60 is involved in plant mitochondria lipid trafficking and is part of a large complex. Curr. Biol., 26, 627–639.
- Botella, C., Sautron, E., Boudiere, L. et al. (2016) ALA10, a phospholipid flippase, controls FAD2/FAD3 desaturation of phosphatidylcholine in the ER and affects chloroplast lipid composition in Arabidopsis thaliana . Plant Physiol., 170, 1300–1314.
- Abida, H., Dolch, L.J., Mei, C. et al. (2015) Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum . Plant Physiol., 167, 118–136.
- Domergue, F., Lerchl, J., Zahringer, U. et al. (2002) Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur. J. Biochem., 269, 4105–4113.
- Domergue, F., Spiekermann, P., Lerchl, J. et al. (2003) New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal delta12-fatty acid desaturases. Plant Physiol., 131, 1648–1660.
- Abbadi, A., Domergue, F., Bauer, J. et al. (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell, 16, 2734–2748.
- Nguyen, H.T., Park, H., Koster, K.L. et al. (2015) Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnol. J., 13, 38–50.
- Heilmann, I., Mekhedov, S., King, B. et al. (2004) Identification of the arabidopsis palmitoyl-monogalactosyldiacylglycerol Δ7-desaturase gene FAD5, and effects of plastidial retargeting of arabidopsis desaturases on the fad5 mutant phenotype. Plant Physiol., 136, 4237–4245.
- Gao, J., Ajjawi, I., Manoli, A. et al. (2009) Fatty acid desaturase4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J., 60, 832–839.
- Boudiere, L., Botté, C.Y., Saidani, N. et al. (2012) Galvestine-1, a novel chemical probe for the study of the glycerolipid homeostasis system in plant cells. Mol. Biosyst., 8, 2023–2035.
- Horrobin, D.F. (1992) Nutritional and medical importance of gamma-linolenic acid. Prog. Lipid Res., 31, 163–194.
- Dolch, L.J. and Marechal, E. (2015) Inventory of fatty acid desaturases in the pennate diatom Phaeodactylum tricornutum . Mar. Drugs, 13, 1317–1339.
- De Luca, G., Barakat, M., Ortet, P. et al. (2011) The cyst-dividing bacterium Ramlibacter tataouinensis TTB310 genome reveals a well-stocked toolbox for adaptation to a desert environment. PLoS One, 6, e23784.
- Jouhet, J. (2013) Importance of the hexagonal lipid phase in biological membrane organization. Front. Plant Sci., 4, 494.
- Bastien, O., Botella, C., Chevalier, F. et al. (2016) New insights on thylakoid biogenesis in plant cells, in International Review of Cell and Molecular Biology (ed. K.W. Jeon), Elsevier, pp. 1–30.
- Sarkis, J., Rocha, J., Maniti, O. et al. (2014) The influence of lipids on MGD1 membrane binding highlights novel mechanisms for galactolipid biosynthesis regulation in chloroplasts. FASEB J., 28, 3114–3123.
- Deme, B., Cataye, C., Block, M.A. et al. (2014) Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J., 28, 3373–3383.
- Alboresi, A., Perin, G., Vitulo, N. et al. (2016) Light remodels lipid biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles. Plant Physiol., 171, 2468–2482.
- Radakovits, R., Eduafo, P.M., and Posewitz, M.C. (2011) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum . Metab. Eng., 13, 89–95.
- Dubots, E., Botté, C., Boudière, L. et al. (2012) Role of phosphatidic acid in plant galactolipid synthesis. Biochimie, 94, 86–93.
- Archibald, J.M. and Keeling, P.J. (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet., 18, 577–584.
- Kutschera, U. and Niklas, K.J. (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci., 124, 1–24.
- Gould, S.B., Waller, R.R., and McFadden, G.I. (2008) Plastid evolution. Annu. Rev. Plant Biol., 59, 491–517.
- Ginger, M.L., McFadden, G.I., and Michels, P.A.M. (2010) The evolution of organellar metabolism in unicellular eukaryotes. Philos. Trans. R. Soc. London B Biol. Sci., 365, 693–698.
