IC-Based and IC-Assisted NMR Detectors
Jonas Handwerker
University of Ulm, Institut för Mikroelektronik, Albert-Einstein-Allee 43, 89081 Ulm Germany
Search for more papers by this authorJens Anders
University of Ulm, Institut för Mikroelektronik, Albert-Einstein-Allee 43, 89081 Ulm Germany
Search for more papers by this authorJonas Handwerker
University of Ulm, Institut för Mikroelektronik, Albert-Einstein-Allee 43, 89081 Ulm Germany
Search for more papers by this authorJens Anders
University of Ulm, Institut för Mikroelektronik, Albert-Einstein-Allee 43, 89081 Ulm Germany
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorSummary
This chapter deals with the emerging field of integrated circuit (IC)-based and IC-assisted μNMR detectors. IC-assisted detectors are hybrid solutions consisting of an off-chip detection coil and a dedicated transceiver application-specific integrated circuit (ASIC). The chapter starts with a brief introduction into complementary metal oxide semiconductor (CMOS) and bipolar complementary metal oxide semiconductor (BiCMOS) technologies, in which the most salient features related to the design of NMR electronics and detection coils are highlighted. It shows the cross section of a generic modern CMOS technology. The chapter discusses the advantages of monolithic integrations of the transceiver electronics for NMR applications. It provides a detailed treatment of the possibilities associated with using IC technology for designing the RF receiver front-end in direct proximity of the NMR detection coil. The chapter also provides a review of the state-of-the-art in IC-based and IC-assisted μNMR systems.
References
- Sze, S.M. (2002) Semiconductor Devices, Physics and Technology, 2nd edn, John Wiley & Sons, Inc., New York.
-
Enz, C. and Vittoz, E.A. (2006) Charge-Based MOS Transistor Modeling: The EKV Model for Low-Power and RF IC Design, John Wiley & Sons, Ltd, Chichester, Hoboken, NJ.
10.1002/0470855460 Google Scholar
- Laker, K.R. and Sansen, W.M.C. (1994) Design of Analog Integrated Circuits and Systems, McGraw-Hill Series in Electrical and Computer Engineering Electronics and VLSI Circuits, McGraw-Hill, New York.
- Boero, G. (2000) Integrated NMR Probe for Magnetometry, Series in Micro Systems, vol. 9, Hartung-Gorre.
- Fratila, R.M., Gomez, M.V., Sykora, S., and Velders, A.H. (2014) Multinuclear nanoliter one-dimensional and two-dimensional NMR spectroscopy with a single non-resonant microcoil. Nat. Commun., 5, 3025.
-
Li, Y., Logan, T.M., Edison, A.S., and Webb, A. (2003) Design of small volume HX and triple-resonance probes for improved limits of detection in protein NMR experiments. J. Magn. Reson., 164 (1), 128–135.
10.1016/S1090-7807(03)00184-8 Google Scholar
- Pozar, D.M. (2005) Microwave Engineering, 3rd edn, John Wiley & Sons, Inc., Hoboken, NJ.
- Gonzalez, G. (1984) Microwave Transistor Amplifiers, Analysis and Design, Prentice Hall, Englewood Cliffs, NJ.
- Lee, T.H. (2004) The Design of CMOS Radio-Frequency Integrated Circuits, 2nd edn, Cambridge University Press, Cambridge, New York.
- Minard, K.R. and Wind, R.A. (2001) Solenoidal microcoil design. Part I: Optimizing RF homogeneity and coil dimensions. Concepts Magn. Reson., 13 (2), 128–142.
- Minard, K.R. and Wind, R.A. (2001) Solenoidal microcoil design - Part II: Optimizing winding parameters for maximum signal-to-noise performance. Concepts Magn. Reson., 13 (3), 190–210.
- Mohan, S.S., Hershenson, M.D., Boyd, S.P., and Lee, T.H. (1999) Simple accurate expressions for planar spiral inductances. IEEE J. Solid-State Circuits, 34 (10), 1419–1424.
