Materials Selection, Processing, and Characterization Technologies
Jing Ma
Tsinghua University, School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Beijing, 100084 China
Search for more papers by this authorLu Song
Tsinghua University, School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Beijing, 100084 China
Search for more papers by this authorChen Liu
Tsinghua University, School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Beijing, 100084 China
Search for more papers by this authorChengzhou Xin
Tsinghua University, School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Beijing, 100084 China
Search for more papers by this authorJing Ma
Tsinghua University, School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Beijing, 100084 China
Search for more papers by this authorLu Song
Tsinghua University, School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Beijing, 100084 China
Search for more papers by this authorChen Liu
Tsinghua University, School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Beijing, 100084 China
Search for more papers by this authorChengzhou Xin
Tsinghua University, School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Beijing, 100084 China
Search for more papers by this authorSenentxu Lanceros-Méndez
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorPedro Martins
Universidade do Minho, Centro de Física, Campus de Gualtar, Braga, 4710-057 Portugal
Search for more papers by this authorSummary
Magnetoelectric (ME) composites have recently attracted an ever-increasing interest and provoked a great number of research activities, driven by profound physics from coupling between ferroelectric and magnetic orders, as well as potential applications in novel multifunctional devices, such as sensors, transducers, memories, and spintronics. This chapter discusses the development and the consideration of materials selection of polymer-based magnetoelectric (ME) composites, followed by an introduction to the characterization technologies of ferroelectric/piezoelectric, magnetism, and direct/converse ME coupling, which are essential in the study of ME composites. In polymer-based ME composites in which the polymer acts as the binder, two categories are common. One is the structure - magnetostrictive and piezoelectric particles are mixed or separately embedded in a polymer matrix - and the other is that the polymer only acts as the binding boundary layer. The chapter discusses the popular characterization techniques and facilities for magnetism measurement and an important branch, particularly for ME composites, magnetostriction measurement.
References
- van Suchtelen, J. (1972) Product properties: new application of composite-materials. Philips Res. Rep., 27 (1), 28–37.
- Newnham, R., Skinner, D., and Cross, L. (1978) Connectivity and piezoelectric–pyroelectric composites. Mater. Res. Bull., 13 (5), 525–536.
- Fiebig, M. (2005) Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys., 38 (8), R123–R152.
- Eerenstein, W., Mathur, N.D., and Scott, J.F. (2006) Multiferroic and magnetoelectric materials. Nature, 442 (7104), 759–765.
- Ramesh, R. and Spaldin, N.A. (2007) Multiferroics: progress and prospects in thin films. Nat. Mater., 6 (1), 21–29.
- Nan, C.W., Bichurin, M.I., Dong, S.X. et al. (2008) Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys., 103 (3), 031101.
- Srinivasan, G. (2010) Magnetoelectric composites. Annu. Rev. Mater. Res., 40, 153–178.
- Vaz, C.A.F., Hoffman, J., Anh, C.H. et al. (2010) Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater., 22 (26-27), 2900–2918.
- Ma, J., Hu, J.M., Li, Z. et al. (2011) Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater., 23 (9), 1062–1087.
- Velev, J., Jaswal, S., and Tsymbal, E. (2011) Multi-ferroic and magnetoelectric materials and interfaces. Philos. Trans. R. Soc. London, Ser. A, 369 (1948), 3069–3097.
- Bibes, M. (2012) Nanoferronics is a winning combination. Nat. Mater., 11 (5), 354–357.
- Sun, N.X. and Srinivasan, G. (2012) Voltage control of magnetism in multiferroic heterostructures and devices. SPIN, 2, 1240004.
- Vaz, C.A. (2012) Electric field control of magnetism in multiferroic heterostructures. J. Phys. Condens. Matter, 24 (33), 333201.
- Martins, P. and Lanceros-Méndez, S. (2013) Polymer-based magnetoelectric materials. Adv. Funct. Mater., 23 (27), 3371–3385.
- Fusil, S., Garcia, V., Barthélémy, A. et al. (2014) Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res., 44, 91–116.
- Heron, J., Schlom, D., and Ramesh, R. (2014) Electric field control of magnetism using BiFeO3-based heterostructures. Appl. Phys. Rev., 1 (2), 021303.
