Properties of Stimuli-Responsive Polymers
Raju Francis
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills, Kottayam 686560, Kerala, India
Search for more papers by this authorGeethy P. Gopalan
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills, Kottayam 686560, Kerala, India
Search for more papers by this authorAnjaly Sivadas
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills, Kottayam 686560, Kerala, India
Search for more papers by this authorNidhin Joy
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills, Kottayam 686560, Kerala, India
Search for more papers by this authorRaju Francis
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills, Kottayam 686560, Kerala, India
Search for more papers by this authorGeethy P. Gopalan
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills, Kottayam 686560, Kerala, India
Search for more papers by this authorAnjaly Sivadas
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills, Kottayam 686560, Kerala, India
Search for more papers by this authorNidhin Joy
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills, Kottayam 686560, Kerala, India
Search for more papers by this authorRaju Francis
Mahatma Gandhi University, School of Chemical Sciences, Priyadarsini Hills, 686560 Kottayam, India
Search for more papers by this authorD. Sakthi Kumar
Toyo University, Bio Nano Electronics Research Center, 350-858 Kawagoe, Japan
Search for more papers by this authorSummary
The most energizing and rising class of materials that can react to an external stimulus is referred to as stimuli-responsive polymers. Stimuli are commonly classified into three categories: physical, chemical, and biological. Physically dependent stimuli mainly include temperature, electric field, light, magnetic field, and mechanical deformation. Chemically dependent stimuli comprise pH, specific ions, redox, and so on. Biologically responsive polymer systems are increasingly important in various biomedical applications. The major advantage of bioresponsive polymers is that they can respond to the stimuli that are inherently present in the natural system. Analytes and biomacromolecules such as glucose, enzymes, and overproduced metabolites in inflammation are major examples of biologically dependent stimuli. Smart polymers are characterized by their stimuli-responsive behavior, which is essentially dictated by the functional groups present on or within a polymer chain. Multiresponsive materials are not only important in life sciences but also equally essential for new developments in information technology.
References
- Galaev, I.Y. and Mattiasson, B. (1999) Smart polymers and what they could do in biotechnology and medicine. Trends Biotechnol., 17, 335–340.
- Hoffman, A.S. et al. (2000) Really smart bioconjugates of smart polymers and receptor proteins. J. Biomed. Mater. Res., 52, 577–586.
- Gil, E.S. and Hudson, S.M. (2004) Stimuli-responsive polymers and their bioconjugates. Prog. Polym. Sci., 29, 1173–1222.
- Delcea, M., Möhwald, H., and Skirtach, A.G. (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv. Drug Delivery Rev., 63, 730–747.
- Cabane, E., Zhang, X., Langowska, K., Palivan, C.G., and Meier, W. (2012) Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases, 7, 1–27.
- Zhang, L., Xu, T., and Lin, Z. (2006) Controlled release of ionic drug through the positively charged temperature-responsive membranes. J. Membr. Sci., 281, 491–499.
- Ohya, S., Sonoda, H., Nakayama, Y., and Matsuda, T. (2005) The potential of poly(N-isopropylacrylamide) (PNIPAM)-grafted hyaluronan and PNIPAM-grafted gelatin in the control of post-surgical tissue adhesions. Biomaterials, 26 (6), 655–659.
-
Suwa, K., Morishita, K., Kishida, A., and Akashi, M. (1997) Synthesis and functionalities of poly(N-vinylalkylamide). V. Control of a lower critical solution temperature of poly(N-vinylalkylamide). J. Polym. Sci., Part A: Polym. Chem., 35, 3087–3094.
10.1002/(SICI)1099-0518(19971115)35:15<3087::AID-POLA1>3.0.CO;2-U CAS Web of Science® Google Scholar
- Na, K., Lee, K.H., Lee, D.H., and Bae, Y.H. (2006) Biodegradable thermo-sensitive nanoparticles from poly(L-lactic acid)/poly(ethylene glycol) alternating multi block copolymer for potential anti cancer drug carrier. Eur. J. Pharm. Sci., 27, 115–122.
- Sosnik, A. and Cohn, D. (2004) Ethoxysilane-capped PEO-PPO-PEO triblocks: a new family of reverse thermo-responsive polymers. Biomaterials, 25, 2851–2858.
- Heskins, H. and Guillet, J.E. (1968) Solution properties or poly(N-isopropyl acrylamide). J. Macromol. Sci. Chem. A2, 6, 1209.
- Yoshida, R., Uchida, K., Kaneko, Y., Sakai, K., Kikcuhi, A., and Okano, T. (1995) Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature, 374, 240–242.
- Shimizu, T., Yamato, M., Kikuchi, A., and Okano, T. (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 24, 2309–2316.
- Yamato, M. and Okano, T. (2001) Cell sheet engineering for regenerative medicine. Macromol. Chem. Symp., 14, 21–29.
- Takahashi, H., Matsuzaka, N., Nakayama, M., Kikuchi, A., Yamato, M., and Okano, T. (2012) Terminally functionalized thermo-responsive polymer brushes for simultaneously promoting cell adhesion and cell sheet harvest. Biomacromolecules, 13, 253–260.
- Golden, A.L., Battrell, C.F., Pennell, S., Hoffman, A.S., Lai, J.J., and Stayton, P.S. (2010) Simple fluidic system for purifying and concentrating diagnostic biomarkers using stimuli responsive antibody conjugates and membranes. Bioconjugate Chem., 21, 1820–1826.
- Lai, J.J., Nelson, K.E., Nash, M.A., Hoffman, A.S., Yager, P., and Stayton, P.S. (2009) Dynamic bio processing and micro fluidic transport control with smart magnetic nanoparticles in laminar-flow devices. Lab Chip, 9, 1997–2002.
- Lai, J.J., Hoffman, A.S., and Stayton, P.S. (2007) Dual magnetic-temperature responsive nanoparticles for micro fluidic separations and assays. Langmuir, 23, 7385–7391.
