Commercial-Scale Production of Microalgae for Bioproducts
Michael Borowitzka
Algae R&D Centre, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150 Australia
Search for more papers by this authorMichael Borowitzka
Algae R&D Centre, School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, WA, 6150 Australia
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorSummary
Microalgae are a very diverse assemblage of organisms and this diversity is reflected in the wide variety of chemical compounds of potential commercial interest they produce. Microalgae currently are being produced commercially for the production of health foods (Chlorella, Arthrospira [“Spirulina”]) and valuable fine chemicals such as β-carotene (Dunaliella salina), astaxanthin (Haematococcus pluvialis) and long-chain polyunsaturated fatty acids (Crypthecodinium cohnii, Schizochytrium), and new algae and algal products are being developed. This chapter discusses and compares commercial-scale algal culture systems, and the particular requirements and processes of commercial-scale culture and processing of these algae. Potential new products from microalgae, such as other carotenoids and xanthophylls, sterols, polyhydroxyalkonates and paramylon, are described. The importance of quality control and regulations is also considered.
References
- Burlew, J.S. (1953) Algae Culture: From Laboratory to Pilot Plant, Carnegie Institution of Washington, Washington, DC, pp. 1–357.
- Soong, P. (1980) Production and development of Chlorella and Spirulina in Taiwan, in Algae Biomass (eds G. Shelef and C.J. Soeder), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 97–113.
- Durand-Chastel, H. (1980) Production and use of Spirulina in Mexico, in Algae Biomass (eds G. Shelef and C.J. Soeder), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 51–64.
-
Borowitzka, M.A. (2013)
Dunaliella: biology, production, and markets, in Handbook of Microalgal Culture (eds A. Richmond and Q. Hu), John Wiley & Sons, Ltd, pp. 359–368.
10.1002/9781118567166.ch18 Google Scholar
- Lorenz, R.T. and Cysewski, G.R. (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol., 18, 160–167.
- Kyle, D.J. (2005) The future development of single cell oils, in Single Cell Oils (eds Z. Cohen and C. Ratledge), AOCS Publishing, Urbana, IL, pp. 239–248.
- Barclay, W., Weaver, C., Metz, J. et al. (2010) Development of docosahexaenoic acid production technology using Schizochytrium: Historical perspective and update, in Single Cell Oils. Microbial and Algal Oils (eds Z. Cohen and C. Ratledge), AOCS Press, Urbana, IL, pp. 75–96.
- Soeder, C.J. (1986) An historical outline of applied algology, in CRC Handbook of Microalgal Mass Culture (ed. A. Richmond), CRC Press, Boca Raton, FL, pp. 25–41.
-
Borowitzka, M.A. (2013) Energy from microalgae: a short history, in Algae for Biofuels and Energy (eds M.A. Borowitzka and N.R. Moheimani), Springer, Dordrecht, pp. 1–15.
10.1007/978-94-007-5479-9_1 Google Scholar
-
Borowitzka, M.A. and Moheimani, N.R. (2013) Open pond culture systems, in Algae for Biofuels and Energy (eds M.A. Borowitzka and N.R. Moheimani), Springer, Dordrecht, pp. 133–152.
10.1007/978-94-007-5479-9_8 Google Scholar
- Zittelli, G.C., Biondi, N., Rodolfi, L. et al. (2013) Photobioreactors for mass production of microalgae, in Handbook of Microalgal Culture. Applied Phycology and Biotechnology (eds A. Richmond and Q. Hu), Wiley Blackwell, Oxford, pp. 225–266.
- Walter, C., Steinau, T., Gerbsch, N. et al. (2003) Monoseptic cultivation of phototrophic organisms – development and scale-up of a photobioreactor system with thermal sterlization. Biomol. Eng, 20, 261–271.
- Borowitzka, M.A. (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol., 70, 313–321.
- Moheimani, N.R. and Borowitzka, M.A. (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J. Appl. Phycol., 18, 703–712.
- Ukeles, R. (1973) Continuous culture – a method for the production of unicellular algal foods, in Handbook of Phycological Methods (ed. J.R. Stein), Cambridge University Press, Cambridge, pp. 233–254.
-
Borowitzka, M.A. (2013) Strain selection, in Algae for Biofuels and Energy (eds M.A. Borowitzka and N.R. Moheimani), Springer, Dordrecht, pp. 77–89.
