Microalgae: A Renewable Resource for Food and Fuels and More
Susan I. Blackburn
Commonwealth Scientific and Industrial Research Organisation (CSIRO) National Collections and Marine Infrastructure, Australian National Algae Culture Collection, Castray Esplanade, GPO Box 1538, Hobart, TAS, 7001 Australia
Search for more papers by this authorKim Jye Lee-Chang
CSIRO Oceans and Atmosphere, Algal Ecology and Resources, Castray Esplanade, GPO Box 1538, Hobart, TAS, 7001 Australia
Search for more papers by this authorSusan I. Blackburn
Commonwealth Scientific and Industrial Research Organisation (CSIRO) National Collections and Marine Infrastructure, Australian National Algae Culture Collection, Castray Esplanade, GPO Box 1538, Hobart, TAS, 7001 Australia
Search for more papers by this authorKim Jye Lee-Chang
CSIRO Oceans and Atmosphere, Algal Ecology and Resources, Castray Esplanade, GPO Box 1538, Hobart, TAS, 7001 Australia
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorStéphane La Barre
Sorbonne Université CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, 29680 France
Search for more papers by this authorStephen S. Bates
Fisheries and Oceans Canada, Gulf Fisheries Centre, 343 Université Avenue, Moncton, 5030 Canada
Search for more papers by this authorSummary
Microalgae are a large and diverse group of microscopic aquatic plants that are responsible for over half of the global primary productivity. They constitute a major food source for organisms at the base of the marine and other aquatic food webs and are important components of many ecosystems. Cultivation of microalgae offers a renewable resource for foods, fuels, aquaculture feeds, and other bioproducts and bioapplications. Bioproducts include a feedstock for biofuels and high-value lipids such as long-chain omega-3 oils, carotenoid pigments, and squalene, as well as other non-lipid materials, including exopolysaccharides. Successful commercial cultivation is dependent on the knowledge of the microalgal strain biology, matching the growth conditions according to the particular geographic sites and culturing and processing methods for the bioproducts of interest. Marine microalgae, as well as those from brackish and hypersaline environments, are grown in seawater at various salinities. Both autotrophic and heterotrophic cultivations are important, offering options in strain biology, chemistry, and production methods. Detailed fatty acid profiles demonstrate characterization of the microalgae into different chemotaxonomic groups, giving useful tools for identifying candidates with favorable bioproduct qualities for further optimization, for example, fast growth, high oil content, and suitable lipid composition. This chapter provides a perspective on the cultivation and qualities of microalgae for their renewable bioproduct and bioapplication potential, which offers great future potential in renewable marine resources.
References
- Guiry, M.D. and Guiry, G.M. (2016) Algaebase, http://www.algaebase.org: National University of Ireland (21 August 2017).
- Guiry, M.D. (2012) How many species of algae are there? J. Phycol., 48, 1057–1063.
-
C. Van den Hoek, D.G. Mann, and H.M. Jahns (eds) (1995) Algae. An Introduction to Phycology, University Press, Cambridge.
10.4319/lo.2007.52.1.0456 Google Scholar
- Walters, C. (2006) The origin of petroleum, in Practical Advances in Petroleum Processing (eds C. Hsu and P. Robinson), Springer, New York, pp. 79–101.
-
Slocombe, S.P., Zhang, Q., Ross, M.
et al. (2015) Unlocking nature's treasure-chest: screening for oleaginous algae. Sci. Rep., 5, 1–17. doi: 10.1038/srep09844
10.1038/srep09844 Google Scholar
- Jeffrey, S. and LeRoi, J. (1997) Simple Procedures for Growing Scor Reference Microalgal Cultures, UNESCO Publishing, Paris.
- Guillard, R.R. and Ryther, J.H. (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can. J. Microbiol., 8, 229–239.
- Keller, M.D., Selvin, R.C., Claus, W. et al. (1987) Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23, 633–638.
- Blackburn, S.I., Bolch, C.J., Haskard, K.A., et al. (2001) Reproductive compatibility among four global populations of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae). Phycologia, 40, 78–87.
-
R.A. Andersen (ed.) (2005) Algal Culturing Techniques, 1st edn, Academic Press, Elsevier Amsterdam.