- Malmstadt, N., Yager, P., Hoffman, A.S., and Stayton, P.S. (2003) A smart micro fluidic affinity chromatography matrix composed of poly(N-isopropylacrylamide)-coated beads. Anal. Chem., 75, 2943–2949.
- Malmstadt, N., Hyre, D., Ding, Z., Hoffman, A.S., and Stayton, P.S. (2003) Affinity thermo precipitation and recovery of biotinylated biomolecules via a mutant streptavidin smart polymer conjugate. Bioconjugate Chem., 14, 575–580.
- Malmstadt, N., Hoffman, A.S., and Stayton, P.S. (2004) Smart mobile affinity matrix for micro fluidic immunoassays. Lab Chip, 4, 412–415.
- Nash, M.A., Yager, P., Hoffman, A.S., and Stayton, P.S. (2010) Mixed stimuli-responsive magnetic and gold nanoparticle system for rapid purification, enrichment, and detection of biomarkers. Bioconjugate Chem., 21, 2197–2204.
- Nash, M.A., Lai, J.J., Hoffman, A.S., Yager, P., and Stayton, P.S. (2010) “Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis. Nano Lett., 10, 85–91.
- Nash, M.A., Hoffman, J.M., Stevens, D.Y., Hoffman, A.S., Stayton, P.S., and Yager, P. (2010) Laboratory-scale protein striping system for patterning biomolecules onto paper based immuno chromatographic test strips. Lab Chip, 10, 2279–2282.
- Dong, L.C. and Hoffman, A.S. (1986) Thermally reversible hydrogels: III. Immobilization of enzymes for feedback reaction control. J. Controlled Release, 4, 223–227.
- Dong, L.C. and Hoffman, A.S. (1991) A novel approach for preparation of pH- and temperature sensitive hydrogels for enteric drug delivery. J. Controlled Release, 15, 141–152.
- Park, T.G. and Hoffman, A.S. (1988) Effect of temperature cycling on the activity and productivity of immobilized β-galactosidase in a thermally reversible hydrogel bead reactor. Appl. Biochem. Biotechnol., 19, 1–9.
- Park, T.G. and Hoffman, A.S. (1992) Synthesis and characterization of pH- and/or temperature sensitive hydrogels. J. Appl. Polym. Sci., 46, 659–671.
-
Vernon, B., Kim, S.W., and Bae, Y.H. (2000) Thermo reversible copolymer gels for extracellular matrix. J. Biomed. Mater. Res., 51, 69–79.
10.1002/(SICI)1097-4636(200007)51:1<69::AID-JBM10>3.0.CO;2-6 CAS PubMed Web of Science® Google Scholar
- Kujawa, P. and Winnik, F.M. (2001) Volumetric studies of aqueous polymer solutions using pressure perturbation calorimetry: A new look at the temperature-induced phase transition of poly(N-isopropylacrylamide) in water and D2O. Macromolecules, 43, 4130–4135.
- Ahn, Y.H. et al. (2001) Reversible gelling culture media for in-vitro cell culture in three dimensional matrices. US Patent US6103528.
- Topp, M.D.C. et al. (1997) Thermo sensitive micelle forming block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide). Macromolecules, 30, 8518–8520.
- Aoyagi, T. et al. (2000) Novel bifunctional polymer with reactivity and temperature sensitivity. J. Biomater. Sci., Polym. Ed., 11, 101–110.
- Inoue, T. et al. (1997) Temperature sensitivity of a hydrogel network containing different LCST oligomers grafted to the hydrogel backbone. Polym. Gels Networks, 5, 561–575.
- Kaneko, Y. et al. (1998) Rapid deswelling response of poly(N-isopropylacrylamide) hydrogels by the formation of water release channels using poly(ethylene oxide) graft chains. Macromolecules, 31, 6099–6105.
- Bulmus, V. et al. (2000) Site-specific polymer–streptavidin bioconjugate for pH controlled binding and triggered release of biotin. Bioconjugate Chem., 11, 78–83.
- Lee, H. and Park, T.G. (1998) Conjugation of trypsin by temperature-sensitive polymers containing a carbohydrate moiety: thermal modulation of enzyme activity. Biotechnol. Progr., 14, 508–516.
- Kim, H.K. and Park, T.G. (1999) Synthesis and characterization of thermally reversible bioconjugates composed of α-chymotrypsin and poly(N-isopropylacrylamide-co-acrylamido-2-deoxy-D-glucose). Enzyme Microb. Technol., 25, 31–37.
- Shimizu, T. et al. (2001) Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng., 7, 141–151.
- Vernon, B. et al. (1999) Insulin release from islets of Langerhans entrapped in a poly(N-isopropylacrylamide-co-acrylic acid) polymer gel. J. Biomater. Sci., Polym. Ed., 10, 183–198.
- Oya, T. et al. (1999) Reversible molecular adsorption based on multipoint interaction by shrinkable gels. Science, 286, 1543–1545.
- Okuyama, Y., Yoshida, R., Sakai, K., Okano, T., and Sakurai, Y. (1993) Swelling controlled zero-order and sigmoidal drug release from thermoresponsive poly(N-isopropylacrylamide-co-butyl methacrylate) hydrogel. J. Biomater. Sci., Polym. Ed., 4, 545–556.
- Coughlan, D.C. and Corrigan, O.I. (2008) Release kinetics of benzoic acid and its sodium salt from a series of poly(N-isopropylacrylamide) matrices with various percentage crosslinking. J. Pharm. Sci., 97, 318–330.
- Coughlan, D.C. and Corrigan, O.I. (2006) Drug-polymer interactions and their effect on thermoresponsive poly (N-isopropylacrylamide) drug delivery systems. Int. J. Pharm., 313, 163–174.
- Jones, D.S., Lorimer, C.J., Andrews, G.P., McCoy, C.P., and Gorman, S.P. (2007) An examination of the thermo rheological and drug release properties of zinc tetraphenylporphyrin-containing thermoresponsive hydrogels, designed as light activated antimicrobial implants. Chem. Eng. Sci., 62, 990–999.