- Liu, M. and Sun, N.X. (2014) Voltage control of magnetism in multiferroic heterostructures. Philos. Trans. R. Soc. London, Ser. A, 372 (2009), 20120439.
- Ramesh, R. (2014) Electric field control of ferromagnetism using multi-ferroics: the bismuth ferrite story. Philos. Trans. R. Soc. London, Ser. A, 372 (2009), 20120437.
- Garcia, V., Bibes, M., and Barthélémy, A. (2015) Artificial multiferroic heterostructures for an electric control of magnetic properties. C. R. Phys., 16 (2), 168–181.
- Nan, C.W. (1994) Effective-medium theory of piezoelectric composites. J. Appl. Phys., 76 (2), 1155–1163.
- Kawai, H. (1969) The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys., 8 (7), 975.
- Mohammadi, B., Yousefi, A.A., and Bellah, S.M. (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym. Test., 26 (1), 42–50.
- El Achaby, M., Arrakhiz, F., Vaudreuil, S. et al. (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films. Appl. Surf. Sci., 258 (19), 7668–7677.
- Venkatragavaraj, E., Satish, B., Vinod, P. et al. (2001) Piezoelectric properties of ferroelectric PZT-polymer composites. J. Phys. D: Appl. Phys., 34 (4), 487.
-
Nix, E. and Ward, I. (1986) The measurement of the shear piezoelectric coefficients of polyvinylidene fluoride. Ferroelectrics, 67 (1), 137–141.
10.1080/00150198608245016 Google Scholar
- Zhang, Q.M., Li, H., Poh, M. et al. (2002) An all-organic composite actuator material with a high dielectric constant. Nature, 419 (6904), 284–287.
- Zhang, Q.M., Bharti, V., and Zhao, X. (1998) Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science, 280 (5372), 2101–2104.
- Legrand, J. (1989) Structure and ferroelectric properties of P (VDF-TrFE) copolymers. Ferroelectrics, 91 (1), 303–317.
- Zhai, J.Y., Dong, S.X., Xing, Z.P. et al. (2006) Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl. Phys. Lett., 89 (8), 083507.
- Liebermann, H.H. and Graham, C.D. (1976) Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions. IEEE Trans. Magn., 12 (6), 921–923.
- Liu, G., Nan, C.W., Cai, N. et al. (2004) Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and lead-zirconate-titanate. J. Appl. Phys., 95 (5), 2660–2664.
- Silva, M., Reis, S., Lehmann, C. et al. (2013) Optimization of the magnetoelectric response of poly (vinylidene fluoride)/epoxy/Vitrovac laminates. ACS Appl. Mater. Interfaces, 5 (21), 10912–10919.
- Kulkarni, A., Meurisch, K., Teliban, I. et al. (2014) Giant magnetoelectric effect at low frequencies in polymer-based thin film composites. Appl. Phys. Lett., 104 (2), 022904.
- Lu, M.-C., Mei, L., Jeong, D.-Y. et al. (2015) Enhancing the magnetoelectric response of Terfenol-D/polyvinylidene fluoride/Terfenol-D laminates by exploiting the shear mode effect. Appl. Phys. Lett., 106 (11), 112905.
- Nan, C.W., Li, M., and Huang, J.H. (2001) Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers. Phys. Rev. B, 63 (14), 144415.
- Ma, J., Shi, Z., and Nan, C.W. (2007) Magnetoelectric properties of composites of single Pb(Zr,Ti)O3 rods and Terfenol-D/epoxy with a single-period of 1-3-type structure. Adv. Mater., 19 (18), 2571–2574.
- Nguyen, T.H.L., Laffont, L., Capsal, J.-F. et al. (2015) Magnetoelectric properties of nickel nanowires-P(VDF–TrFE) composites. Mater. Chem. Phys., 153, 195–201.
- Belouadah, R., Seveyrat, L., Guyomar, D. et al. (2016) Magnetoelectric coupling in Fe3O4/P(VDF-TrFE) nanocomposites. Sens. Actuators, A, 247, 298–306.
- Guyomar, D., Guiffard, B., Belouadah, R. et al. (2008) Two-phase magnetoelectric nanopowder/polyurethane composites. J. Appl. Phys., 104 (7), 074902.