10.1007/978-94-007-5479-9_4 Google Scholar
- Moreno, J., Vargas, M.A., Rodriguez, H. et al. (2003) Outdoor cultivation of a nitrogen-fixing marine cyanobacterium, Anabaena sp. ATCC 33047. Biomol. Eng, 20, 191–197.
- Cohen, Z., Vonshak, A., Boussiba, S. et al. (1988) The effect of temperature and cell concentration on the fatty acid composition of outdoor cultures of Porphyridium cruentum , in Algal Biotechnology (eds T. Stadler, J. Mollion, M.C. Verdus, Y. Karamanos, H. Morvan, and D. Christiaen), Elsevier Applied Science, London, pp. 421–429.
- Sing, S.F., Isdepsky, A., Borowitzka, M.A. et al. (2014) Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresour. Technol., 161, 47–54.
- Zhang, J. (2013) Culture of Botryococcus braunii, Murdoch University, Murdoch.
- Laws, E.A., Terry, K.L., Wickman, J. et al. (1983) A simple algal production system designed to utilize the flashing light effect. Biotechnol. Bioeng., 25, 2319–2335.
-
Moheimani, N.R. (2013) Long-term outdoor growth and lipid productivity of Tetraselmis suecica, Dunaliella tertiolecta and Chlorella sp (Chlorophyta) in bag photobioreactors. J. Appl. Phycol., 25, 167–176.
10.1007/s10811-012-9850-0 Google Scholar
- Zittelli, G., Rodolfi, L., and Tredici, M. (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J. Appl. Phycol., 15, 107–114.
-
Borowitzka, M.A. (2016) Algal physiology and large-scale outdoor cultures of microalgae, in The Physiology of Microalgae (eds M.A. Borowitzka, J. Beardall, and J.A. Raven), Springer, Dordrecht, pp. 601–652.
10.1007/978-3-319-24945-2_23 Google Scholar
- Aflalo, C., Meshulam, Y., Zarka, A. et al. (2007) On the relative efficiency of two- vs. one-stage production of astaxanthin by the green alga Haematococcus pluvialis . Biotechnol. Bioeng., 98, 300–305.
- Borowitzka, M.A. (1992) Algal biotechnology products and processes: matching science and economics. J. Appl. Phycol., 4, 267–279.
- Williams, P.J.l.B. and Laurens, L.M.L. (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ. Sci., 3, 554–590.
- Norsker, N.H., Barbosa, M.J., Vermuë, M.H. et al. (2011) Microalgal production – a close look at the economics. Biotechnol. Adv., 29, 24–27.
- Molina Grima, E., Acién Fernández, F.G., and Robles-Medina, A. (2004) Downstream processing of cell-mass and products, in Handbook of Microalgal Culture. Biotechnology and Applied Phycology (ed. A. Richmond), Blackwell, Oxford, pp. 215–251.
-
Pahl, S., Lee, A., Kalaitzidis, T.
et al. (2013) Harvesting, thickening and dewatering microalgae biomass, in Algae for Biofuels and Energy (eds M.A. Borowitzka and N.R. Moheimani), Springer, Dordrecht, pp. 165–185.
10.1007/978-94-007-5479-9_10 Google Scholar
- Kotrbáček, V., Doubek, J., and Doucha, J. (2015) The chlorococcalean alga Chlorella in animal nutrition: a review. J. Appl. Phycol., 27, 2173–2180.
- Doucha, J. and Lívanský, K. (2012) Production of high-density Chlorella culture grown in fermenters. J. Appl. Phycol., 24, 35–43.
- Brooks, G., Franklin, S., Avila, J. et al. (2010) Microalgal flour. US Patent 2010/0303989A1.
- Tomaselli, L. (1997) Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis , in Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biochemistry (ed. A. Vonshak), Taylor & Francis, London, pp. 1–15.
- Belay, A. (2013) Biology and industrial production of Arthrospira (Spirulina), in Handbook of Microalgal Culture: Applied Phycology and Biotechnology (eds A. Richmond and Q. Hu), Blackwell, Oxford, pp. 339–358.
- Richmond, A. (1988) Spirulina, in Micro-Algal Biotechnology (eds M.A. Borowitzka and L.J. Borowitzka), Cambridge University Press, Cambridge, pp. 85–121.