- Xiao, H., Nayak, B.R., and Lowe, T.L. (2004) Synthesis and characterization of novel thermoresponsive-co-biodegradable hydrogels composed of N-isopropylacrylamide, poly(L-lactic acid), and dextran. J. Polym. Sci., Part A: Polym. Chem., 42, 5054–5066.
- Wu, D.Q., Qiu, F., Wang, T., Jiang, X.J., Zhang, X.Z., and Zhuo, R.X. (2009) Toward the development of partially biodegradable and injectable thermoresponsive hydrogels for potential biomedical applications. ACS Appl. Mater. Interfaces, 1, 319–327.
- Ma, Z.W., Nelson, D.M., Hong, Y., and Wagner, W.R. (2010) Thermally responsive injectable hydrogel incorporating methacrylate-polylactide for hydrolytic lability. Biomacromolecules, 11, 1873–1881.
- Galperin, A., Long, T.J., and Ratner, B.D. (2010) Degradable, thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Biomacromolecules, 11, 2583–2592.
- Wei, H., Zhang, X.Z., Chen, W.Q., Cheng, S.X., and Zhuo, R.X. (2007) Self-assembled thermosensitive micelles based on poly(L-lactide-star block-N-isopropylacrylamide) for drug delivery. J. Biomed. Mater. Res. Part A, 83A, 980–989.
- Jeong, B., Kim, S.W., and Bae, Y.H. (2002) Thermosensitive sol–gel reversible hydrogels. Adv. Drug Delivery Rev., 54, 37–51.
- Lee, D.S., Shim, M.S., Kim, S.W., Lee, H., Park, I., and Chang, T. (2001) Novel thermoreversible gelation of biodegradable PLGA-block-PEO-block-PLGA triblock copolymers in aqueous solution. Macromol. Rapid Commun., 22, 587–592.
- Shim, W.S., Kim, J.H., Park, H., Kim, K., Kwon, I.C., and Lee, D.S. (2006) Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulphonamide modified poly(ϵ-caprolactone-co-lactide)–poly(ethylene glycol)–poly(ϵ-caprolactone-co-lactide) block copolymer. Biomaterials, 27, 5178–5185.
- Kan, P., Lin, X.Z., Hsieh, M.F., and Chang, K.Y. (2005) Thermogelling emulsions for vascular embolization and sustained release of drugs. J. Biomed. Mater. Res. Part B, 75B, 185–192.
- Wang, N., Dong, A., Radosz, M., and Shen, Y.Q. (2008) Thermoresponsive degradable poly(ethylene glycol) analogues. J. Biomed. Mater. Res. Part A, 84A, 148–157.
- Garty, S., Kimelman-Bleich, N., Hayouka, Z., Cohn, D., Friedler, A., Pelled, G., and Gazit, D. (2010) Peptide-modified “smart” hydrogels and genetically engineered stem cells for skeletal tissue engineering. Biomacromolecules, 11, 1516–1526.
- Borden, B.A., Yockman, J., and Kim, S.W. (2010) Thermoresponsive hydrogel as a delivery scaffold for transfected rat mesenchymal stem cells. Mol. Pharm., 7, 963–968.
- Cohn, D., Sagiv, H., Benyamin, A., and Lando, G. (2009) Engineering thermoresponsive polymeric nanoshells. Biomaterials, 30, 3289–3296.
- Chow, D., Nunalee, M.L., Lim, D.W., Simnick, A.J., and Chilkoti, A. (2008) Peptide-based biopolymers in biomedicine and biotechnology. Mater. Sci. Eng., R, 62, 125–155.
- MacEwan, S.R. and Chilkoti, A. (2010) Elastin-like polypeptides: biomedical applications of tunable biopolymers. Biopolymers, 94, 60–77.
- Meyer, D.E. and Chilkoti, A. (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat. Biotechnol., 17, 1112–1115.
- Meyer, D.E., Kong, G.A., Dewhirst, M.W., Zalutsky, M.R., and Chilkoti, A. (2001) Targeting a genetically engineered elastin-like polypeptide to solid tumors by local hyperthermia. Cancer Res., 61, 1548–1554.
- Bessa, P.C., Machado, R., Nurnberger, S., Dopler, D., Banerjee, A., Cunha, A.M., Rodriguez-Cabello, J.C., Redl, H., van Griensven, M., Reis, R.L. et al. (2010) Thermoresponsive self-assembled elastin-based nanoparticles for delivery of bmps. J. Controlled Release, 142, 312–318.
- Rincon, A.C., Molina-Martinez, I.T., de Las Heras, B., Alonso, M., Bailez, C., Rodriguez-Cabello, J.C., and Herrero-Vanrell, R. (2006) Biocompatibility of elastin-like polymer poly(VPAVG) microparticles: in vitro and in vivo studies. J. Biomed. Mater. Res. Part A, 78A, 343–351.
- Dreher, M.R., Raucher, D., Balu, N., Michael Colvin, O., Ludeman, S.M., and Chilkoti, A. (2003) Evaluation of an elastin-like polypeptide-doxorubicin conjugate for cancer therapy. J. Controlled Release, 91, 31–43.
- Kunugi, S., Tada, T., and Yamazak, Y. (2000) Thermodynamic studies on coil – globule transitions of poly(N vinylisobutyramide- co -vinylamine) in aqueous solutions. Langmuir, 16, 2042–2044.
- Zhang, N., Salzinger, S., and Rieger, B. (2012) Poly(vinylphosphonate)s with widely tunable LCST: a promising alternative to conventional thermoresponsive polymers. Macromolecules, 45, 9751–9758.
- Vihola, H., Laukkanen, A., Tenhu, H., and Hirvonen, J. (2008) Drug release characteristics of physically cross-linked thermosensitive poly(N-vinylcaprolactam) hydrogel particles. J. Pharm. Sci., 97, 4783–4793.
- Vihola, H., Marttila, A.K., Pakkanen, J.S., Andersson, M., Laukkanen, A., Kaukonen, A.M., Tenhu, H., and Hirvonen, J. (2007) Cell-polymer interactions of fluorescent polystyrene latex particles coated with thermosensitive poly(N-isopropylacrylamide) and poly(N-vinylcaprolactam) or grafted with poly(ethylene oxide)-macromonomer. Int. J. Pharm., 343, 238–246.
- Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H., and Hirvonen, J. (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials, 26, 3055–3064.
- Maeda, Y., Nakamura, T., and Ikeda, I. (2002) Hydration and phase behavior of poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone) in water. Macromolecules, 35, 217–222.
- Laukkanen, A., Valtola, L., Winnik, F.M., and Tenhu, H. (2004) Formation of colloidally stable phase separated poly (N-vinylcaprolactam) in water: a study by dynamic light scattering, microcalorimetry, and pressure perturbation calorimetry. Macromolecules, 37, 2268–2274.
- Makhaeva, E.E., Tenhu, H., and Khokhlov, A.R. (1998) Conformational changes of poly(vinylcaprolactam) macromolecules and their complexes with ionic surfactants in aqueous solution. Macromolecules, 31, 6112–6118.
- Alzari, V., Monticelli, O., Nuvoli, D., Kenny, J.M., and Mariani, A. (2009) Stimuli responsive hydrogels prepared by frontal polymerization. Biomacromolecules, 10, 2672–2677.
- Yoon, J.A., Gayathri, C., Gil, R.R., Kowalewski, T., and Matyjaszewski, K. (2010) Comparison of the thermoresponsive deswelling kinetics of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels prepared by atrp and frp. Macromolecules, 43, 4791–4797.
- Kiremitçi, A.S., Ciftçi, A., Ozalp, M., and Gümüeşderelioglu, M. (2007) Novel chlorhexidine releasing system developed from thermosensitive vinyl ether-based hydrogels. J. Biomed. Mater. Res. Part B, 83B, 609–614.
- Yang, H. and Kao, W.Y.J. (2006) Thermoresponsive gelatin/monomethoxy poly(ethylene glycol)-poly(D, 1lactide) hydrogels: formulation, characterization, and antibacterial drug delivery. Pharm. Res., 23, 205–214.
- Martellini, F., Mei, L.H.I., Balino, J.L., and Carenza, M. (2003) Water and drug transport in radiation-crosslinked poly(2-methoxyethylacrylate-co-dimethyi acrylamide) and poly(2-methoxyethylacrylate-co-acrylamide) hydrogels. Radiat. Phys. Chem., 66, 155–159.
- Yu, B., Lowe, A.B., and Ishihara, K. (2009) RAFT synthesis and stimulus-induced self-assembly in water of copolymers based on the biocompatible monomer 2-(methacryloyloxy)ethyl phosphorylcholine. Biomacromolecules, 10, 950–958.
- Huang, X., Du, F., Ju, R., and Li, Z. (2007) Novel acid-labile, thermoresponsive poly(methacrylamide)s with pendent ortho ester moieties. Macromol. Rapid Commun., 28, 597–603.
- Huang, X.-N., Du, F.-S., Zhang, B., Zhao, J.-Y., and Li, Z.-C. (2008) Acid-labile, thermoresponsive (meth)acrylamide polymers with pendant cyclic acetal moieties. J. Polym. Sci., Part A: Polym. Chem., 46, 4332–4343.
- Hruby, M., Kucka, J., Lebeda, O., Mackova, H., Babic, M., Konak, C., Studenovsky, M., Sikora, A., Kozempel, J., and Ulbrich, K. (2007) New bioerodable thermoresponsive polymers for possible radiotherapeutic applications. J. Controlled Release, 119, 25–33.
- Lutz, J.-F. (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J. Polym. Sci., Part A: Polym. Chem., 46, 3459–3470.
- Mertoglu, M., Garnier, S., Laschewsky, A., Skrabania, K., and Storsberg, J. (2005) Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT). Polymer, 46, 7726–7740.
- Lutz, J.-F. (2011) Thermo-switchable materials prepared using the OEGMA-platform. Adv. Mater., 23, 2237–2243.
- Wang, W., Liang, H., Cheikh Al Ghanami, R., Hamilton, L., Fraylich, M., Shakesheff, K.M., Saunders, B., and Alexander, C. (2009) Biodegradable thermoresponsive microparticle dispersions for injectable cell delivery prepared using a single-step process. Adv. Mater., 21, 1809–1813.
- Watanabe, E., Tomoshige, N., and Uyama, H. (2007) New biodegradable and thermoresponsive polymers based on amphiphilic poly(asparagine) derivatives. Macromol. Symp., 249–250, 509–514.
- Bosmann, H.B. and Kessel, D. (1970) Inhibition of glycoprotein synthesis in L5178Y mouse leukaemic cells by L-asparaginase in vitro. Nature, 226, 850–851.
- El-Naggar, N.E.-A., El-Ewasy, S.M., and El-Shweihy, N.M. (2014) Microbial L-asparaginase as a potential therapeutic agent for the treatment of acute lymphoblastic leukemia: the pros and cons. Int. J. Pharmacol., 10 (4), 182–199.
- Hosamani, R. (2012) Studies on the production of L-asparaginase an antitumor agent from filamentous fungus-Fusarium equiseti. PhD thesis. Karnatak University, Dharwad, India.
- Kim, S., Wu, J., Carlson, A., Jin, S.H., Kovalsky, A., Glass, P., Liu, Z., Ahmed, N., Elgan, S.L., Chen, W., Ferreira, P.M., Sitti, M., Huang, Y., and Rogers, J.A. (2010) Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc. Natl. Acad. Sci. U.S.A., 107, 17095–17100.
- Lee, K.K., Cussler, E.L., Marchetti, M., and McHugh, M.A. (1990) Pressure-dependent phase transitions in hydrogels. Chem. Eng. Sci., 45, 766–767.
- Zhong, X., Wang, Y.-X., and Wang, S.-C. (1996) Pressure dependence of the volume phase transition of temperature-sensitive gels. Chem. Eng. Sci., 51, 3235–3239.
- Shiga, T. (1997) Deformation and viscoelastic behavior of polymer gels in electric fields. Adv. Polym. Sci., 134, 131–163.