10.1016/B978-012088426-1/50007-X Google Scholar
- Andersen, R.A. and Sexton, J.P. (2009) The importance of algae and culture collections, with comments on marine algal cryopreservation. Phycologia, 48, 152–153.
- Mori, F., Erata, M., and Watanabe, M.M. (2002) Cryopreservation of cyanobacteria and green algae in the NIES-collection. Microbiol. Cult. Coll., 18, 45–55.
- Müller, J., Day, J.G., Harding, K. et al. (2007) Assessing genetic stability of a range of terrestrial microalgae after cryopreservation using amplified fragment length polymorphism (AFLP). Am. J. Bot., 94, 799–808.
- Day, J.G. and Brand, J.J. (2005). Cryopreservation methods for maintaining microalgal cultures, in Algal Culturing Techniques, (ed. R.A. Andersen). Academic Press, New York, pp. 165–187.
-
Barclay, W., Apt, K., and Dong, X.D. (2013) Commercial production of microalgae via fermentation, in Handbook of Microalgal Culture (eds A. Richmond and Q. Hu), John Wiley & Sons, Ltd, Ltd, pp. 134–145.
10.1002/9781118567166.ch9 Google Scholar
-
Chojnacka, K. and Marquez-Rocha, F.J. (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology, 3, 21–34.
10.3923/biotech.2004.21.34 Google Scholar
- Bumbak, F., Cook, S., Zachleder, V. et al. (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl. Microbiol. Biotechnol., 91, 31–46.
- Liang, Y., Sarkany, N., and Cui, Y. (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett., 31, 1043–1049.
- Fogg, G.E. (1965) Algal Cultures and Phytoplankton Ecology, University of Wisconsin Press, Madison.
-
Richmond, A. and Hu, Q. (2013) Handbook of Microalgal Culture: Applied Phycology and Biotechnology, John Wiley & Sons, Ltd.
10.1002/9781118567166 Google Scholar
- Tredici, M.R. (2004) Mass production of microalgae: photobioreactors, in Handbook of Microalgal Culture: Biotechnology and applied Phycology (ed. A. Richmond), vol. 1, John Wiley & Sons, Ltd., pp. 178–214.
- Lee, Y.-K. (2001) Microalgal mass culture systems and methods: their limitation and potential. J. Appl. Phycol., 13, 307–315.
- Tredici, M. (1999) Photobioreactors, John Wiley & Sons, Ltd, New York.
-
Craggs, R.J., Lundquist, T.J., and Benemann, J.R. (2013) Wastewater treatment and algal biofuel production, in Algae for Biofuels and Energy (eds A.M. Borowitzka and R.N. Moheimani), Springer, Netherlands, pp. 153–163.
10.1007/978-94-007-5479-9_9 Google Scholar
- Grobbelaar, J.U. (2009) Factors governing algal growth in photobioreactors: the “open” versus “closed” debate. J. Appl. Phycol., 21, 489–492.
- Van Harmelen, T. and Oonk, H. (2006) Microalgae biofixation processes: applications and potential contributions to greenhouse gas mitigation options. TNO Built Environment and Geosciences, Apeldoorn, The Netherlands: 56.
- Zittelli, G.C., Rodolfi, L., and Tredici, M.R. (2003) Mass cultivation of Nannochloropsis sp. in annular reactors. J. Appl. Phycol., 15, 107–114.
- Rodolfi, L., Chini, Z.G., Bassi, N. et al. (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 102, 100–112.
- Richmond, A. (1987) The challenge confronting industrial microagriculture: high photosynthetic efficiency in large-scale reactors. Proceeding of the Twelfth International Seaweed Symposium (eds M.A. Ragan and C.J. Bird), Springer, Netherlands.
- Hu, Q. (2004) Environmental effects on cell composition, in Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 1st edn (ed. A. Richmond), John Wiley & Sons, Ltd., pp. 83–94.
- Zhang, C.W., Zmora, O., Kopel, R. et al. (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture, 195, 35–49.