- Guyomar, D., Matei, D.F., Guiffard, B. et al. (2009) Magnetoelectricity in polyurethane films loaded with different magnetic particles. Mater. Lett., 63 (6-7), 611–613.
- Li, Y.J., Gao, T., Liu, J. et al. (1992) Multiphase structure of a segmented polyurethane: effects of temperature and annealing. Macromolecules, 25 (26), 7365–7372.
- Guiffard, B., Seveyrat, L., Sebald, G. et al. (2006) Enhanced electric field-induced strain in non-percolative carbon nanopowder/polyurethane composites. J. Phys. D: Appl. Phys., 39 (14), 3053–3057.
- Petcharoen, K. and Sirivat, A. (2016) Magneto-electro-responsive material based on magnetite nanoparticles/polyurethane composites. Mater. Sci. Eng., C, 61, 312–323.
- Nan, C.-W., Liu, L., Cai, N. et al. (2002) A three-phase magnetoelectric composite of piezoelectric ceramics, rare-earth iron alloys, and polymer. Appl. Phys. Lett., 81 (20), 3831–3833.
- Curie, P. and Curie, J. (1880) Développement, par pression, de l'électricité polaire dans les cristaux hémiédres à facesinclinées. C. R. Acad. Sci. Paris, 91, 294–295.
- Curie, P. and Curie, J. (1881) Contractions et dilatations produites par des tensions électrique dans les hémiédres à faces inclinées. C. R. Acad. Sci. Paris, 93, 1137–1140.
-
Cain, M.G. (2014) Characterisation of Ferroelectric Bulk Materials and Thin Films, Springer.
10.1007/978-1-4020-9311-1 Google Scholar
- Chiolerio, A., Lombardi, M., Guerriero, A. et al. (2013) Effect of the fabrication method on the functional properties of BaTiO3: PVDF nanocomposites. J. Mater. Sci., 48 (20), 6943–6951.
- Guthner, P. and Dransfeld, K. (1992) Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett., 61 (9), 1137–1139.
- Soergel, E. (2011) Piezoresponse force microscopy (PFM). J. Phys. D: Appl. Phys., 44 (46), 464003.
- Gruverman, A. and Kalinin, S.V. (2006) Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics. J. Mater. Sci., 41 (1), 107–116.
- Gonçalves, R., Martins, P., Moya, X. et al. (2015) Magnetoelectric CoFe2O4/polyvinylidene fluoride electrospun nanofibres. Nanoscale, 7 (17), 8058–8061.
- Valasek, J. (1921) Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev., 17 (4), 475–481.
- Scott, J. (2007) Ferroelectrics go bananas. J. Phys. Condens. Matter, 20 (2), 021001.
- Proksch R. Piezoresponse Force Microscopy with Asylum Research AFMs. Oxford Instruments Asylum Research, Inc. http://www.asylumresearch.com/Applications/PFMAppNote/PFMAppNote.shtml.
- Sharma, P., Reece, T., Wu, D. et al. (2009) Nanoscale domain patterns in ultrathin polymer ferroelectric films. J. Phys. Condens. Matter, 21 (48), 485902.
- WookáSong, H. (2012) The piezoresponse force microscopy investigation of self-polarization alignment in poly (vinylidene fluoride-co-trifluoroethylene) ultrathin films. Soft Matter, 8 (4), 1064–1069.
- Hartmann, U. (1999) Magnetic force microscopy. Annu. Rev. Mater. Sci., 29 (1), 53–87.
-
Coey, J.M.D. (2010) Magnetism and Magnetic Materials, Cambridge University Press.
10.1017/CBO9780511845000 Google Scholar
- Zech, M., Boedefeld, C., Otto, F. et al. (2011) Magnetic imaging on the nanometer scale using low-temperature scanning probe techniques. Microsc. Today, 19 (06), 34–38.
- Allwood, D.A., Xiong, G., Cooke, M.D. et al. (2003) Magneto-optical Kerr effect analysis of magnetic nanostructures. J. Phys. D: Appl. Phys., 36 (18), 2175–2182.
- Foner, S. (1959) Versatile and sensitive vibrating-sample magnetometer. Rev. Sci. Instrum., 30 (7), 548–557.
- Foner, S. (1956) Vibrating sample magnetometer. Rev. Sci. Instrum., 27 (7), 548.