- Zrinyi, M. (2000) Intelligent polymer gels controlled by magnetic fields. Colloid. Polym. Sci., 278, 98–103.
- Deng, Y.H., Yang, W.L., Wang, C.C., and Fu, S.K. (2003) A novel approach for preparation of thermoresponsive polymer magnetic microspheres with core shell structure. Adv. Mater., 15 (20), 1729–1732.
- Meenach, S.A., Anderson, K.W., and Hilt, J.Z. (2010) Synthesis and characterization of thermoresponsive poly(ethylene glycol)-based hydrogels and their magnetic nanocomposites. J. Polym. Sci., Part A: Polym. Chem., 48, 3229–3235.
- Papaphilippou, P.C., Pourgouris, A., Marinica, O., Taculescu, A., Athanasopoulos, G.I., Vekas, L., and Krasia-Christoforou, T. (2011) Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe3O4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate. J. Magn. Magn. Mater., 323, 557–563.
- Schumers, J.-M., Fustin, C.-A., and Gohy, J.-F. (2010) Light-responsive block copolymers. Macromol. Rapid Commun., 31, 1588–1607.
- You, J., Shao, R., Wei, X., Gupta, S., and Li, C. (2010) Near-infrared light triggers release of paclitaxel from biodegradable microspheres: photothermal effect and enhanced antitumor activity. Small, 6, 1022–1031.
- Ishii, N., Mamiya, J.-I., Ikeda, T., and Winnik, F.M. (2011) Solvent induced amplification of the photoresponsive properties of α,ω-di-[4-cyanophenyl-4′-(6-hexyloxy)-azobenzene]-poly(N-isopropylacrylamide) in aqueous media. Chem. Commun., 47, 1267–1269.
- Suzuki, A. and Tanaka, T. (1990) Phase transition in polymer gels induced by visible light. Nature, 346, 345–347.
- Suzuki, A., Ishii, T., and Maruyama, Y. (1996) Optical switching in polymer gels. J. Appl. Phys., 80, 131–136.
- Minko, S., Muller, M., Motornov, M., Nitschke, M., Grundke, K., and Stamm, M. (2003) Two-level structured self-adaptive surfaces with reversibly tunable properties. J. Am. Chem. Soc., 125 (13), 3896–3900.
- Sheparovych, R., Motornov, M., and Minko, S. (2008) Adapting low-adhesive thin films from mixed polymer brushes. Langmuir, 24, 13828–13832.
- Zhang, M. and Müller, A. (2003) Amphiphilic cylindrical brushes with poly(acrylic acid) core and poly(n-butyl acrylate) shell and narrow length distribution. Polymer, 44, 1449–1458.
- Fischer, H. (2001) The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. Chem. Rev., 101, 3581–3610.
- Retsos, H., Kiriy, A., Senkovskyy, V., Stamm, M., Feldstein, M.M., and Creton, C. (2006) Controlling tack with bicomponent polymer brushes. Adv. Mater., 18, 2624–2628.
- Retsos, H., Gorodyska, G., Kiriy, A., Stamm, M., and Creton, C. (2005) Adhesion between chemically heterogeneous switchable polymeric brushes and an elastomeric adhesive. Langmuir, 21, 7722–7725.
- Nadermann, N., Ning, J., Jagota, A., and Hui, C.Y. (2010) Active switching of adhesion in a film-terminated fibrillar structure. Langmuir, 26, 15464–15471.
- Paretkar, D., Kamperman, M., Schneider, A.S., Martina, D., Creton, C., and Arzt, E. (2011) Bioinspired pressure actuated adhesive system. Mater. Sci. Eng., C, 31, 1152–1159.
- Jeong, H.E., Kwak, M.K., and Suh, K.Y. (2010) Stretchable, adhesion-tunable dry adhesive by surface wrinkling. Langmuir, 26 (4), 2223–2226.
- Zhao, L., Zhu, L., Liu, F., Liu, C., Shan-Dan, Wang, Q. et al. (2011) pH triggered injectable amphiphilic hydrogel containing doxorubicin and paclitaxel. Int. J. Pharm., 410, 83–91.
- Garbern, J.C., Minami, E., Stayton, P.S., and Murry, C. (2011) Delivery of basic fibroblast growth factor with a pH-responsive, injectable hydrogel to improve angiogenesis in infarcted myocardium. Biomaterials, 32, 2407–2416.
- Kulkarni, R.V., Boppana, R., Krishna, M.G., Mutalik, S., and Kalyane, N.V. (2012) pH-responsive inter penetrating network hydrogel beads of poly(acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: synthesis, in vitro and in vivo evaluation. J. Colloid Interface Sci., 367, 509–517.
- Wang, K., Xu, X., Wang, Y., Yan, X., Guo, G., Huang, M. et al. (2010) Synthesis and characterization of poly(methoxyl ethyleneglycol-caprolactone-co-methacrylic acid-co-poly(ethyleneglycol) methylether methacrylate) pH sensitive hydrogel for delivery of dexamethasone. Int. J. Pharm., 389, 130–138.
- El-Sherbiny, I.M. (2010) Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: preparation and in-vitro assessment. Carbohydr. Polym., 80, 1125–1136.
- Jeong, B. and Gutowska, A. (2002) Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends Biotechnol., 20 (7), 305–311.
- Duncan, R., Ferruti, P., Sgouras, D., Tuboku-Metzger, A. et al. (1994) A polymer-triton X-100 conjugate capable of pH-dependent red blood cell lysis: a model system illustrating the possibility of drug delivery within acidic intracellular compartments. J. Drug Targeting, 2, 341–347.
- Barba, A.A., Dalmoro, A., De Santis, F., and Lamberti, G. (2009) Synthesis and characterization of p(MMAAA) copolymers for targeted oral drug delivery. Polym. Bull., 62 (5), 679–688.
- Lubrizol [Admix Corp] http://www.admix.com/carbopol (accessed 21 April 2016).
- Licea-Claverie, A., Rogel-Hernandez, E., Salgado-Rodriguez, R., Lopez-Sanchez, J.A. et al. (2004) The use of hydrophobic spacers in the development of new temperature- and pH-sensitive polymers. Macromol. Symp., 207, 193–215.
