Nanomaterials Synthesis Methods
Maciej Tulinski
Poznan University of Technology, Institute of Materials Science and Engineering, M. Sklodowska-Curie 5 Sq., 60–965 Poznan, Poland
Search for more papers by this authorMieczyslaw Jurczyk
Poznan University of Technology, Institute of Materials Science and Engineering, M. Sklodowska-Curie 5 Sq., 60–965 Poznan, Poland
Search for more papers by this authorMaciej Tulinski
Poznan University of Technology, Institute of Materials Science and Engineering, M. Sklodowska-Curie 5 Sq., 60–965 Poznan, Poland
Search for more papers by this authorMieczyslaw Jurczyk
Poznan University of Technology, Institute of Materials Science and Engineering, M. Sklodowska-Curie 5 Sq., 60–965 Poznan, Poland
Search for more papers by this authorDr. Elisabeth Mansfield
National Inst. of Standards & TechnologyMaterials Measurement Laboratory MS 647, 325 Broadway, Boulder CO, 8305 United States
Search for more papers by this authorDr. Debra L. Kaiser
National Inst. of Standards & TechnologyMaterial Measurement Laboratory MS 8301, 100 Bureau Drive, Gaithersburg MD, 20899 United States
Search for more papers by this authorDaisuke Fujita Professor
National Inst. for Materials ScienceAdvanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047 Japan
Search for more papers by this authorMarcel Van de Voorde Professor
TU DelftFakulteit Technical Natuurwetenschappen, Eeuwige Laan 33, CL Bergen, 1861 Netherlands
Search for more papers by this authorAbstract
There are various widely known methods for producing nanomaterials: physical, chemical, and mechanical. There are also different definitions concerning manufacturing and synthesis of nanomaterials. Recently, several research groups have proposed the use of biological systems for the synthesis of nanoparticles. The biological methods of nanoparticles synthesis would assist to remove ruthless processing conditions, by allowing the synthesis at physiological pH, temperature, pressure, and at the same time, at negligible cost. The physical and chemical methods are extremely pricey. Chemical methods include chemical vapor deposition, epitaxial growth, colloidal dispersion, sol-gel, hydrothermal route, microemulsions, polymer route, and other precipitation processes. Mechanical methods include mechanical grinding, high-energy ball milling, mechanical alloying (MA), and reactive milling. The advantages of these techniques are that they are simple, require low-cost equipment, and, provided that a coarse feedstock powder can be made, the powder can be processed.
References
- Singh, S. and Khare, N. (2015) CdS/ZnO core/shell nano-heterostructure coupled with reduced graphene oxide towards enhanced photocatalytic activity and photostability. Chem. Phys. Lett., 634, 140–145.
- Ramsden, J.J. (2011) Nanotechnology: An Introduction, William Andrew, Chapter 8, pp. 161–188.
- Bleeker, R.A., Troilo, L.M., and Ciminello, D.P. (2004) Patenting nanotechnology. Mater. Today, 2, 44–48.
- Dowling, A.P. (2004) Development of nanotechnologies. Mater. Today, 7, 30–35.
- Zweck, A., Bachmann, G., Luther, W., and Ploetz, C. (2008) Nanotechnology in Germany: from forecasting to technological assessment to sustainability studies. J. Cleaner Prod., 16, 977–987.
- Scheu, M., Veefkind, V., Verbandt, Y., Galan, M.G., Absalom, R., and Förster, W. (2006) Mapping nanotechnology patents: the EPO approach. World Patent Inf., 28, 204–211.
-
Z.L. Wang,
Y. Liu, and
Z. Zhang (eds)
(2003)
Handbook of Nanophase and Nanostructured Materials,
Kluwer Academic/Plenum Publishers,
New York, Chapter 1.
10.1007/0-387-23814-X Google Scholar
- Yeadon, M., Yang, J.C., Ghaly, M., Olynick, D.L., Averbach, R.S., and Gibson, J.M. (1997) Nanophase and Nanocomposite Materials 11 (eds S. Komarneni, J.C. Parker, and H.J. Wollenberger), MRS, Pittsburgh, PA, 179–184.
-
Ingale, A.G. and
Chaudhari, A.N.
(2013)
Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach.
