Physicochemical Properties of Engineered Nanomaterials
Linda J. Johnston
National Research Council Canada, Measurement Science and Standards, 1200 Montreal Rd., Ottawa, ON, K1A 0R6 Canada
Search for more papers by this authorElisabeth Mansfield
National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division, 325 Broadway, Boulder, CO, 80305 USA
Search for more papers by this authorGregory J. Smallwood
National Research Council Canada, Measurement Science and Standards, 1200 Montreal Rd., Ottawa, ON, K1A 0R6 Canada
Search for more papers by this authorLinda J. Johnston
National Research Council Canada, Measurement Science and Standards, 1200 Montreal Rd., Ottawa, ON, K1A 0R6 Canada
Search for more papers by this authorElisabeth Mansfield
National Institute of Standards and Technology (NIST), Applied Chemicals and Materials Division, 325 Broadway, Boulder, CO, 80305 USA
Search for more papers by this authorGregory J. Smallwood
National Research Council Canada, Measurement Science and Standards, 1200 Montreal Rd., Ottawa, ON, K1A 0R6 Canada
Search for more papers by this authorDr. Elisabeth Mansfield
National Inst. of Standards & TechnologyMaterials Measurement Laboratory MS 647, 325 Broadway, Boulder CO, 8305 United States
Search for more papers by this authorDr. Debra L. Kaiser
National Inst. of Standards & TechnologyMaterial Measurement Laboratory MS 8301, 100 Bureau Drive, Gaithersburg MD, 20899 United States
Search for more papers by this authorDaisuke Fujita Professor
National Inst. for Materials ScienceAdvanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan
Search for more papers by this authorMarcel Van de Voorde Professor
TU DelftFakulteit Technical Natuurwetenschappen, Eeuwige Laan 33, CL Bergen, 1861 Netherlands
Search for more papers by this authorAbstract
This chapter discusses the important physicochemical properties of composition, size, shape, surface properties, and aggregation/agglomeration/dispersion state for nanomaterial characterization. The emission properties of luminescent nanomaterials may yield information on sample agglomeration or aggregation, although typically this will require a detailed understanding of the photophysics of the material and possible energy transfer or quenching mechanisms. One of the most difficult things to address with respect to the state of aggregation, agglomeration, or dispersion of a nanomaterial is the necessity of assessing the dispersion state in an environment relevant to its end use. Beyond the role of surface charge on the colloidal stability of nanomaterial suspensions, the surface functional groups have a major impact on the adsorption of species from the environment and can also modulate the hydrophobicity/hydrophilicity and, in some cases, size and morphology of the material.
References
- Stefaniak, A.B., Hackley, V.A., Roebben, G., Ehara, K., Hankin, S., Postek, M.T., Lynch, I., Fu, W.-E., Linsinger, T.P.J., and Thunemann, A.F. (2013) Nanoscale reference materials for environmental, health and safety measurements: needs, gaps and opportunities. Nanotoxicology, 7, 1325–1337.
- Oomen, A.G., Bleeker, E.A.J., Bos, P.M.J., van Broekhuizen, F., Gottardo, S., Gronewold, M., Hristozov, D., Hund-Rinke, K., Irfan, M.-A., Marcomini, A., Peijnenburg, W.J.G.M., Rasmussen, K., Jiménez, A.S., Scott-Fordsmand, J.J., van Tongeren, M., Wiench, K., Wohlleben, W., and Landsiedel, R. (2015) Grouping and read-across approaches for risk assessment of nanomaterials. Int. J. Environ. Res. Public Health, 12, 13415–13434.
- Krug, H.F. (2014) Nanosafety research: are we on the right track? Angew. Chem. Int. Ed., 53, 2–18.
- Schrurs, F. and Lison, D. (2012) Focusing the research efforts. Nat. Nanotechnol., 7, 546–548.
- Auffan, M., Rose, J., Bottero, J.-Y., Lowry, G.V., Jolivet, J.-P., and Wiesner, M.R. (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 4, 634–641.
- Boverhof, D.R., Bramante, C.M., Butala, J.H., Clancy, S.F., Lafranconi, M., West, J., and Gordon, S.C. (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Reg. Tox. Pharm., 73, 137–150.
- Devadsu, V.R., Bhardwaj, V., and Ravi Kumar, M. N. V. (2013) Can controversial nanotechnology promise drug delivery? Chem. Rev., 113, 1686–1735.