- Guan, X., Liu, Z., and Su, Z. (2007) Synthesis and photophysical behaviors of temperature/pH-sensitive polymeric materials. Eur. Polym. J., 43 (7), 3094–3105.
- Lackey, C.A., Murthy, N., Press, O.W., Tirrell, D.A., Hoffman, A.S., and Stayton, P.S. (1999) Hemolytic activity of pH-responsive polymer–streptavidin bioconjugates. Bioconjugate Chem., 10, 401–405.
- Murthy, N., Stayton, P.S., Robichaud, J.R., Tirrell, D.A., and Hoffman, A.S. (1999) The design and synthesis of polymers for eukaryotic membrane disruption. J. Controlled Release, 61, 137–143.
- Murthy, N., Campbell, J., Fausto, N., Hoffman, A.S., and Stayton, P.S. (2003) Bioinspired polymeric carriers that enhance intracellular delivery of biomolecular therapeutics. Bioconjugate Chem., 14, 412–419.
- Murthy, N., Campbell, J., Fausto, N., Hoffman, A.S., and Stayton, P.S. (2003) Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides to hepatocytes. J. Controlled Release, 89, 365–374.
- Stayton, P.S. and Hoffman, A.S. (2008) Smart pH-responsive carriers for intracellular delivery of biomolecular drugs, in Multifunctional Pharmaceutical Nanocarriers (ed. V. Torchilin), Springer-Verlag.
- Tirrell, D. (1987) Macromolecular switches for bilayer membranes. J. Controlled Release, 6, 15–21.
- Yin, X., Stayton, P.S., and Hoffman, A.S. (2006) Temperature- and pH-responsiveness of poly(Nisopropylacrylamide-co-propylacrylic acid) copolymers prepared by RAFT polymerization. Biomacromolecules, 7, 1381–1385.
- Kang, H.C. and Bae, Y.H. (2007) pH-tunable endosomolytic oligomers for enhanced nucleic acid delivery. Adv. Funct. Mater., 17, 1263–1272.
- Na, K., Lee, D.H., Hwang, D.J., Lee, K.H., and Bae, Y.H. (2006) pH-sensitivity and pH-dependent structural change in polymeric nanoparticles of poly(vinyl sulfadimethoxine)- deoxycholic acid conjugate. Eur. Polym. J., 42, 2581–2588.
- Benns, J.M. et al. (2000) pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(Lhistidine)- graft-poly(L-lysine) comb shaped polymer. Bioconjugate Chem., 11, 637–645.
- Neumann, M.G., Pastre, I.A., Chinelatto, A.M., and El Seoud, O.A. (1996) Effects of the structure of anionic polyelectrolytes on surface potentials of their aggregates in water. Colloid. Polym. Sci., 274 (5), 475–481.
- Donovan, M.S., Sumerlin, B.S., Lowe, A.B., and McCormick, C.L. (2002) Controlled/living polymerization of sulfobetaine monomers directly in aqueous media via raft. Macromolecules, 35, 8663–8666.
- Corpart, J.M. and Candau, F. (1993) Aqueous solution properties of ampholytic copolymers prepared in microemulsions. Macromolecules, 26, 1333–1343.
- Kathmann, E.E.L., White, L.A., and McCormick, C.L. (1997) Electrolyte and pH responsive zwitterionic copolymer of 4-[(2acrylamido-2-methylpropyl)-dimethylammonio] butanoate with 3-[(2acrylamido-2-methylpropyl dimethylammonio] propane sulfonate. Macromolecules, 30, 5297–5304.
- Salamone, J.C., Rodriguez, E.L., Lin, K.C., Quach, L., Watterson, A.C., and Ahmed, I. (1985) Aqueous salt absorption by ampholytic polysaccharides. Polymer, 26, 1234–1238.
- Morrison, M.E., Dorfman, R.C., Clendening, W.D., Kiserow, D.J., Rossky, P.J., and Webber, S.E. (1994) Quenching kinetics of anthracene covalently bound to a polyelectrolyte 1. Effect of ionic strength. J. Phys. Chem., 98, 5534–5540.
- Szczubiałka, K., Jankowska, M., and Nowakowska, M. (2003) Smart polymeric nanospheres as new materials for possible biomedical applications. J. Mater. Sci. - Mater. Med., 14, 699–703.
-
Kumar, A., Galaev, I.Y., and Mattiasson, B. (1998) Affinity precipitation of a-amylase inhibitor from wheat meal by metal chelate affinity binding using cu(II)-loaded copolymers of L-vinylimidazole with N-isopropylacrylamide. Biotechnol. Bioeng., 59, 695–704.
10.1002/(SICI)1097-0290(19980920)59:6<695::AID-BIT6>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- Leong, K.W., Brott, B.C., and Langer, R. (1985) Bioerodible polyanhydrides as drug carrier matrices I: characterization, degradation, and release characteristics. J. Biomed. Mater. Res., 19, 941–955.
- Mathiowitz, E., Jacob, J.S., Jong, Y.S., Carino, G.P., Chickering, D.E., Chaturvedi, P., Santos, C.A., Vijayaraghavan, K., Montgomery, S., Bassett, M., and Morrell, C. (1997) Biologically erodable microspheres as potential oral drug delivery systems. Nature, 386, 410–414.
- Cohen, S., Yoshioka, T., Lucarelli, M., Hwang, L.H., and Langer, R. (1991) Controlled delivery systems for proteins based on poly(lactic/glycolic acid)microspheres. Pharm. Res., 8, 713–720.
- Shenoy, D., Little, S., Langer, R., and Amiji, M. (2005) Polyethylene oxide modified poly beta-amino ester)nanoparticles as a pH sensitive system for tumor targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm. Res., 22, 2107–2114.
- Cerritelli, S., Velluto, D., and Hubbell, J.A. (2007) PEG-SS-PPS: reduction sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules, 8, 1966–1972.