- Josephson, B.D. (1962) Possible new effects in superconductive tunnelling. Phys. Lett., 1 (7), 251–253.
- Anderson, P.W. and Rowell, J.M. (1963) Probable observation of Josephson superconducting tunneling effect. Phys. Rev. Lett., 10 (6), 230–232.
- Koch, R.H., Umbach, C.P., Clark, G.J. et al. (1987) Quantum interference devices made from superconducting oxide thin-films. Appl. Phys. Lett., 51 (3), 200–202.
- Singamaneni, S., Bliznyuk, V.N., Binek, C. et al. (2011) Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem., 21 (42), 16819–16845.
- Duenas, T.A. and Carman, G.P. (2000) Large magnetostrictive response of Terfenol-D resin composites (invited). J. Appl. Phys., 87 (9), 4696–4701.
- Nersessian, N., Or, S.W., and Carman, G.P. (2003) Magneto-thermo-mechanical characterization of 1–3 type polymer-bonded Terfenol-D composites. J. Magn. Magn. Mater., 263 (1-2), 101–112.
- Cai, N., Zhai, J.Y., Shi, Z. et al. (2004) Magnetic properties of composites of Tb0.28Dy0.72Fe2 and polyvinylidene fluoride. Chin. Phys., 13 (8), 1348–1352.
- Dong, X., Qi, M., Guan, X. et al. (2010) Microstructure analysis of magnetostrictive composites. Polym. Test., 29 (3), 369–374.
- Dong, X.F., Qi, M., Guan, X.C. et al. (2011) Fabrication of Tb0.3Dy0.7Fe2/epoxy composites: enhanced uniform magnetostrictive and mechanical properties using a dry process. J. Magn. Magn. Mater., 323 (3-4), 351–355.
- Wan, J.G., Liu, J.M., Chand, H.L.W. et al. (2003) Giant magnetoelectric effect of a hybrid of magnetostrictive and piezoelectric composites. J. Appl. Phys., 93 (12), 9916–9919.
-
Tumanski, S. (2016) Handbook of Magnetic Measurements, CRC Press.
10.1201/b10979 Google Scholar
- Martino, M., Danisi, A., Losito, R. et al. (2010) Design of a linear variable differential transformer with high rejection to external interfering magnetic field. IEEE Trans. Magn., 46 (2), 674–677.
- Lim, S.H., Kim, S., Kang, S. et al. (1999) Magnetostrictive properties of polymer-bonded Terfenol-D composites. J. Magn. Magn. Mater., 191 (1), 113–121.
- Luo, P.F., Chao, Y.J., Sutton, M.A. et al. (1993) Accurate measurement of 3-dimensional deformations in deformable and rigid bodies using computer vision. Exp. Mech., 33 (2), 123–132.
- Elhajjar, R.F. and Law, C.T. (2015) Magnetomechanical local-global effects in magnetostrictive composite materials. Modell. Simul. Mater. Sci. Eng., 23 (7), 075002.
- Bai, W., Meng, X.J., Lin, T. et al. (2010) Magnetic field induced ferroelectric and dielectric properties in Pb(Zr0.5Ti0.5)O3 films containing Fe3O4 nanoparticles. Thin Solid Films, 518 (14), 3721–3724.
- Park, J.H., Jang, H.M., Kim, H.S. et al. (2008) Strain-mediated magnetoelectric coupling in BaTiO3-Co nanocomposite thin films. Appl. Phys. Lett., 92 (6), 062908.
- Ryu, S., Park, J.H., and Jang, H.M. (2007) Magnetoelectric coupling of 00l.-oriented Pb(Zr0.4Ti0.6)O3–Ni0.8Zn0.2Fe2O4 multilayered thin films. Appl. Phys. Lett., 91 (14), 142910.
- Liu, M., Li, X., Imrane, H. et al. (2007) Synthesis of ordered arrays of multiferroic NiFe2O4–Pb(Zr0.52Ti0.48)O3 core-shell nanowires. Appl. Phys. Lett., 90 (15), 152501.
- Chaudhuri, A.R., Ranjith, R., Krupanidhi, S.B. et al. (2007) Interface dominated biferroic La0.6Sr0.4MnO3/0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 epitaxial superlattices. Appl. Phys. Lett., 90 (12), 122902.