- Liu, Y., Sun, N., Lee, H., Weissleder, R., and Ham, D. (2008) CMOS mini nuclear magnetic resonance system and its application for biomolecular sensing. 2008 IEEE International Solid-State Circuits Conference (ISSCC) , pp. 140–602.
- Hassibi, A., Babakhani, A., and Hajimiri, A. (2009) A spectral-scanning nuclear magnetic resonance imaging (MRI) transceiver. IEEE J. Solid-State Circuits, 44 (6), 1805–1813.
- Sun, N., Liu, Y., Lee, H., Weissleder, R., and Ham, D. (2009) CMOS RF biosensor utilizing nuclear magnetic resonance. IEEE J. Solid-State Circuits, 44 (5), 1629–1643.
- Kim, J., Hammer, B., and Harjani, R. (2010) A low power CMOS receiver for a tissue monitoring NMR spectrometer. 2010 IEEE Symposium on VLSI Circuits (VLSIC) , pp. 221–222.
- Sun, N., Yoon, T.J., Lee, H., Andress, W., Demas, V., Prado, P., Weissleder, R., and Ham, D. (2010) Palm NMR and one-chip NMR. 2010 IEEE International Solid-State Circuits Conference (ISSCC) , pp. 488–489.
- Badilita, V., Kratt, K., Baxan, N., Anders, J., Elverfeldt, D., Boero, G., Hennig, J., Korvink, J.G., and Wallrabe, U. (2011) 3D solenoidal microcoil arrays with CMOS integrated amplifiers for parallel MR imaging and spectroscopy. 2011 IEEE International Conference on Micro Electro Mechanical Systems (MEMS) , pp. 809–812.
- Sun, N., Yoon, T.J., Lee, H., Andress, W., Weissleder, R., and Ham, D. (2011) Palm NMR and 1-chip NMR. IEEE J. Solid-State Circuits, 46 (1), 342–352.
- Kim, J., Hammer, B., and Harjani, R. (2012) A 5-300MHz CMOS transceiver for multi-nuclear NMR spectroscopy. 2012 IEEE Custom Integrated Circuits Conference (CICC) , pp. 1–4.
-
Sarioglu, B., Aktan, O., Oncu, A., Mutlu, S., Dundar, G., and Yalcinkaya, A.D. (2012) An optically powered CMOS receiver system for intravascular magnetic resonance applications. IEEE J. Emerging Sel. Top. Circuits Syst., 2 (4), 683–691.
10.1109/JETCAS.2012.2223555 Google Scholar
- Diyang, Z., Ka-Meng, L., Pui-In, M., Man-Kay, L., and Martins, R.P. (2014) Design considerations of a low-noise receiver front-end and its spiral coil for portable NMR screening. 2014 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS) , pp. 403–406.
- Ha, D., Paulsen, J., Sun, N., Song, Y.Q., and Ham, D. (2014) Scalable nmr spectroscopy with semiconductor chips. Proc. Natl. Acad. Sci., 111 (33), 11 955–11 960.
-
Grisi, M., Gualco, G., and Boero, G. (2015) A broadband single-chip transceiver for multi-nuclear NMR probes. Rev. Sci. Instrum., 86 (4), 044703.
10.1063/1.4916206 Google Scholar
- Jouda, M., Gruschke, O.G., and Korvink, J.G. (2015) Implementation of an in-field CMOS frequency division multiplexer for 9.4 T magnetic resonance applications. Int. J. Circuit Theory Appl., 43 (12), 1861–1878.
- Ka-Meng, L., Pui-In, M., Man-Kay, L., and Martins, R.P. (2015) A NMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC) , pp. 1–4.
-
Sarioglu, B., Tumer, M., Cindemir, U., Camli, B., Dundar, G., Ozturk, C., and Yalcinkaya, A.D. (2015) An optically powered CMOS tracking system for 3 T magnetic resonance environment. IEEE Trans. Biomed. Circuits Syst., 9 (1), 12–20.