- Oh, J.K., Siegwart, D.J., Lee, H.-I., Sherwood, G., Peteanu, L., Hollinger, J.O., Kataoka, K., and Matyjaszewski, K. (2007) Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug carrier: synthesis biodegradation, in vitro release and bioconjugation. J. Am. Chem. Soc., 129, 5939–5945.
- Matsumoto, S., Christie, R.J., Nishiyama, N., Miyata, K., Ishii, A., Oba, M., Koyama, H., Yamasaki, Y., and Kataoka, K. (2008) Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Biomacromolecules, 10, 119–127.
- Yoshida, R., Yamaguchi, T., and Kokufuta, E. (1999) New intelligent polymer gel: a self-oscillating gel with peacemaking and actuating functions. J. Artif. Organs, 2, 135–140.
- Andresen, T.L., Jensen, S.S., and Jorgensen, K. (2005) Advanced strategies in liposomal cancer therapy: problems and prospects of active and tumor specific drug release. Prog. Lipid Res., 44, 68–97.
- Minelli, C., Lowe, S.B., and Stevens, M.M. (2010) Engineering nanocomposites materials for cancer therapy. Small, 6, 2336–2357.
- Amir, R.J., Zhong, S., Pochan, D.J., and Hawker, C.J. (2009) Enzymatically triggered self-assembly of block copolymers. J. Am. Chem. Soc., 131, 13949–13950.
- Woodcock, J.W., Jiang, X.G., Wright, R.A.E., and Zhao, B. (2011) Enzyme-induced formation of thermoreversible micellar gels from aqueous solutions of multiresponsive hydrophilic ABA triblock copolymers. Macromolecules, 44, 5764–5775.
- Traitel, T., Cohen, Y., and Kost, J. (2000) Characterization of glucose sensitive insulin release systems in simulated in vivo conditions. Biomaterials, 21, 1679–1687.
- Albin, G., Horbett, T.A., and Ratner, B.D. (1985) Glucose sensitive membranes for controlled delivery of insulin: insulin transport studies. J. Controlled Release, 2, 153–164.
- Albin, G.W., Horbett, T.A., Miller, S.R., and Ricker, N.L. (1987) Theoretical and experimental studies of glucose sensitive membranes. J. Controlled Release, 6, 267–291.
- Cartier, S., Horbett, T.A., and Ratner, B.D. (1995) Glucose-sensitive coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir. J. Membr. Sci., 106, 17–24.
- You, L., Lu, F., Li, Z., Zhang, W., and Li, F. (2003) Glucose-sensitive aggregates formed by poly(ethylene oxide)-block-poly(2-glucosyl-oxyethyl acrylate) with concanavalin A in dilute aqueous medium. Macromolecules, 36, 1–4.
- Schattling, P., Jochuma, F.D., and Theato, P. (2014) Multi-stimuli responsive polymers – the all-in-one talents. Polym. Chem., 5, 25–36.
- Cheng, R., Meng, F., Deng, C., Klok, H.-A., and Zhong, Z. (2013) Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 34, 3647–3657.
- (a) Mu, B. and Liu, P. (2012) Temperature and pH dual responsive crosslinked polymeric nanocapsules via surface-initiated atom transfer radical polymerization. React. Funct. Polym., 72, 983–989; (b) Schilli, C.M., Zhang, M., Rizzardo, E., Thang, S.H., Chong, Y.K., Edwards, K., Karlsson, G., and Müller, A.H.E. (2004) A new double-responsive block copolymer synthesized via RAFT polymerization: poly(N-isopropylacrylamide)- block -poly(acrylic acid). Macromolecules, 37, 7861–7866; (c) Kulkarni, S., Schilli, C., Grin, B., Müller, A.H.E., Hoffman, A.S., and Stayton, P.S. (2006) Controlling the aggregation of conjugates of streptavidin with smart block copolymers prepared via the RAFT copolymerization technique. Biomacromolecules, 7, 2736–2741.
- Soppimath, K.S., Tan, D.C.W., and Yang, Y.Y. (2005) pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Adv. Mater., 17 (3), 318–323.
- Soppimath, K.S., Liu, L.H., Seow, W.Y., Liu, S.Q., Powell, R., Chan, P. et al. (2007) Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery. Adv. Mater., 17 (3), 355–362.
- Zhang, L.Y., Guo, R., Yang, M., Jiang, X.Q., and Liu, B.R. (2007) Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery. Adv. Mater., 19 (19), 2988e92.
- Chen, Y.C., Liao, L.C., Lu, P.L., Lo, C.L., Tsai, H.C., Huang, C.Y. et al. (2012) The accumulation of dual pH and temperature responsive micelles in tumors. Biomaterials, 33 (18), 4576–4588.
- Lo, C.L., Lin, K.M., and Hsiue, G.H. (2005) Preparation and characterization of intelligent core-shell nanoparticles based on poly(D, L-lactide)-g-poly(N-isopropyl-acrylamide- co-methacrylic acid). J. Controlled Release, 104 (3), 477–488.
- Cui, W., Lu, X.M., Cui, K., Niu, L., Wei, Y., and Lu, Q.H. (2012) Dual-responsive controlled drug delivery based on ionically assembled nanoparticles. Langmuir, 28 (25), 9413–9420.
- Chiang, W.H., Ho, V.T., Huang, W.C., Huang, Y.F., Chern, C.S., and Chiu, H.C. (2012) Dual stimuliresponsive polymeric hollow nanogels designed as carriers for intracellular triggered drug release. Langmuir, 28 (42), 15056–15064.
- Rapoport, N. (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci., 32 (8-9), 962–990.
- Meng, F.H., Hennink, W.E., and Zhong, Z.Y. (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 30 (12), 2180–2198.
- Zhang, J.C., Wu, L.L., Meng, F.H., Wang, Z.J., Deng, C., Liu, H.Y. et al. (2011) pH and reduction dual-bioresponsive polymersomes for efficient intracellular protein delivery. Langmuir, 28 (4), 2056–2065.
- Pan, Y.J., Chen, Y.Y., Wang, D.R., Wei, C., Guo, J., Lu, D.R. et al. (2012) Redox/pH dual stimuliresponsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release. Biomaterials, 33 (27), 6570–6579.