- Ortega, N., Bhattacharya, P., Katiyar, R.S. et al. (2006) Multiferroic properties of Pb(Zr,Ti)O3/CoFe2O4 composite thin films. J. Appl. Phys., 100 (12), 126105.
- Catalan, G. (2006) Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett., 88 (10), 102902.
- Jang, H.M., Park, J.H., Ryu, S.W. et al. (2008) Magnetoelectric coupling susceptibility from magnetodielectric effect. Appl. Phys. Lett., 93 (25), 252904.
- Maglione, M. (2008) Interface-driven magnetocapacitance in a broad range of materials. J. Phys. Condens. Matter, 20 (32), 322202.
- Maglione, M. and Subramanian, M.A. (2008) Dielectric and polarization experiments in high loss dielectrics: a word of caution. Appl. Phys. Lett., 93 (3), 032902.
- More-Chevalier, J., Cibert, C., Bouregba, R. et al. (2015) Eddy currents: a misleading contribution when measuring magnetoelectric voltage coefficients of thin film devices. J. Appl. Phys., 117 (15), 154104.
- Hu, J.-M., Chen, L.-Q., and Nan, C.-W. (2016) Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater., 28 (1), 15–39.
- Eerenstein, W., Wiora, M., Prieto, J.L. et al. (2007) Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater., 6 (5), 348–351.
- Thiele, C., Dorr, K., Bilani, O. et al. (2007) Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A = Sr,Ca). Phys. Rev. B, 75 (5), 054408.
- Geprägs, S., Brandlmaier, A., Opel, M. et al. (2010) Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl. Phys. Lett., 96 (14), 142509.
- Nan, T.X., Zhou, Z.Y., Lou, J. et al. (2012) Voltage impulse induced bistable magnetization switching in multiferroic heterostructures. Appl. Phys. Lett., 100 (13), 132409.
- Yang, S.-W., Peng, R.-C., Jiang, T. et al. (2014) Non-volatile 180° magnetization reversal by an electric field in multiferroic heterostructures. Adv. Mater., 26 (41), 7091–7095.
- Heron, J.T., Trassin, M., Ashraf, K. et al. (2011) Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett., 107 (21), 217202.
- Gao, Y., Hu, J., Shu, L. et al. (2014) Strain-mediated voltage control of magnetism in multiferroic Ni77Fe23/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 heterostructure. Appl. Phys. Lett., 104 (14), 142908.
- Tkach, A., Kehlberger, A., Büttner, F. et al. (2015) Electric field modification of magnetotransport in Ni thin films on (011) PMN-PT piezosubstrates. Appl. Phys. Lett., 106 (6), 062404.
- Brandlmaier, A., Geprägs, S., Woltersdorf, G. et al. (2011) Nonvolatile, reversible electric-field controlled switching of remanent magnetization in multifunctional ferromagnetic/ferroelectric hybrids. J. Appl. Phys., 110 (4), 043913.
- Heron, J.T., Bosse, J.L., He, Q. et al. (2014) Deterministic switching of ferromagnetism at room temperature using an electric field. Nature, 516 (7531), 370–373.
- Liu, M., Hoffman, J., Wang, J. et al. (2013) Non-volatile ferroelastic switching of the Verwey transition and resistivity of epitaxial Fe3O4/PMN-PT (011). Sci. Rep., 3, 1876.
- Zhang, S., Zhao, Y.G., Li, P.S. et al. (2012) Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys. Rev. Lett., 108 (13), 137203.
- Zhou, Z., Howe, B.M., Liu, M. et al. (2015) Interfacial charge-mediated non-volatile magnetoelectric coupling in Co0.3Fe0.7/Ba0.6Sr0.4TiO3/Nb:SrTiO3 multiferroic heterostructures. Sci. Rep., 5, 7740.
- Nan, T., Zhou, Z., Liu, M. et al. (2014) Quantification of strain and charge co-mediated magnetoelectric coupling on ultra-thin Permalloy/PMN-PT interface. Sci. Rep., 4, 3688.
- Ghidini, M., Maccherozzi, F., Moya, X. et al. (2015) Perpendicular local magnetization under voltage control in Ni films on ferroelectric BaTiO3 substrates. Adv. Mater., 27 (8), 1460–1465.