10.1109/TBCAS.2014.2311474 Google Scholar
- Turner, W.J. and Bashirullah, R. (2016) A 4.7 T/11.1 T NMR compliant 50 nW wirelessly programmable implant for bioartificial pancreas in vivo monitoring. IEEE J. Solid-State Circuits, 51 (2), 473–483.
-
Lei, K.M., Mak, P.I., Law, M.K., and Martins, R.P. (2016) A NMR CMOS transceiver using a butterfly-coil input for integration with a digital microfluidic device inside a portable magnet. IEEE J. Solid-State Circuits, 51 (10), 2274–2286.
10.1109/JSSC.2016.2579158 Google Scholar
- Sporrer, B., Wu, L., Bettini, L., Vogt, C., Reber, J., Marjanovic, J., Burger, T., Brunner, D.O., Pruessmann, K.P., Tröster, G., and Huang, Q. (2017) A sub-1dB NF dual-channel on-coil CMOS receiver for magnetic resonance imaging. 2017 IEEE International Solid-State Circuits Conference (ISSCC) .
- Anders, J. and Boero, G. (2008) A low-noise CMOS receiver frontend for MRI. 2008 IEEE Biomedical Circuits and Systems Conference (BioCAS) , pp. 165–168.
- Anders, J., Chiaramonte, G., SanGiorgio, P., and Boero, G. (2009) A single-chip array of NMR receivers. J. Magn. Reson., 201 (2), 239–249.
- Anders, J., SanGiorgio, P., and Boero, G. (2009) An integrated CMOS receiver chip for NMR-applications. 2009 IEEE Custom Integrated Circuits Conference (CICC) , pp. 471–474.
- Anders, J., SanGiorgio, P., and Boero, G. (2010) A quadrature receiver for NMR applications in 0.13 m CMOS. 2010 European Solid-State Circuits Conference (ESSCIRC) , pp. 394–397.
-
Anders, J., SanGiorgio, P., and Boero, G. (2011) A fully integrated IQ-receiver for NMR microscopy. J. Magn. Reson., 209 (1), 1–7.
10.1016/j.jmr.2010.12.005 Google Scholar
- Anders, J., Sangiorgio, P., Deligianni, X., Santini, F., Scheffler, K., and Boero, G. (2012) Integrated active tracking detector for MRI-guided interventions. Magn. Reson. Med., 67 (1), 290–296.
- Anders, J., Handwerker, J., Ortmanns, M., and Boero, G. (2013) A fully-integrated detector for NMR microscopy in 0.13 m CMOS. 2013 IEEE Asian Solid-State Circuits Conference (A-SSCC) , pp. 437–440.
- Lei, K.M., Heidari, H., Mak, P.I., Law, M.K., Maloberti, F., and Martins, R.P. (2016) A handheld 50pM-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays. 2016 IEEE International Solid-State Circuits Conference (ISSCC) .
-
Anders, J., Handwerker, J., Ortmanns, M., and Boero, G. (2016) A low-power high-sensitivity single-chip receiver for NMR microscopy. J. Magn. Reson., 266, 41–50.
10.1016/j.jmr.2016.03.004 Google Scholar
- Lei, K.M., Heidari, H., Mak, P.I., Law, M.K., Maloberti, F., and Martins, R.P. (2017) A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays. IEEE J. Solid-State Circuits, 52 (1), 284–297.
- Handwerker, J., Eder, M., Tibiletti, M., Rasche, V., Scheffler, K., Becker, J., Ortmanns, M., and Anders, J. (2016) An array of fully-integrated quadrature TX/RX NMR field probes for MRI trajectory mapping. 2016 European Solid-State Circuits Conference (ESSCIRC) , pp. 217–220.
-
Grisi, M., Vincent, F., Volpe, B., Guidetti, R., Harris, N., Beck, A., and Boero, G. (2017) NMR spectroscopy of single sub-nL ova with inductive ultra-compact single-chip probes. Sci. Rep., 7, 44670.
10.1038/srep44670 Google Scholar