- Shu, S.J., Zhang, X.G., Wu, Z.M., Wang, Z., and Li, C.X. (2010) Gradient cross-linked biodegradable polyelectrolyte nanocapsules for intracellular protein drug delivery. Biomaterials, 31 (23), 6039–6049.
- Guo, M., Yan, Y., Zhang, H.K., Yan, H.S., Cao, Y.J., Liu, K.L., Wan, S., Huang, J., and Yue, W. (2008) Magnetic and pH responsive nanocarriers with multilayer core-shell architecture for anticancer drug delivery. J. Mater. Chem., 18 (42), 5104–5112.
- Phillips, D.J. and Gibson, M.I. (2012) Degradable thermoresponsive polymers which display redox-responsive LCST behaviour. Chem. Commun., 48, 1054–1105.
- Morimoto, N., Qiu, X.P., Winnik, F.M., and Akiyoshi, K. (2008) Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules, 41 (16), 5985–5987.
- Lv, W.P., Liu, S.Q., Feng, W.Q., Qi, J.J., Zhang, G.L., Zhang, F.B. et al. (2011) Temperature- and redox-directed multiple self assembly of poly(N-isopropylacrylamide) grafted dextran nanogels. Macromol. Rapid Commun., 32 (14), 1101–1107.
- Tan, J.J., Kang, H.L., Liu, R.G., Wang, D.Q., Jin, X., Li, Q.M. et al. (2011) Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym. Chem., 2 (3), 672–678.
- Shubayev, V.I., Pisanic Ii, T.R., and Jin, S. (2009) Magnetic nanoparticles for theragnostics. Adv. Drug Delivery Rev., 61 (6), 467–477.
- Wang, S.H., Shi, X., VanAntwerp, M., Cao, Z., Swanson, S.D., Bi, X. et al. (2007) Dendrimer-functionalized iron oxide nanoparticles for specific targeting and imaging of cancer cells. Adv. Funct. Mater., 17 (16), 3043–3050.
- Hu, F.Q., Wei, L., Zhou, Z., Ran, Y.L., Li, Z., and Gao, M.Y. (2006) Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv. Mater., 18 (19), 2553–2556.
- Guo, M., Que, C.L., Wang, C.H., Liu, X.Z., Yan, H.S., and Liu, K.L. (2011) Multifunctional superparamagnetic nanocarriers with folate-mediated and pH-responsive targeting properties for anticancer drug delivery. Biomaterials, 32 (1), 185–194.
- Jochum, F.D., Zur Borg, L., Roth, P.J., and Theato, P. (2009) Thermo-and light-responsive polymers containing photoswitchable azobenzene end groups. Macromolecules, 42, 7854–7862.
- Kungwatchakun, D. and Irie, M. (1988) Photoresponsive polymers. Photocontrol of phase separation temperature of aqueous solutions of poly(N-isopropylacrylamide) with pendant azobenzene groups. Makromol. Chem. Rapid Commun., 9, 243–246.
- Jochum, F.D. and Theato, P. (2009) Temperature and light sensitive copolymers containing azobenzene moieties prepared via a polymer analogous reaction. Polymer, 50, 3079–3085.
- (a) Kröger, R., Menzel, H., and Hallensleben, M.L. (1994) Light controlled solubility change of polymers copolymers of N, N dimethylacrylamide and 4-phenylazophenyl acrylate. Macromol. Chem. Phys., 195, 2291–2298; (b) Tao, X., Gao, Z., Satoh, T., Cui, Y., Kakuchi, T., and Duan, Q. (2011) Synthesis and characterization of well-defined thermo- and light responsive diblock copolymers by atom transfer radical polymerization and click chemistry. Polym. Chem., 2, 2068–2073; (c) Dirani, A., Laloyaux, X., Fernandes, A.E., Mathy, B., Schicke, O., Riant, O., Nystenand, B., and Jonas, A.M. (2012) Reversible photomodulation of the swelling of poly(oligo(ethylene glycol) methacrylate) thermoresponsive polymer brushes. Macromolecules, 45, 9400–9408.
- Tang, X., Liang, X., Gao, L., Fan, X., and Zhou, Q. (2010) Water-soluble triply-responsive homopolymers of N,N-dimethylaminoethyl methacrylate with a terminal azobenzene moiety. J. Polym. Sci., Part A: Polym. Chem., 48, 2564–2570.
- Zhang, J., Liu, H.-J., Yuan, Y., Jiang, S., Yao, Y., and Chen, Y. (2013) Tunable and switchable dielectric constant in an amphidynamic crystal. ACS Macro Lett., 2, 67–71.
- Schattling, P., Jochum, F.D., and Theato, P. (2011) Multi-responsive copolymers: using thermo-, light-and redox stimuli as three independent inputs towards polymeric information processing. Chem. Commun., 47, 8859.
- Uchiyama, S., Kawai, N., de Silva, A.P., and Iwai, K. (2004) Fluorescent polymeric AND logic gate with temperature and pH as inputs. J. Am. Chem. Soc., 126, 3032–3033.
- Klaikherd, A., Nagamani, C., and Thayumanavan, S. (2009) Multi-stimuli sensitive amphiphilic block copolymer assemblies. J. Am. Chem. Soc., 131 (13), 4830–4838.
- Qiao, Z.Y., Zhang, R., Du, F.S., Liang, D.H., and Li, Z.C. (2011) Multi-responsive nanogels containing motifs of ortho ester, oligo(ethylene glycol) and disulfide linkage as carriers of hydrophobic anti-cancer drugs. J. Controlled Release, 152 (1), 57–66.
- Bilalis, P., Chatzipavlidis, A., Tziveleka, L.A., Boukos, N., and Kordas, G. (2012) Nano designed magnetic polymer containers for dual stimuli actuated drug controlled release and magnetic hyperthermia mediation. J. Mater. Chem., 22 (27), 13451–13454.
- Chang, B.S., Sha, X.Y., Guo, J., Jiao, Y.F., Wang, C.C., and Yang, W.L. (2011) Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem., 21 (25), 9239–9247.