- Lee, Y.K. (2004) Algal nutrition-heterotrophic carbon nutrition, in Handbook of Microalgal Culture: Biotechnology and Applied Phycology (ed. A. Richmond), John Wiley & Sons, Ltd., Oxford, pp. 116–124.
- Raghukumar, S. (2002) Ecology of the marine protists, the labyrinthulomycetes (thraustochytrids and labyrinthulids). Eur. J. Protistol., 38, 127–145.
- Honda, D., Yokochi, T., Nakahara, T. et al. (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18 s ribosomal rna gene. J. Eukaryot. Microbiol., 46, 637–647.
- Leander, C.A., Porter, D., and Leander, B.S. (2004) Comparative morphology and molecular phylogeny of aplanochytrids (labyrinthulomycota). Eur. J. Protistol., 40, 317–328.
- Lewis, T.E., Nichols, P.D., and McMeekin, T.A. (1999) The biological potential of thraustochytrids. Mar. Biotechnol., 1, 580–587.
- Miao, X. and Wu, Q. (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol., 97, 841–846.
- Harel, M. and Place, A.R. (2004) Heterotrophic production of marine algae for aquaculture, in Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 1st edn (ed. A. Richmond), John Wiley & Sons, Ltd, pp. 513–524.
- Algal Scientific C (2016) Algamune: The World's First Beta Glucan Commercially Produced from Algae, https://www.businesswire.com/news/home/20150331005311/en/Algal-Scientific-Secures-7-Million-Funding-Accelerate
- Kim, K., Jung, K.E., Ryu, B.-G. et al. (2012) A novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid. Bioresour. Technol., 135, 269–274.
- Ryu, B.-G., Kim, K., Kim, J. et al. (2012) Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresour. Technol., 129, 351–359.
-
Lee Chang, K.J., Paul, H., Nichols, P.D.
et al. (2015) Australian thraustochytrids: potential production of dietary long-chain omega-3 oils using crude glycerol. J. Funct. Foods, 19, 810–820.
10.1016/j.jff.2015.01.039 Google Scholar
- Yan, D., Lu, Y., Chen, Y.-F. et al. (2011) Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour. Technol., 102, 6487–6493.
- Jensen, G.S., Ginsberg, D.I., and Drapeau, C. (2001) Blue-green algae as an immuno-enhancer and biomodulator. JANA, 3, 24–30.
- Richmond, A. (2008) Handbook of Microalgal Culture: Biotechnology and Applied Phycology, John Wiley & Sons, Ltd.
- Belasco, W. (1997) Algae burgers for a hungry world? The rise and fall of Chlorella cuisine. Technol. Cult., 38, 608–634.
- Yamaguchi, K. (1996) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: a review. J. Appl. Phycol., 8, 487–502.
- Volkman, J.K., Brown, M.R., Dunstan, G.A. et al. (1993) The biochemical composition of marine microalgae from the class eustigmatophyceae. J. Phycol., 29, 69–78.
- Spolaore, P., Joannis-Cassan, C., Duran, E. et al. (2006) Commercial applications of microalgae. Soci. Biotechnol., 101, 87–96.
-
Barclay, W. and Apt, K. (2013) Strategies for bioprospecting microalgae for potential commercial applications, in Handbook of Microalgal Culture (eds A. Richmond and Q. Hu), John Wiley & Sons, Ltd, Ltd, pp. 69–79.
10.1002/9781118567166.ch4 Google Scholar
- Carmichael, W.W., Drapeau, C., and Anderson, D.M. (2000) Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (Cyanobacteria) from Klamath Lake for human dietary use. J. Appl. Phycol., 12, 585–595.
- Davis, H. and Guillard, R. (1958) Relative value of ten genera of microorganisms as foods for oyster and clam larvae. US. Fish Wildlife Serv. Fish. Bull, 136, 293–304.
- Brown, M., Jeffrey, S., Volkman, J. et al. (1997) Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.
- Knuckey, R.M., Brown, M.R., Robert, R. et al. (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacult. Eng., 35, 300–313.
- Bharathiraja, B., Chakravarthy, M., Kumar, R.R. et al. (2015) Aquatic biomass (algae) as a future feed stock for bio-refineries: a review on cultivation, processing and products. Renewable Sustainable Energy Rev., 47, 634–653.