- Streubel, R., Köhler, D., Schäfer, R. et al. (2013) Strain-mediated elastic coupling in magnetoelectric nickel/barium-titanate heterostructures. Phys. Rev. B, 87 (5), 054410.
- Lahtinen, T.H.E., Shirahata, Y., Yao, L. et al. (2012) Alternating domains with uniaxial and biaxial magnetic anisotropy in epitaxial Fe films on BaTiO3 . Appl. Phys. Lett., 101 (26), 262405.
- Geprägs, S., Mannix, D., Opel, M. et al. (2013) Converse magnetoelectric effects in Fe3O4/BaTiO3 multiferroic hybrids. Phys. Rev. B, 88 (5), 054412.
- Chopdekar, R.V., Malik, V.K., Fraile Rodríguez, A. et al. (2012) Spatially resolved strain-imprinted magnetic states in an artificial multiferroic. Phys. Rev. B, 86 (1), 014408.
- Fackler, S.W., Donahue, M.J., Gao, T. et al. (2014) Local control of magnetic anisotropy in transcritical permalloy thin films using ferroelectric BaTiO3 domains. Appl. Phys. Lett., 105 (21), 212905.
- Liu, M., Howe, B.M., Grazulis, L. et al. (2013) Voltage-impulse-induced non-volatile ferroelastic switching of ferromagnetic resonance for reconfigurable magnetoelectric microwave devices. Adv. Mater., 25 (35), 4886–4892.
- Buzzi, M., Chopdekar, R.V., Hockel, J.L. et al. (2013) Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures. Phys. Rev. Lett., 111 (2), 027204.
- Hsu, C.-J., Hockel, J.L., and Carman, G.P. (2012) Magnetoelectric manipulation of domain wall configuration in thin film Ni/[Pb(Mn1/3Nb2/3)O3]0.68–[PbTiO3]0.32 (001) heterostructure. Appl. Phys. Lett., 100 (9), 092902.
- Hockel, J.L., Bur, A., Wu, T. et al. (2012) Electric field induced magnetization rotation in patterned Ni ring/Pb(Mg1/3Nb2/3)O3](1−0.32)–[PbTiO3]0.32 heterostructures. Appl. Phys. Lett., 100 (2), 022401.
- Hockel, J.L., Pollard, S.D., Wetzlar, K.P. et al. (2013) Electrically controlled reversible and hysteretic magnetic domain evolution in nickel film/Pb(Mg1/3Nb2/3)O3]0.68–[PbTiO3]0.32 (011) heterostructure. Appl. Phys. Lett., 102 (24), 242901.
- Weisheit, M., Fahler, S., Marty, A. et al. (2007) Electric field-induced modification of magnetism in thin-film ferromagnets. Science, 315 (5810), 349–351.
- Maruyama, T., Shiota, Y., Nozaki, T. et al. (2009) Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol., 4 (3), 158–161.
- Molegraaf, H.J.A., Hoffman, J., Vaz, C.A.F. et al. (2009) Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater., 21 (34), 3470–3474.
- Li, Z., Hu, J., Shu, L. et al. (2011) A simple method for direct observation of the converse magnetoelectric effect in magnetic/ferroelectric composite thin films. J. Appl. Phys., 110 (9), 096106.
- Shu, L., Gao, Y., Hu, J.-M. et al. (2013) Evaluating the electro-optical effect in alternating current–voltage-modulated Kerr response for multiferroic heterostructures. J. Appl. Phys., 114 (20), 204102.
- Wu, T., Bur, A., Zhao, P. et al. (2011) Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1−x)–[PbTiO3] x heterostructure. Appl. Phys. Lett., 98 (1), 012504.
- Wang, J., Hu, J.M., Wang, H. et al. (2010) Electric-field modulation of magnetic properties of Fe films directly grown on BiScO3–PbTiO3 ceramics. J. Appl. Phys., 107 (8), 083901.
- Moutis, N., Suarez-Sandoval, D., and Niarchos, D. (2008) Voltage-induced modification in magnetic coercivity of patterned Co50Fe50 thin film on piezoelectric substrate. J. Magn. Magn. Mater., 320 (6), 1050–1055.
- Brivio, S., Petti, D., Bertacco, R. et al. (2011) Electric field control of magnetic anisotropies and magnetic coercivity in Fe/BaTiO3(001) heterostructures. Appl. Phys. Lett., 98 (9), 092505.