- Etheridge, M.L., Campbell, S.A., Erdman, A.G., Haynes, C.L., Wolf, S.M., and McCullough, J. (2013) The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine, 9, 1–14.
- Pettitt, M.E. and Lead, J.R. (2013) Minimum physicochemical characterisation requirements for nanomaterial regulation. Environ. Int., 52, 41–50.
- Hassellov, M. and Kaågi, R. (2009) Analysis and characterization of manufactured nanoparticles in aquatic environments, in Environmental and Human Health Impacts of Nanotechnology (eds J. R. Lead and E. Smith), John Wiley & Sons, Ltd, Chichester, UK.
- (a) Laborda, F., Jiménez-Lamana, J., Bolea, E., and Castillo, J.R. (2013) Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J. Anal. At. Spectrom., 28, 1220–1232. (b) Laborda, F., Bolea, E., and Jiménez-Lamana, J. (2013) Single particle inductively coupled plasma mass spectrometry: a powerful tool for nanoanalysis. Anal. Chem., 86, 2270–2278.
- CODATA-VAMAS Working Group (2016) Uniform Descriptor System for Materials on the Nanoscale, version 2.0. CODATA-VAMAS Working Group on the Description of Nanomaterials.
- Haruta, M. (1997) Size- and support-dependency in the catalysis of gold. Catal. Today, 36, 153–156.
- Zhang, M., Efremov, M.Y., Schiettekatte, F., Olson, E.A., Kwan, A.T., Lai, S.L., Wisleder, T., Greene, J.E., and Allen, L.H. (2000) Size-dependent melting point depression of nanostructures: nanocalorimetric measurements. Phys. Rev. B, 62, 10548–10557.
- Braydich-Stolle, L.K., Schaeublin, N.M., Murdock, R.C., Jiang, J., Biswas, P., Schlager, J.J., and Hussain, S.M. (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J. Nanopart. Res., 11, 1361–1374.
- Fruitjier-Polloth, C. (2012) The toxicological mode of action and the safety of synthetic amorphous silica: a nanostructured material. Toxicology, 294, 61–79.
- Burda, C., Chen, X., Narayanan, R., and El-Sayed, M.A. (2005) Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 105, 1025–1102.
-
Rose, J.
(2015)
Surface properties (physical and chemical) and related reactions: characterization via a multi-technique approach, in
Characterization of Nanomaterials in Complex Environmental and Biological Media,
vol.
8,
Frontiers of Nanoscience (ed. Mohammed Baalousha and
Jamie R. Lead),
Elsevier,
pp. 217–243.
10.1016/B978-0-08-099948-7.00007-5 Google Scholar
- Gallud, A. and Fadeel, B. (2015) Keeping it small: towards a molecular definition of nanotoxicology. Eur. J. Nanomed., 7, 143–151.
- Brown, S.C., Boyko, V., Meyers, G., Voetz, M., and Wohlleben, W. (2013) Toward advancing nano-object count metrology: a best practice framework. Envir. Health Perspect., 1221, 1282–1291.
- Linsinger, T., Roebben, G., Gilliland, D., Calzolai, L., Rossi, F., Gibson, N., and Klein, C. (2012) Requirements on measurements for the implementation of the European Commission definition of the term “nanomaterial” EUR Report 25404 EN. Europe Union, Luxembourg.
- Bell, N.C., Minelli, C., Tompkins, J., Stevens, M.M., and Shard, A.G. (2012) Emerging techniques for submicrometer particle sizing applied to stöber silica. Langmuir, 28, 10860–10872.
- Anderson, W., Kozak, D., Coleman, V.A., Jamting, A.K., and Trau, M. (2013) A comparative study of submicron particle sizing platforms: accuracy, precision and resolution analysis of polydisperse particle size distributions. J. Colloid Interface Sci., 405, 322.
- Baalousha, M. and Lead, J.R. (2012) Rationalizing nanomaterial sizes measured by atomic force microscopy, flow field-flow fractionation, and dynamic light scattering: sample preparation, polydispersity and particle structure. Environ. Sci. Technol., 46, 6134–6142.
- Meli, F., Klein, T., Buhr, E., Frase, C.G., Gleber, G., Krumrey, M., Duta, A., Duta, S., Korpelainen, V., Bellotti, R., Picotto, G.B., Boyd, R.D., and Cuenat, A. (2012) Traceable size determination of nanoparticles, a comparison among European metrology institutes. Meas. Sci. Technol., 23, 125005.