-
Maisashvili, A., Bryant, H., Richardson, J.
et al. (2015) The values of whole algae and lipid extracted algae meal for aquaculture. Algal Res., 9, 133–142.
10.1016/j.algal.2015.03.006 Google Scholar
- Sheehan, J., Dunahay, T., Benemann, J. et al. (1998) Look Back at the U.S. Department of Energy's Aquatic Species Program: Biodiesel from Algae; Close-out Report, National Renewable Energy Lab, Golden, CO, US Department of Energy, http://www.osti.gov/energycitations/servlets/purl/15003040-tW7nZs/native/ (21 Aug 2017)
- Pienkos, P.T. and Darzins, A. (2009) The promise and challenges of microalgal-derived biofuels. Biofuels, Bioprod. Biorefin., 3, 431–440.
- Sun, A., Davis, R., Starbuck, M. et al. (2011) Comparative cost analysis of algal oil production for biofuels. Energy, 36, 5169–5179.
- Sheehan, J., Camobreco, V., Duffield, J. et al. (1998) Life Cycle Inventory of Biodiesel and Petroleum Diesel for Use in an Urban Bus. Final Report, National Renewable Energy Lab, Golden, CO.
- Benemann, J.R. (2008) Opportunities and Challenges in Algae Biofuels production, http://www.fao.org/uploads/media/algae_positionpaper.pdf (21 Aug 2017)
- Lundquist, T.J., Woertz, I.C., Quinn, N. et al. (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosci. Inst., 1–178.
- Chen, J., Wang, Y., Benemann, J.R. et al. (2016) Microalgal industry in China: challenges and prospects. J. Appl. Phycol., 28, 715–725.
- US DOE (U.S. Department of Energy), (2016) National Algal Biofuels Technology Review. Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office, http://energy.gov/sites/prod/files/2016/06/f33/national_algal_biofuels_technology_review.pdf. (27 March 2016)
- Hsueh, H.T., Chu, H., and Yu, S.T. (2007) A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere, 66, 878–886.
- Rann, M. (2009) Microalgal Biodiesel – A Renewable Future, http://www.renewablessa.sa.gov.au/files/bioalgae.pdf. (23 January 2016)
- Eboibi, B., Lewis, D.M., Ashman, P.J. et al. (2015) Influence of process conditions on pretreatment of microalgae for protein extraction and production of biocrude during hydrothermal liquefaction of pretreated Tetraselmis sp. RSC Adv., 5, 20193–20207.
- Klein-Marcuschamer, D., Chisti, Y., Benemann, J.R. et al. (2013) A matter of detail: assessing the true potential of microalgal biofuels. Biotechnol. Bioeng., 110, 2317–2322.
- Clarens, A. and Colosi, L. (2013) Life cycle assessment of algae-to-energy systems, in Advanced Biofuels and Bioproducts (ed. J. Lee), Springer, New York, pp. 759–778.
- Lee Chang, K.J., Rye, L., Dunstan, G.A. et al. (2014) Life cycle assessment: heterotrophic cultivation of thraustochytrids for biodiesel production. J. Appl. Phycol., 27 (2), 639–647.
- Maxwell, J.R., Douglas, A.G., Eglinton, G. et al. (1968) The Botryococcenes – hydrocarbons of novel structure from the alga Botryococcus braunii, Kützing. Phytochemistry, 7, 2157–2171.
- Tanoi, T., Kawachi, M., and Watanabe, M.M. (2011) Effects of carbon source on growth and morphology of Botryococcus braunii . J. Appl. Phycol., 23, 25–33.
- Metzger, P. and Largeau, C. (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol., 66, 486–496.
-
Watanabe, M.M. and Tanabe, Y. (2013) Biology and industrial potential of Botryococcus braunii, in Handbook of Microalgal Culture (eds A. Richmond and Q. Hu), John Wiley & Sons, Ltd, Ltd, pp. 369–387.
10.1002/9781118567166.ch19 Google Scholar
- Monyem, A., Canakci, M., and Van Gerpen, J.H. (2000) Investigation of biodiesel thermal stability under simulated in-use conditions. Appl. Eng. Agric., 16, 373–378.