- A. Vonshak (ed.) (1997) Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology, Taylor & Francis, London.
- Mühling, M., Belay, A., and Whitton, B.A. (2005) Variation in fatty acid composition of Arthrospira (Spirulina) strains. J. Appl. Phycol., 17, 137–146.
- Vonshak, A. (1987) Strain selection of Spirulina suitable for mass production. Hydrobiologia, 151/152, 75–77.
- Borowitzka, M.A. (1988) Algal growth media and sources of cultures, in Micro-Algal Biotechnology (eds M.A. Borowitzka and L.J. Borowitzka), Cambridge University Press, Cambridge, pp. 456–465.
- Belay, A. (1997) Mass culture of Spirulina outdoors – the Earthrise Farms experience, in Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biochemistry (ed. A. Vonshak), Taylor & Francis, London, pp. 131–158.
- Richmond, A., Vonshak, A., and Arad, S. (1980) Environmental limitations in outdoor production of algal biomass, in Algae Biomass (eds G. Shelef and C.J. Soeder), Elsevier/North Holland Biomedical Press, Amsterdam, pp. 65–72.
-
Borowitzka, M.A. (2005) Culturing microalgae in outdoor ponds, in Algal Culturing Techniques (ed. R.A. Anderson), Elsevier Academic Press, London, pp. 205–218.
10.1016/B978-012088426-1/50015-9 Google Scholar
-
Borowitzka, M.A. (2016) Chemically-mediated interactions in microalgae, in The Physiology of Microalgae (eds M.A. Borowitzka, J. Beardall, and J.A. Raven), Springer, Dordrecht, pp. 321–357.
10.1007/978-3-319-24945-2_15 Google Scholar
- Borowitzka, M.A. and Siva, C.J. (2007) The taxonomy of the genus Dunaliella (Chlorophyta, Dunaliellales) with emphasis on the marine and halophilic species. J. Appl. Phycol., 19, 567–590.
- Borowitzka, L.J., Borowitzka, M.A., and Moulton, T. (1984) The mass culture of Dunaliella: from laboratory to pilot plant. Hydrobiologia, 116/117, 115–121.
- Pandey, B.D. and Yeragi, S.G. (2004) Preliminary and mass culture experiments on a heterotrichous ciliate, Fabrea salina . Aquaculture, 232, 241–254.
- Ben-Amotz, A., Lers, A., and Avron, M. (1988) Stereoisomers of ß-carotene and phytoene in the alga Dunaliella bardawil . Plant Physiol. (Rockville), 86, 1286–1291.
- Boussiba, S. (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol. Plant., 108, 111–117.
- Collins, A.M., Jones, H.D.T., Han, D.X. et al. (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One, 6, e24302.
- Kobayashi, M., Kakizono, T., Yamaguchi, K. et al. (1992) Growth and astaxanthin formation of Haematococcus pluvialis in heterotrophic and mixotrophic conditions. J. Ferment. Bioeng., 74, 17–20.
- Fábregas, J., Domínguez, A., Maseda, A. et al. (2003) Interactions between irradiance and nutrient availability during astaxanthin accumulation and degradation in Haematococcus pluvialis . Appl. Microbiol. Biotechnol., 61, 545–551.
- Borowitzka, M.A., Huisman, J.M., and Osborn, A. (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J. Appl. Phycol., 3, 295–304.
- Olaizola, M. (2000) Commercial production of astaxanthin from Haematococcus pluvialis using 25,000-liter outdoor photobioreactors. J. Appl. Phycol., 12, 499–506.
- Strittmatter, M., Guerra, T., Silva, J. et al. (2016) A new flagellated dispersion stage in Paraphysoderma sedebokerense, a pathogen of Haematococcus pluvialis . J. Appl. Phycol., 28, 1553–1558.
- Hoffman, Y., Aflao, C., Zarka, A. et al. (2008) Isolation and characterization of a novel chytrid species (phylum Blastocladiomycota), parasitic on the green alga Haematococcus . Mycol. Res., 112, 70–81.
- Stephens, E., Ross, I.L., King, Z. et al. (2010) An economic and technical evaluation of microalgal biofuels. Nat. Biotechnol., 28, 126–128.