- Bao, M., Zhu, G., Wong, K.L. et al. (2012) Magneto-electric tuning of the phase of propagating spin waves. Appl. Phys. Lett., 101 (2), 022409.
- Zhu, G., Wong, K.L., Zhao, J. et al. (2012) The influence of in-plane ferroelectric crystal orientation on electrical modulation of magnetic properties in Co60Fe20B20/SiO2/(011)xPb(Mg1/3Nb2/3)O3-(1 − x)PbTiO3 heterostructures. J. Appl. Phys., 112 (3), 033916.
- Lahtinen, T.H.E., Tuomi, J.O., and van Dijken, S. (2011) Pattern transfer and electric-field-induced magnetic domain formation in multiferroic heterostructures. Adv. Mater., 23 (28), 3187–3191.
- Lahtinen, T.H.E., Franke, K.J.A., and van Dijken, S. (2012) Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep., 2, 258.
- Caruntu, G., Yourdkhani, A., Vopsaroiu, M. et al. (2012) Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy. Nanoscale, 4 (10), 3218–3227.
- Wiesendanger, R. (2009) Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys., 81 (4), 1495–1550.
- Yu, X.Z., Onose, Y., Kanazawa, N. et al. (2010) Real-space observation of a two-dimensional skyrmion crystal. Nature, 465 (7300), 901–904.
- Unguris, J., Bowden, S.R., Pierce, D.T. et al. (2014) Simultaneous imaging of the ferromagnetic and ferroelectric structure in multiferroic heterostructures. APL Mater., 2 (7), 076109.
- Buzzi, M., Vaz, C.A.F., Raabe, J. et al. (2015) Electric field stimulation setup for photoemission electron microscopes. Rev. Sci. Instrum., 86 (8), 083702.
- Rudge, J., Xu, H., Kolthammer, J. et al. (2015) Sub-nanosecond time-resolved near-field scanning magneto-optical microscope. Rev. Sci. Instrum., 86 (2), 023703.
- Qiu, Z.Q. and Bader, S.D. (2000) Surface magneto-optic Kerr effect. Rev. Sci. Instrum., 71 (3), 1243–1255.
- Sun, N.X. and Srinivasan, G. (2012) Voltage control of magnetism in multiferroic heterostructures and devices. SPIN, 02 (03), 1240004.
- Adam, J.D., Davis, L.E., Dionne, G.F. et al. (2002) Ferrite Devices and Materials, Institute of Electrical and Electronics Engineers, New York, NY.
- Pettiford, C., Lou, J., Russell, L. et al. (2008) Strong magnetoelectric coupling at microwave frequencies in metallic magnetic film/lead zirconate titanate multiferroic composites. Appl. Phys. Lett., 92 (12), 122506.
- Chen, Y.J., Wang, J.M., Liu, M. et al. (2008) Giant magnetoelectric coupling and E-field tunability in a laminated Ni2MnGa/lead–magnesium–niobate–lead titanate multiferroic heterostructure. Appl. Phys. Lett., 93 (11), 112502.
- Fetisov, Y.K. and Srinivasan, G. (2008) Nonlinear electric field tuning characteristics of yttrium iron garnet-lead zirconate titanate microwave resonators. Appl. Phys. Lett., 93 (3), 033508.
-
Lou, J., Liu, M., Reed, D.
et al. (2009) Giant electric field tuning of magnetism in novel multiferroic FeGaB/lead zinc niobate–lead titanate (PZN–PT) heterostructures. Adv. Mater., 21 (46), 4711–4715.
10.1002/adma.200901131 Google Scholar
- Das, J., Li, M., Kalarickal, S.S. et al. (2010) Control of magnetic and electric responses with electric and magnetic fields in magnetoelectric heterostructures. Appl. Phys. Lett., 96 (22), 222508.
- Zhou, Z., Trassin, M., Gao, Y. et al. (2015) Probing electric field control of magnetism using ferromagnetic resonance. Nat. Commun., 6, 6082.
- Lou, J., Reed, D., Liu, M. et al. (2009) Electrostatically tunable magnetoelectric inductors with large inductance tunability. Appl. Phys. Lett., 94 (11), 112508.