- Knothe, G. (2007) Some aspects of biodiesel oxidative stability. Fuel Process. Technol., 88, 669–677.
- Klopfenstein, W.E. (1982) Estimation of cetane index for esters of fatty acids. J. Am. Oil Chem. Soc., 59, 531–533.
- Gerpen, J.V. (2005) Biodiesel processing and production. Fuel Process. Technol., 86, 1097–1107.
- Wallington, T., Kaiser, E., and Farrell, J. (2006) Automotive fuels and internal combustion engines: a chemical perspective. Chem. Soc. Rev., 35, 335–347.
- Dunstan, G., Volkman, J., Barrett, S. et al. (1993) Changes in the lipid composition and maximisation of the polyunsaturated fatty acid content of three microalgae grown in mass culture. J. Appl. Phycol., 5, 71–83.
- Takahata, K., Monobe, K., Tada, M. et al. (1998) The benefits and risks of n-3 polyunsaturated fatty acids. Biosci. Biotechnol., Biochem., 62, 2079–2085.
- Tapiero, H., Ba, G.N., Couvreur, P. et al. (2002) Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother., 56, 215–222.
- Horrocks, L. and Farooqui, A. (2004) Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids, 70, 361–372.
- Kris-Etherton, P.M., Hecker, K.D., and Binkoski, A.E. (2004) Polyunsaturated fatty acids and cardiovascular health. Nutr. Rev., 62, 414–426.
-
Lee Chang, K.J., Dunstan, G.A., Mansour, M.P.
et al. (2016), A novel series of C18–C22
trans ω3 PUFA from Northern and Southern Hemisphere strains of the marine haptophyte Imantonia rotunda
. J. Appl. Phycol., 28, 3363–3370.
10.1007/s10811-016-0906-4 Google Scholar
- Metz, J.G., Roessler, P., Facciotti, D. et al. (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293, 290–293.
- Huang, J., Aki, T., Yokochi, T. et al. (2003) Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes. Mar. Biotechnol., 5, 450–457.
- Lippmeier, J., Crawford, K., Owen, C. et al. (2009) Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids, 44, 621–630.
- Abedi, E. and Sahari, M.A. (2014) Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr., 2, 443–463.
- Barclay, W., Meager, K., and Abril, J. (1994) Heterotrophic production of long chain omegah-3 fatty acids utilizing algae and algae-like microorganisms. J. Appl. Phycol., 6, 123–129.
-
Khozin-Goldberg, I., Leu, S., and Boussiba, S. (2016) Microalgae as a source for VLC-PUFA production, in Lipids in Plant and Algae Development (eds Y. Nakamura and Y. Li-Beisson), Springer International Publishing, Switzerland, pp. 471–510.
10.1007/978-3-319-25979-6_19 Google Scholar
- Wright, S.W. and Jeffrey, S.W. (2005) Pigment markers for phytoplankton production, in Marine Organic Matter: Biomarkers, Isotopes and DNA (ed. J.K. Volkman), Springer, Berlin Heidelberg, pp. 71–104.
- Wright, S. (1991) Improved HPLC method for the analysis of chlorophylls and carotenoids from marine phytoplankton. Mar. Ecol. Prog. Ser., 77, 183–196.
- Van Heukelem, L. and Thomas, C.S. (2001) Computer-assisted high-performance liquid chromatography method development with applications to the isolation and analysis of phytoplankton pigments. J. Chromatogr. A, 910, 31–49.
- Wright, S.W. and Jeffrey, S.W. (1987) Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC. Mar. Ecol. Prog. Ser., 38, 259–266.
- Jin, E., Polle, J.E., Lee, H.-K. et al. (2003) Xanthophylls in microalgae: from biosynthesis to biotechnological mass production and application. J. Microbiol. Biotechnol., 13, 165–174.
- Lorenz, R.T. and Cysewski, G.R. (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol., 18, 160–167.
- Harker, M. and Young, A.J. (1995) Inhibition of astaxanthin synthesis in the green-alga Haematococcus pluvialis . Eur. J. Phycol., 30, 179–187.