- Gallego-Urrea, J.A., Hammes, J., Cornelis, G., and Hassleov, M. (2014) Mulitmethod 3D characterization of natural plate-like nanoparticles: shape effects on equivalent size measurements. J. Nanopart. Res., 16, 2383.
- Brinkmann, A., Chen, M., Couillard, M., Jakubek, Z.J., Leng, T., and Johnston, L.J. (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir, 32, 6105–6114.
- ISO 80004-2 (2015) Nanotechnologies: Vocabulary. Part 2: Nano-objects.
- Chen, H., Kou, X., Yang, Z., Ni, W., and Wang, J. (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir, 24, 5233–5237.
- Sun, Y. and Xia, Y. (2008) Shape-controlled synthesis of gold and silver nanoparticles. Science, 298, 2176–2179.
- Dresselhaus, M.S., Dresselhaus, G., and Jorio, A. (2004) Unusual properties and structure of carbon nanotubes. Ann. Rev. Mater. Res., 34, 247–278.
- Taurozzi, J.S., Hackley, V.A., and Wiesner, M.R. (2011) Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment: issues and recommendations. Nanotoxicology, 5, 711–729.
- Petersen, E.J., Henry, T.B., Zhao, J., MacCuspie, R.I., Kirschling, T.L., Dobrovolskaia, M.A., Hackley, V., Xing, B., and White, J.C. (2014) Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ. Sci. Technol., 48, 4226–4246.
- See NIST protocols: http://www.nist.gov/mml/nanoehs-all-protocols.cfm (accessed on June 12, 2016).
- Petersen, E.J., Flores-Cervantes, D.X., Bucheli, T.D., Elliott, L.C.C., Fagan, J.A., Gogos, A., Hanna, S., Kaågi, R., Mansfield, E., Montoro Bustos, A.R., Plata, D.L., Reipa, V., Westerhoff, P., and Winchester, M.R. (2016) Quantification of carbon nanotubes in environmental matrices: Current capabilities, case studies, and future prospects. Environ. Sci. Technol., 50 (9), 4587–4605.
- ISO 9277 (2010) Determination of the specific surface area of solids by gas adsorption: BET method.
- Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pernicone, N., Ramsay, J.D.F., Sing, K.S.W., and Unger, K.K. (1994) Recommendations for the characterization of porous solids. Pure Appl. Chem., 66, 1739–1758.
- Weibel, A., Bouchet, R., Boulc'h, F., and Knauth, P. (2005) The big problem of small particles: a comparison of methods for determination of particle size in nanocrystalline anatase powders. Chem. Mater., 17, 2378–2385.
- ASTM E2865-12 (2012) Standard guide for measurement of electrophoretic mobility and zeta potential of nanosized biological materials.
-
Rahman, M.,
Laurent, S.,
Tawil, N.,
Yahia, L., and
Mahmoudi, M.
(2013)
Nanoparticles and Protein Corona Protein–Nanoparticle Interactions,
Springer-Verlag,
Berlin.
10.1007/978-3-642-37555-2 Google Scholar
- Ritz, S., Schöttler, S., Kotman, N., Baier, G., Musyanovych, A., Kuharev, J., Landfester, K., Schild, H., Jahn, O., Tenzer, S., and Mailänder, V. (2015) Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules, 16, 1311–1321.
- Baer, D.R., Engelhard, M.H., Johnson, G.E., Laskin, J., Lai, J., Mueller, K., Munusamy, P., Thevuthasan, S., Wang, H., Washton, N., Elder, A., Baisch, B.L., Karakoti, A., Kuchibhatla, S.V.N.T., and Moon, D. (2013) Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J. Vac. Sci. Technol. A, 31, 50820.
- ISO 14187 (2011) Surface chemical analysis: characterization of nanostructured materials.
- Hennig, A., Dietrich, P.M., Hemmann, F., Thiele, T., Borcherding, H., Hoffmann, A., Schedler, U., Jäger, C., Resch-Genger, U., and Ungera, W.E.S. (2015) En route to traceable reference standards for surface group quantifications by XPS, NMR and fluorescence spectroscopy. Analyst, 140, 1804–1808.
- Roebben, G., Rasmussen, K., Kestens, V., Linsinger, T.P.J., Rauscher, H., Emons, H., and Stamm, H. (2013) Reference materials and representative test materials: the nanotechnology case. J. Nanopart. Res., 15, 1455.