- Barclay, W., Apt, K., and Dong, X.D. (2013) Commercial production of microalgae via fermentation, in Handbook of Microalgal Culture: Applied Phycology and Biotechnology (eds A. Richmond and Q. Hu), Blackwell, Chichester, pp. 134–145.
- Tababa, H.G., Hirabayashi, S., and Inubushi, K. (2012) Media optimization of Parietochloris incisa for arachidonic acid accumulation in an outdoor vertical tubular photobioreactor. J. Appl. Phycol., 24, 887–895.
- Solovchenko, A.E., Khozin-Goldberg, I., Didi-Cohen, S. et al. (2008) Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa . J. Appl. Phycol., 20, 245–251.
-
Cepák, V., Přibyl, P., Kohoutková, J.
et al. (2014) Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus
. J. Appl. Phycol., 26, 181–190.
10.1007/s10811-013-0119-z Google Scholar
-
Camacho-Rodríguez, J., González-Céspedes, A.M., Cerón-García, M.C.
et al. (2014) A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl. Microbiol. Biotechnol., 98, 2429–2440.
10.1007/s00253-013-5413-9 Google Scholar
- Wynn, J., Behrens, P., Sundararajan, A. et al. (2010) Production of single cell oils from dinoflagellates, in Single Cell Oils. Microbial and Algal Oils (eds Z. Cohen and C. Ratledge), AOCS Press, Urbana, IL, pp. 115–129.
- Barclay, W.R. (2003) Enhanced production of lipids containing polyenoic fatty acids by very high density cultivation of eukaryotic microbes in fermentors. US Patent 6, 607,900.
- Choudhari, S.M., Ananthanarayan, L., and Singhal, R.S. (2008) Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresour. Technol., 99, 3166–3173.
- Borowitzka, M.A. (2010) Carotenoid production using microorganisms, in Single Cell Oils. Microbial and Algal Oils (eds Z. Cohen and C. Ratledge), AOCS Press, Urbana, IL, pp. 225–240.
- Schmidt, I., Schewe, H., Gassel, S. et al. (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous . Appl. Microbiol. Biotechnol., 89, 555–571.
- Cysewski, G.R. and Lorenz, R.T. (2004) Industrial production of microalgal cell-mass and secondary products – species of high potential: Haematococcus , in Microalgal Culture: Biotechnology and Applied Phycology (ed. A. Richmond), Blackwell Science, Oxford, pp. 281–288.
- Hanagata, N. (1999) Secondary carotenoid accumulation in Scenedemus komarekii (Chlorophyceae, Chlorophyta). J. Phycol., 35, 960–966.
- Nasrabadi, M.R. and Razavi, S.H. (2010) Enhancement of canthaxanthin production from Dietzia natronolimnaea HS-1 in a fed-batch process using trace elements and statistical methods. Braz. J. Chem. Eng., 27, 517–529.
- Li, H.-B., Fan, K.-W., and Chen, F. (2006) Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. J. Sep. Sci., 29, 699–703.
- Koo, S., Cha, K., Song, D.-G. et al. (2012) Optimization of pressurized liquid extraction of zeaxanthin from Chlorella ellipsoidea . J. Appl. Phycol., 24, 725–730.
- Jin, E., Feth, B., and Melis, A. (2003) A mutant of the green alga Dunaliella salina constitutively accumulates zeaxanthin under all growth conditions. Biotechnol. Bioeng., 81, 115–124.
- Nwachukwu, I.D., Udenigwe, C.C., and Aluko, R.E. (2016) Lutein and zeaxanthin: production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci. Technol., 49, 74–84.
- Blanco, A.M., Moreno, J., Del Campo, J.A. et al. (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. in open ponds. Appl. Microbiol. Biotechnol., 73, 1259–1266.
- Fernández-Sevilla, J., Acién Fernández, F., and Molina Grima, E. (2010) Biotechnological production of lutein and its applications. Appl. Microbiol. Biotechnol., 86, 27–40.
- von Oppen-Bezalel, L. and Shaish, A. (2009) Application of the colourless carotenoids, phytoene and phytofluene in cosmetics, wellness, nutrition, and therapeutics, in The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology (eds A. Ben-Amotz, J.E.W. Polle, and D.V. Subba Rao), Science Publishers, Enfield, pp. 423–444.