- Jeffrey, S.W., Egeland, E., and Enfield, N. (2009) Pigments of green and red forms of Dunaliella, and related chlorophytes, in The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology (eds A. Ben-Amotz, J.E.W. Polle, and D.V.S. Rao), Science Publishers, Enfield, pp. 111–145.
- Borowitzka, M.A. (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J. Biotechnol., 70, 313–321.
- Shi, X.M. and Chen, F. (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol. Progr., 18, 723–727.
- Cerón, M.C., Campos, I., Sanchez, J.F. et al. (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis biomass. J. Agric. Food. Chem., 56, 11761–11766.
- Wei, D., Chen, F., Chen, G. et al. (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci. China, Ser. C Life Sci., 51, 1088–1093.
- Mori, K., Ooi, T., Hiraoka, M. et al. (2004) Fucoxanthin and its metabolites in edible brown algae cultivated in deep seawater. Mar. Drugs, 2, 63–72.
- Moreau, D., Tomasoni, C., Jacquot, C. et al. (2006) Cultivated microalgae and the carotenoid fucoxanthin from Odontella aurita as potent anti-proliferative agents in bronchopulmonary and epithelial cell lines. Environ. Toxicol. Pharmacol., 22, 97–103.
- Sutherland, I.W. (1982) Biosynthesis of microbial exopolysaccharides, in Advances in Microbial Physiology (eds A.H. Rose and J.G. Morris), Academic Press, Londan, pp. 79–150.
- Decho, A.W. (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr. Mar. Biol. Annu. Rev., 28, 73–153.
- Wotton, R.S. (2004) The utiquity and many roles of exopolymers (EPS) in aquatic systems. Sci. Mar., 68, 13–21.
- Flemming, H.C. and Wingender, J. (2001) Relevance of microbial extracellular polymeric substances (EPSS) – Part I: Structural and ecological aspects. Water Sci. Technol., 43, 1–8.
- Flemming, H.C., Wingender, J., Moritz, R. et al. (1999) Physico-chemical properties of biofilms - a short review, in Biofilms in the Aquatic Environment (eds K. Cw, C. Dow, A. Godfree, and D. Holt), Royal Society of Chemistry, Cambridge, pp. 1–12.
- Bitton, G. and Freihofer, V. (1977) Influence of extracellular polysaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes . Microb. Ecol., 4, 119–125.
- Jeanthon, C. and Prieur, D. (1990) Susceptibility to heavy metals and characterization of heterotrophic bacteria isolated from two hydrothermal vent polychaete annelids, Alvinella pompejana and Alvinella caudata . Appl. Environ. Microbiol., 56, 3308–3314.
- Caron, D.A. (1987) Grazing of attached bacteria by heterotrophic microflagellates. Microb. Ecol., 13, 203–218.
- Hassler, C.S., Schoemann, V., Nichols, C.M. et al. (2011) Saccharides enhance iron bioavailability to southern ocean phytoplankton. Proc. Natl. Acad. Sci. U.S.A., 108, 1076–1081.
- Jain, R., Raghukumar, S., Tharanathan, R. et al. (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar. Biotechnol., 7, 184–192.
- Sutherland, I.W. (1972) Bacterial exopolysaccharides, in Advances in Microbial Physiology (eds A.H. Rose and D.W. Tempest), Academic Press, London, pp. 143–213.
- Sandford, P.A. (1984) Biotechnology of marine polysaccharide, in Biotechnology of Marine Polysaccharide (eds R.R. Colwell, E.R. Pariser, and A.J. Sinksey), McGraw-Hill, New York, pp. 454–516.
- Labare, M.P., Guthrie, K., and Weiner, R.M. (1989) Polysaccharide exopolymer adhesives from periphytic marine bacteria. J. Adhes. Sci. Technol., 3, 213–223.
- Weiner, R.M. (1997) Biopolymers from marine prokaryotes. Trends Biotechnol., 15, 390–394.
- Sutherland, I.W. (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol., 16, 41–46.
- Guezennec, J. (2002) Deep-sea hydrothermal vents: a new source of innovative bacterial exopolysaccharides of biotechnological interest? J. Ind. Microbiol. Biotechnol., 29, 204–208.