J. Nanomed. Nanotechol.,
4,
165–172.
10.4172/2157-7439.1000165 Google Scholar
- Vossen, J.L. and Kern, W. (1991) Thin Film Processes II, Academic Press, NY.
- Verhoeven, J.D., Downing, H.L., Chumbley, L.S., and Gibson, E.D. (1989) The resistivity and microstructure of heavily drawn CuNb alloys. J. Appl. Phys., 65, 1293–1301.
- Jia, Q.X., Chang, L.H., and Anderson, W.A. (1994) Surface and interface properties of ferroelectric BaTiO3 thin films on Si using RuO2 as an electrode. J. Mater. Res., 9, 2561–2565.
- Kung, H., Jervis, T.R., Hirvonen, J.P., Embury, J.D., Mitchell, T.E., and Nastasi, M. (1995) Structure and mechanical properties of MoSi2-SiC nanolayer composites. Philos. Mag. A, 71 (4), 759–779.
- Chrisey, D.B. and Hybler, G.K. (1994) Pulsed Laser Deposition of Thin Films, John Willey & Sons.
- Zhang, H., Yang, J., Wang, S., Wu, Y., Lv, Q., and Li, S. (2014) Film thickness dependence of microstructure and superconductive property of PLD prepared YBCO layers. Physica C, 499, 54–56.
- Craciun, D., Socol, G., Lambers, E., McCumiskey, E.J., Taylor, C.R., Martin, C., Argibay, N., Tanner, D.B., and Craciun, V. (2015) Optical and mechanical properties of nanocrystalline ZrC thin films grown by pulsed laser deposition. Appl. Surf. Sci., 352, 28–32.
- Miklaszewski, A., Jurczyk, M.U., Jurczyk, K., and Jurczyk, M. (2011) Plasma surface modification of titanium by TiB precipitation for biomedical applications. Sur. Coat. Technol., 206, 330–337.
-
Dobkin, D. and
Zuraw, M.K.
(2003)
Principles of Chemical Vapor Deposition,
Kluwer Academic.
10.1007/978-94-017-0369-7 Google Scholar
- Foord, J.S., Davies, G.J., and Tsang, W.T. (1997) Chemical Beam Epitaxy and Related Techniques, John Wiley & Sons, Ltd., Chichester.
- Schramm, L. (2008) Dictionary of Nanotechnology, Colloid and Interface Science, Wiley-VCH Verlag GmbH.
- Brinker, C.J. and Scherer, G.W. (1990) Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing, Academic Press.
- Eastoe, J. and Warne, M. (1996) Nanoparticles and polymer synthesis in microemulsions. Curr. Opin. Colloid. Interf. Sci., 1, 800–805.
- Ajayan, PM. (2004) Bulk Metal and Ceramics Nanocomposites. Nanocomposite Science and Technology, Wiley-VCH Verlag GmbH, 1–75.
- Groza, J.R. (1999) Nanosintering. Nanostruct. Mater., 12, 987–992.
- Benjamin, J.S. (1976) Mechanical alloying. Scient. Am., 234, 40–57.
-
Suryanarayna, C.
(2001)
Mechanical alloying.
Prog. Mater. Sc.,
46,
1–184.
10.1016/S0079-6425(99)00010-9 Google Scholar
-
Suryanarayana, C. and
Koch, C.C.
(1999)
Nanostructured materials, in
Non-Equilibrium Processing of Materials
(ed. C. Suryanarayana),
Elsevier Science Pub.,
Oxford, UK,
313–346.
10.1016/S1470-1804(99)80058-3 Google Scholar
-
Lü, L. and
Lai, M.O.
(1998)
Mechanical Alloying,
Kluwer Academic,
Boston, London.
10.1007/978-1-4615-5509-4 Google Scholar
- Zadorozhnyi, V.Yu., Skakov, Yu.A., and Milovzorov, G.S. (2008) Appearance of metastable states in Fe–Ti and Ni–Ti systems in the process of mechanochemical synthesis. Metal Sci. Heat Treat., 50, 404–410.
-
Jurczyk, M. and
Nowak, M.
(2008)
Nanomaterials for hydrogen storage synthesized by mechanical alloying, in
Nanostructured Materials in Electrochemistry
(ed. Ali Eftekhari),
John Wiley & Sons, Chapter 9.