-
Gómez-Loredo, A., Benavides, J., and Rito-Palomares, M. (2016) Growth kinetics and fucoxanthin production of Phaeodactylum tricornutum and Isochrysis galbana cultures at different light and agitation conditions. J. Appl. Phycol., 28, 849–860.
10.1007/s10811-015-0635-0 Google Scholar
- Gómez-Loredo, A., González-Valdez, J., and Rito-Palomares, M. (2015) Insights on the downstream purification of fucoxanthin, a microalgal carotenoid, from an aqueous two-phase system stream exploiting ultrafiltration. J. Appl. Phycol., 27, 1517–1523.
- Yan, S.-G., Zhu, L.-P., Su, H.-N. et al. (2011) Single-step chromatography for simultaneous purification of C-phycocyanin and allophycocyanin with high purity and recovery from Spirulina (Arthrospira) platensis . J. Appl. Phycol., 23, 1–6.
- Arad, S. and Richmond, A. (2004) Industrial production of microalgal cell-mass and secondary products - species of high potential: Porphyridium sp., in Microalgal Culture: Biotechnology and Applied Phycology (ed. A. Richmond), Blackwell Science, Oxford, pp. 289–297.
- Eriksen, N.T. (2008) Production of phycocyanin–a pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol., 80, 1–14.
- Kyle, D.J. and Gladue, R. (1996) Eicosapentaenoic acid-containing oil and methods for its production. US Patent 5, 567,732.
- Ogbonna, J.C. (2009) Microbiological production of tocopherols: current state and prospects. Appl. Microbiol. Biotechnol., 84, 217–225.
-
Volkman, J.K. (2016) Sterols in microalgae, in The Physiology of Microalgae (eds M.A. Borowitzka, J. Beardall, and J.A. Raven), Springer, Dordrecht, pp. 485–505.
10.1007/978-3-319-24945-2_19 Google Scholar
-
Ahmed, F., Zhou, W., and Schenk, P.M. (2015)
Pavlova lutheri is a high-level producer of phytosterols. Algal Res., 10, 210–217.
10.1016/j.algal.2015.05.013 Google Scholar
- Luo, X., Su, P., and Zhang, W. (2015) Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar. Drugs, 13, 4231–4254.
- Kaya, K., Nakazawa, A., Matsuura, H. et al. (2011) Thraustochytrid Aurantiochytrium sp. 18 W-13a accumulates high amounts of squalene. Biosci. Biotechnol. Biochem., 75, 2246–2248.
- Haase, S., Huchzermeyer, B., and Rath, T. (2012) PHB accumulation in Nostoc muscorum under different carbon stress situations. J. Appl. Phycol., 24, 157–162.
- Vincenzini, M. and De Philippis, R. (1999) Polyhydroxyalkonates, in Chemicals from Microalgae (ed. Z. Cohen), Taylor & Francis, London, pp. 292–312.
-
Rossi, F. and De Philippis, R. (2016) Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis, in The Physiology of Microalgae (eds M.A. Borowitzka, J. Beardall, and J.A. Raven), Springer, Dordrecht, pp. 565–590.
10.1007/978-3-319-24945-2_21 Google Scholar
-
Arad (Malis), S. and van Moppers, D. (2013) Novel sulphated polysaccharides of red microalgae; basics and applications, in Handbook of Microalgal Culture: Applied Phycology and Biotechnology (eds A. Richmond and Q. Hu), Wiley-Blackwell, Chichester, pp. 406–416.
10.1002/9781118567166.ch21 Google Scholar
- Ivušić, F. and Šantek, B. (2015) Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production. Bioprocess. Biosyst. Eng., 38, 1103–1112.
- Barsanti, L., Vismara, R., Passarelli, V. et al. (2001) Paramylon (β-1,3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J. Appl. Phycol., 13, 59–65.
- Llewellyn, C.A. and Airs, R.L. (2010) Distribution and abundance of MAAs in 33 species of microalgae across 13 classes. Mar. Drugs, 8, 1273–1291.
- Yu, H. and Liu, R. (2013) Effect of UV-B radiation on the synthesis of UV-absorbing compounds in a terrestrial cyanobacterium, Nostoc flagelliforme . J. Appl. Phycol., 25, 1441–1446.