- Zanchetta, P., Lagarde, N., and Guezennec, J. (2003) A new bone-healing material: a hyaluronic acid-like bacterial exopolysaccharide. Calcif. Tissue Int., 72, 74–79.
- González López, C.V., Acién Fernández, F.G., Fernández Sevilla, J.M. et al. (2009) Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour. Technol., 100, 5904–5910.
- Donot, F., Fontana, A., Baccou, J. et al. (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym., 87, 951–962.
- Raghukumar, S., Madhavan, H.N., and Malathi, J. (2014) Extracellular Polysaccharides from Labyrinthulomycetes with Broad-Spectrum Antiviral Activities , http://www.google.com/patents/WO2014045191A2?cl=en (21 Aug 2017)
- Benemann, J.R. and Oswald, W.J. (1996) Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass. Technical Report , California University, Berkeley, CA. Department of Civil Engineering. http://www.osti.gov/scitech/servlets/purl/493389. (21 Aug 2017)
- Benemann, J. (2013) Microalgae for biofuels and animal feeds. Energies, 6, 5869–5886.
- Mehrabadi, A., Craggs, R., and Farid, M.M. (2015) Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production. Bioresour. Technol., 184, 202–214.
- Batten, D., Beer, T., Freischmidt, G. et al. (2013) Using wastewater and high-rate algal ponds for nutrient removal and the production of bioenergy and biofuels. Water Sci. Technol., 67, 915–924.
- Biotherm L'Oréal (2013) Blue Therapy Serum-in-Oil: the New Anti-Aging by Biotherm , http://www.loreal.ca/en-ca/media/news/2013/oct/blue-therapy-serum-in-oil-the-new-anti-aging-by-biotherm (21 Aug 2017)
- Algenist (2016) Algenist Branded Skin and Personal Care Products- GENIUS Collection .
- Delalat, B., Sheppard, V.C., Rasi, G.S. et al. (2015) Targeted drug delivery using genetically engineered diatom biosilica. Nat. Commun., 6, 1–11.
- Bayne, A.C.V., Boltz, D., Owen, C. et al. (2013) Vaccination against influenza with recombinant hemagglutinin expressed by Schizochytrium sp. confers protective immunity. PLoS One, 8, e61790.
- Nakazawa, A., Kokubun, Y., Matsuura, H. et al. (2014) TLC screening of thraustochytrid strains for squalene production. J. Appl. Phycol., 26, 29–41.
- Smith, T.J. (2000) Squalene: potential chemopreventive agent. Expert Opin. Invest. Drugs, 9, 1841–1848.
- Ishitsuka, K., Koide, M., Yoshida, M. et al. (2017) Identification of intracellular squalene in living algae, Aurantiochytrium mangrovei with hyper-spectral coherent anti-Stokes Raman microscopy using a sub-nanosecond supercontinuum laser source. J. Raman Spectrosc., 48, 8–15.
- Work, V.H., D'Adamo, S., Radakovits, R. et al. (2012) Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Curr. Opin. Biotechnol., 23, 290–297.
- Radakovits, R., Eduafo, P.M., and Posewitz, M.C. (2011) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum . Metab. Eng., 13, 89–95.
- Jinkerson, R.E., Radakovits, R., and Posewitz, M.C. (2013) Genomic insights from the oleaginous model alga Nannochloropsis gaditana . Bioengineered, 4, 37–43.
- Zhou, X.-R., Robert, S.S., Petrie, J.R. et al. (2007) Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry, 68, 785–796.
- Petrie, J.R., Liu, Q., Mackenzie, A.M. et al. (2010) Isolation and characterisation of a high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production. Mar. Biotechnol., 12, 430–438.
- Petrie, J.R., Shrestha, P., Mansour, M.P. et al. (2010) Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-coa δ6-desaturase with ω3-preference from the marine microalga Micromonas pusilla . Metab. Eng., 12, 233–240.
- Petrie, J., Nichols, P., Devine, M. et al. (2013) Engineered oilseed crops with fish oil DHA levels. INFORM, 24, 648–652.
- Petrie, J.R., Shrestha, P., Belide, S. et al. (2014) Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS One., 9 (1), e85061. doi: 10.1371/journal.pone.0095409.