- Janouskovec, J., Horak, A., Obornik, M. et al. (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. U.S.A., 107, 10949–10954.
- Lim, L. and McFadden, G.I. (2010) The evolution, metabolism and functions of the apicoplast. Philos. Trans. R. Soc. London B Biol. Sci., 365, 749–763.
- McFadden, G.I. (1999) Endosymbiosis and evolution of the plant cell. Curr. Opin. Plant Biol., 2, 513–519.
- Brown, A.P., Slabas, A.R., and Rafferty, J.B. (2010) Fatty acid biosynthesis in plants – metabolic pathways, structure and organization, in Lipids in Photosynthesis (eds H. Wada and N. Murata), Springer, Dordrecht, pp. 11–34.
- Li-Beisson, Y., Shorrosh, B., Beisson, F. et al. (2010) Acyl-lipid metabolism, in The Arabidopsis Book, The American Society of Plant Biologists, Washington, DC, pp. 1–65.
- Joyard, J., Ferro, M., Masselon, C. et al. (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog. Lipid Res., 49, 128–158.
- Leonard, A.E., Pereira, S.L., Sprecher, H. et al. (2004) Elongation of long-chain fatty acids. Prog. Lipid Res., 43, 36–54.
- Hamilton, M.L., Haslam, R.P., Napier, J.A. et al. (2014) Metabolic engineering of Phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab. Eng., 22, 3–9.
- Sayanova, O.V. and Napier, J.A. (2004) Eicosapentaenoic acid: biosynthetic routes and the potential for synthesis in transgenic plants. Phytochemistry, 65, 147–158.
- Haslam, T.M. and Kunst, L. (2013) Extending the story of very-long-chain fatty acid elongation. Plant Sci., 210, 93–107.
- Botté, C.Y., Yamaryo-Botté, Y., Rupasinghe, T.W. et al. (2013) Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc. Natl. Acad. Sci. U.S.A., 110, 7506–7511.
- Pulz, O. and Gross, W. (2004) Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol., 65, 635–648.
- Rosenberg, J.N., Oyler, G.A., Wilkinson, L. et al. (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol., 19, 430–436.
- Benning, C. (2009) Mechanisms of lipid transport involved in organelle biogenesis in plant cells. Annu. Rev. Cell Dev. Biol., 25, 71–91.
- Heinz, E. and Roughan, P.G. (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol., 72, 273–279.
- Dorne, A.J., Joyard, J., Block, M.A. et al. (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach chloroplasts. J. Cell Biol., 100, 1690–1697.
- Aronsson, H., Schottler, M.A., Kelly, A.A. et al. (2008) Monogalactosyldiacylglycerol deficiency in Arabidopsis affects pigment composition in the prolamellar body and impairs thylakoid membrane energization and photoprotection in leaves. Plant Physiol., 148, 580–592.
- Xu, C.C., Yu, B., Cornish, A.J. et al. (2006) Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J., 47, 296–309.
- Guschina, I.A. and Harwood, J.L. (2006) Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res., 45, 160–186.
- Youssef, A., Laizet, Y., Block, M.A. et al. (2010) Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress. Plant J., 61, 436–445.
- Li, X., Moellering, E.R., Liu, B. et al. (2012) A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii . Plant Cell, 24, 4670–4686.
- Flori, S., Jouneau, P.H., Finazzi, G. et al. (2016) Ultrastructure of the periplastidial compartment of the diatom Phaeodactylum tricornutum . Protist, 167, 254–267.
- Ruiz, J., Olivieri, G., de Vree, J.H. et al. (2016) Towards industrial products from microalgae. Energy Environ. Sci., 9, 3036–3043.
- Marchetti, J., Bougaran, G., Le Dean, L. et al. (2012) Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture, 326, 106–115.
- Matsumoto, M., Mayama, S., Nemoto, M. et al. (2014) Morphological and molecular phylogenetic analysis of the high triglyceride-producing marine diatom, Fistulifera solaris sp. nov. (Bacillariophyceae). Phycol. Res., 62, 257–268.