- Borowitzka, M.A. (2013) High-value products from microalgae–their development and commercialisation. J. Appl. Phycol., 25, 743–756.
-
Egeland, E.S. (2016) Carotenoids, in The Physiology of Microalgae (eds M.A. Borowitzka, J. Beardall, and J.A. Raven), Springer, Dordrecht, pp. 507–563.
10.1007/978-3-319-24945-2_20 Google Scholar
- Piccaglia, R., Marotti, M., and Grandi, S. (1998) Lutein and lutein ester content in different types of Tagetes patula and T. erecta . Ind. Crops Prod., 8, 45–51.
- Sánchez, J.F., Fernández, J.M., Acíen, F.G. et al. (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis . Process Biochem., 43, 398–405.
- Chen, F., Li, H.-B., Wong, R.N.-S. et al. (2005) Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J. Chromatogr. A, 1064, 183–186.
- Martin, L.J. (2015) Fucoxanthin and its metabolite fucoxanthinol in cancer prevention and treatment. Mar. Drugs, 13, 4784–4798.
- Heo, S.-J., Ko, S.-C., Kang, S.-M. et al. (2008) Cytoprotective effect of fucoxanthin isolated from brown algae Sargassum siliquastrum against H2O2-induced cell damage. Eur. Food Res. Technol., 228, 145–151.
- Xia, S., Wang, K., Wan, L. et al. (2013) Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita . Mar. Drugs, 11, 2667–2681.
-
Mok, I.-K., Yoon, J.-R., Pan, C.-H.
et al. (2016) Development, quantification, method validation, and stability study of a novel fucoxanthin-fortified milk. J. Agric. Food. Chem., 64, 6196–6202.
10.1021/acs.jafc.6b02206 Google Scholar
- Bendif, E.M., Probert, I., Schroeder, D.C. et al. (2013) On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J. Appl. Phycol., 25, 1763–1776.
- Kim, S.M., Kang, S.-W., Kwon, O.-N. et al. (2012) Fucoxanthin as a major carotenoid in Isochrysis aff. galbana: characterization of extraction for commercial application. J. Korean Soc. Appl. Biol. Chem., 55, 477–483.
- Marchetti, J., Bougaran, G., Le Dean, L. et al. (2012) Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries. Aquaculture, 326–329, 106–115.
- Zhang, C.W. and Richmond, A. (2003) Sustainable, high-yielding outdoor mass cultures of Chaetoceros muelleri var. subsalsum and Isochrysis galbana in vertical plate reactors. Mar. Biotechnol., 5, 302–310.
- Acién Fernández, F.G., Hall, D.O., Cañizares Guerrero, E. et al. (2003) Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor. J. Biotechnol., 103, 137–152.
- Francavilla, M., Trotta, P., and Luque, R. (2010) Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresour. Technol., 101, 4144–4150.
- Ostlund, R.E. (2002) Phytosterols in human nutrition. Annu. Rev. Nutr., 22, 533–549.
- Racette, S.B., Lin, X., Ma, L. et al. (2015) Natural dietary phytosterols. J. AOAC Int., 98, 679–684.
- Koller, M. and Maršálek, L. (2015) Cyanobacterial polyhydroxyalkanoate production: status quo and quo vadis? Curr. Biotechnol., 4, 464–480.
- Toh, P.S.Y., Jau, M.-H., Yew, S.-P. et al. (2008) Comparison of polyhydroxyalkonates biosynthesis, mobilization and the effects of cellular morphology in Spirulina platensis and Synechocystis sp. UNIWG. J. Biosci., 19, 21–38.
- Samantaray, S. and Mallick, N. (2012) Production and characterization of poly-β-hydroxybutyrate (PHB) polymer from Aulosira fertilissima . J. Appl. Phycol., 24, 803–814.
- Bhati, R. and Mallick, N. (2012) Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer by a N2-fixing cyanobacterium, Nostoc muscorum Agardh. J. Chem. Technol. Biotechnol., 87, 505–512.
- Zeller, M.A., Hunt, R., Jones, A. et al. (2013) Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. J. Appl. Polym. Sci., 130, 3263–3275.
- Roy, J.J., Sun, L., and Ji, L. (2014) Microalgal proteins: a new source of raw material for production of plywood adhesive. J. Appl. Phycol., 26, 1415–1422.