10.1002/9783527621507.ch9 Google Scholar
- Niespodziana, K., Jurczyk, K., Jakubowicz, J., and Jurczyk, M. (2010) Fabrication and properties of titanium–hydroxyapatite nanocomposites. Mater. Chem. Phys., 123, 160–165.
- Balcerzak, M., Jakubowicz, J., Kachlicki, T., and Jurczyk, M. (2015) Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites. J. Power Sources, 280, 435–445.
- Tulinski, M. and Jurczyk, M. (2012) Nanostructured nickel-free austenitic stainless steel composites with different content of hydroxyapatite. Appl. Surf. Sci., 260, 80–83.
- Varin, R.A., Czujko, T., and Wronski, Z.S. (2009) Nanomaterials for Solid State Hydrogen Storage, Springer.
- Benjamin, J.S. (1997) Mechanical alloying process. US Patent 5688303.
- Smardz, K., Smardz, L., Okonska, I., Nowak, M., and Jurczyk, M. (2008) XPS valence band and segregation effect in nanocrystalline Mg2Ni-type materials. Int. J. Hydrogen Energy, 33, 387–392.
- Smardz, L., Smardz, K., Nowak, M., and Jurczyk, M. (2001) Structure and electronic properties of La(Ni,Al)5 alloys. Cryst. Res. Technol., 36, 1385–1392.
- Courtney, T.H. and Maurice, D. (1996) Process modeling of the mechanics of mechanical alloying. Scrip. Mater., 34, 5–11.
- Varin, R.A., Chiu, Ch., and Wronski, Z.S. (2008) Mechano-chemical activation synthesis (MCAS) of disordered Mg(BH4)2 using NaBH4 . J. Alloys Compd., 462, 201–208.
- T.C. Love and R.Z. Valiev (eds) (2000) Investigations and Applications of Severe Plastic Deformation, Kluwer Academic.
- Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V. (2000) Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci., 45, 103–189.
- Richert, J. and Richert, M. (1986) A new method for unlimited deformation of metals and alloys. Aluminum, 62, 604–607.
- Kim, H.S. (2001) Finite element analysis of high pressure torsion processing. J. Mater. Proc. Technol., 113, 617–621.
- Beygelzimer, Y., Varukhin, V., Synkov, S., Sapronov, A., and Synkov, V. (1999) New techniques for accumulating large plastic deformations using hydroextrusion. Fiz. Tekhn. Vusokih Davlenii (in Russian), 6, 499–508.
- Thomas, W.M., Edward, N.D., Needham, J.C., Murch, M.G., Temple-Smith, P., Dawes, A., and Christopher, J. (1991) Friction stir welding. GB Patent Application 9125978.8; (1995) US Patent 5460317.
- Fuloria, D., Goel, S., Jayanthan, R., Srivastava, D., Dey, G.K., and Saibaba, N. (2015) Mechanical properties and microstructural evolution of ultrafine grained zircaloy-4 processed through multiaxial forging at cryogenic temperature. Trans. Nonferrous Met. Soc. China, 25, 2221–2229.
- Tsuji, N., Saito, Y., Utsunomiya, H., and Tanigawa, S. (1999) Ultra-fine grained bulk steel produced by accumulative roll-bonding (ARB) process. Scrip. Mater., 40, 795–800.
- Huang, J.Y., Zhu, Y.T., Jiang, H., and Lowe, T.C. (2001) Microstructure and dislocation configuration in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater., 49, 1497–1505.
- Huang, H.L., Chen, J.-K., and Houng, M.P. (2012) Using soft lithography to fabricate gold nanoparticle patterns for bottom-gate field effect transistors. Thin Solid Films, 524, 304–308.
- Gentili, E., Tabaglio, L., and Aggogeri, F. (2005) Review on micromachining techniques, in Advanced Manufacturing Systems and Technology, CISM Courses and Lectures No. 486 (ed. E. Kuljanic), Springer Wien, New York.
- Kolasinki, K.W. (2005) Silicon nanostructures from electroless electrochemical etching. Curr. Opin. Solid State Mater. Sci., 9, 73–83.