- Tanaka, T., Maeda, Y., Veluchamy, A. et al. (2015) Oil accumulation by the oleaginous diatom Fistulifera solaris as revealed by the genome and transcriptome. Plant Cell, 27, 162–176.
- Zhou, Y.J., Buijs, N.A., Siewers, V. et al. (2014) Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae . Front. Bioeng. Biotechnol., 2, 32.
- Zhou, Y.J., Buijs, N.A., Zhu, Z. et al. (2016) Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun., 7, 11709.
- Kelly, A.A., van Erp, H., Quettier, A.L. et al. (2013) The sugar-dependent1 lipase limits triacylglycerol accumulation in vegetative tissues of Arabidopsis . Plant Physiol., 162, 1282–1289.
- Simionato, D., Block, M.A., La Rocca, N. et al. (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot. Cell, 12, 665–676.
- van der Donk, W.A., Tsai, A.L., and Kulmacz, R.J. (2002) The cyclooxygenase reaction mechanism. Biochemistry, 41, 15451–15458.
- Devane, W.A., Hanus, L., Breuer, A. et al. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258, 1946–1949.
- Ibrahim, A., Mbodji, K., Hassan, A. et al. (2011) Anti-inflammatory and anti-angiogenic effect of long chain n-3 polyunsaturated fatty acids in intestinal microvascular endothelium. Clin. Nutr., 30, 678–687.
- Mullen, A., Loscher, C.E., and Roche, H.M. (2010) Anti-inflammatory effects of EPA and DHA are dependent upon time and dose-response elements associated with LPS stimulation in THP-1-derived macrophages. J. Nutr. Biochem., 21, 444–450.
- Simopoulos, A.P. (2016) An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients, 8, 128.
- Simopoulos, A.P. (2011) Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol. Neurobiol., 44, 203–215.
- Simopoulos, A.P. (2009) Omega-6/omega-3 essential fatty acids: biological effects. World Rev. Nutr. Diet, 99, 1–16.
- Tocher, D.R. (2009) Issues surrounding fish as a source of omega-3 long-chain polyunsaturated fatty acids. Lipid Technol., 21, 13–16.
- Cressey, D. (2009) Aquaculture: future fish. Nature, 458, 398–400.
- Ruiz-Lopez, N., Sayanova, O., Napier, J.A. et al. (2012) Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J. Exp. Bot., 63, 2397–2410.
- Muhlroth, A., Li, K., Rokke, G. et al. (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar. Drugs, 11, 4662–4697.
- Vieler, A., Wu, G., Tsai, C.H. et al. (2012) Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet., 8, e1003064.
-
Ratledge, C. (2013) Microbial oil: an introductory overview of current status and future prospects. OCL, 20, D602.
10.1051/ocl/2013029 Google Scholar
-
Winwood, R.J. (2013) Recent developments in the commercial production of DHA and EPA rich oils from micro-algae. OCL, 20, D604.
10.1051/ocl/2013030 Google Scholar
- Klein-Marcuschamer, D., Chisti, Y., Benemann, J.R. et al. (2013) A matter of detail: assessing the true potential of microalgal biofuels. Biotechnol. Bioeng., 110, 2317–2322.
- Chisti, Y. (2013) Constraints to commercialization of algal fuels. J. Biotechnol., 167, 201–214.
- Blatti, J.L., Michaud, J., and Burkart, M.D. (2013) Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel. Curr. Opin. Chem. Biol., 17, 496–505.
-
De Santis, C., Taylor, J.F., Martinez-Rubio, L.
et al. (2015) Influence of development and dietary phospholipid content and composition on intestinal transcriptome of Atlantic salmon (Salmo salar). PLoS ONE, 10, e0140964.
10.1371/journal.pone.0140964 Google Scholar
- da Costa, E., Silva, J., Mendonca, S.H. et al. (2016) Lipidomic approaches towards deciphering glycolipids from microalgae as a reservoir of bioactive lipids. Mar. Drugs, 14, 101.