- Rodríguez-Zavala, J.S., Ortiz-Cruz, M.A., Mendoza-Hernández, G. et al. (2010) Increased synthesis of α-tocopherol, paramylon and tyrosine by Euglena gracilis under conditions of high biomass production. J. Appl. Microbiol., 109, 2160–2172.
- Spanova, M. and Daum, G. (2011) Squalene–biochemistry, molecular biology, process biotechnology, and applications. Eur. J. Lipid Sci. Technol., 113, 1299–1320.
- Achitouv, E., Metzger, P., Rager, M. et al. (2004) C31–C34 methylated squalenes from a Bolivian strain of Botryococcus braunii . Phytochemistry, 65, 3159–3165.
- Borowitzka, M.A. (1999) Pharmaceuticals and agrochemicals from microalgae, in Chemicals from Microalgae (ed. Z. Cohen), Taylor & Francis, London, pp. 313–352.
- Falaise, C., François, C., Travers, M.-A. et al. (2016) Antimicrobial compounds from eukaryotic microalgae against human pathogens and diseases in aquaculture. Mar. Drugs, 14, 159.
- Jia, X.-H., Zhang, C.-L., Shi, D.-J. et al. (2016) Oral administration of Anabaena-expressed VP28 for both drug and food against white spot syndrome virus in shrimp. J. Appl. Phycol., 28, 1001–1009.
-
Barminski, R., Storteboom, H., and Davis, J.G. (2016) Development and evaluation of an organically certifiable growth medium for cultivation of cyanobacteria. J. Appl. Phycol.
28, 2623–2630.
10.1007/s10811-016-0819-2 Google Scholar
- Simon, R.R., Vo, T.D., and Levine, R. (2016) Genotoxicity and subchronic toxicity evaluation of dried Euglena gracilis ATCC PTA-123017. Regul. Toxicol. Pharm., 80, 71–81.
- Marles, R.J., Barrett, M.L., Barnes, J. et al. (2011) United States pharmacopeia safety evaluation of Spirulina . Crit. Rev. Food Sci. Nutr., 51, 593–604.
- Szabo, N.J., Matulka, R.A., Marone, P.A. et al. (2014) Safety evaluation of oleic-rich triglyceride oil produced by a heterotrophic microalgal fermentation process. Food Chem. Toxicol., 65, 301–311.
- Grobbelaar, J.U. (2003) Quality Control and Assurance: crucial for the sustainability of the applied phycology industry. J. Appl. Phycol., 15, 209–215.
- Belay, A. (2008) Spirulina (Arthrospira): production and quality assurance, in Spirulina in Human Nutrition and Health (eds M.E. Gershwin and A. Belay), CRC Press, Boca Raton, FL, pp. 1–25.
- Ryan, A.S., Zeller, S., and Nelson, E.B. (2010) Safety evaluation of single cell oils and the regulatory requirements for use as a food ingredient, in Single Cell Oils: Microbial and Algal Oils (eds Z. Cohen and C. Ratledge), AOCS Publishing, Urbana, IL, pp. 317–350.
- Gellenbeck, K. (2012) Utilization of algal materials for nutraceutical and cosmeceutical applications–what do manufacturers need to know? J. Appl. Phycol., 24, 309–313.
- Champenois, J., Marfaing, H., and Pierre, R. (2015) Review of the taxonomic revision of Chlorella and consequences for its food uses in Europe. J. Appl. Phycol., 27, 1845–1851.
-
Borowitzka, M.A. (2016) Systematics, taxonomy and species names: do they matter? in The Physiology of Microalgae (eds M.A. Borowitzka, J. Beardall, and J.A. Raven), Springer, Dordrecht, pp. 655–681.
10.1007/978-3-319-24945-2_24 Google Scholar
- de la Jara, A., Assunção, P., Portillo, E. et al. (2016) Evolution of microalgal biotechnology: a survey of the European Patent Office database. J. Appl. Phycol., 28, 2727–2740.
- Borowitzka, M.A. (2014) Patents on cyanobacteria and cyanobacterial products and uses, in Cyanobacteria: An Economic Perspective (eds N.K. Sharma, A.K. Rai, and L.J. Stal), John Wiley & Sons, Ltd, London, pp. 329–338.