FISH
Graeme N. Forrest
Portland Veterans Affairs Medical Center and Oregon Health and Science University, Department of Infectious Diseases, 3710 SW US Veterans Hospital Rd, P3-ID, Portland, OR 97239, USA
Search for more papers by this authorJwan Mohammadi
Oregon Health and Science University, Department of Infectious Diseases, 3181 SW Sam Jackson Park Rd, L-457, Portland, OR 97239, USA
Search for more papers by this authorShahrzad Mohammadi
Portland Veterans Affairs Medical Center and Oregon Health and Science University, Department of Infectious Diseases, 3710 SW US Veterans Hospital Rd, P3-ID, Portland, OR 97239, USA
Search for more papers by this authorGraeme N. Forrest
Portland Veterans Affairs Medical Center and Oregon Health and Science University, Department of Infectious Diseases, 3710 SW US Veterans Hospital Rd, P3-ID, Portland, OR 97239, USA
Search for more papers by this authorJwan Mohammadi
Oregon Health and Science University, Department of Infectious Diseases, 3181 SW Sam Jackson Park Rd, L-457, Portland, OR 97239, USA
Search for more papers by this authorShahrzad Mohammadi
Portland Veterans Affairs Medical Center and Oregon Health and Science University, Department of Infectious Diseases, 3710 SW US Veterans Hospital Rd, P3-ID, Portland, OR 97239, USA
Search for more papers by this authorJürgen Popp
Prof. Dr.
Friedrich-Schiller University Jena and Abbe Center of Photonics, Institute of Physical Chemistry, Helmholtzweg 4, 07743 Jena, Germany
Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745 Jena, Germany
Search for more papers by this authorMichael Bauer
Prof. Dr.
Jena University Hospital, Department of Anesthesiology and Intensive Care Medicine, Germany
Center for Sepsis Control and Care (CSCC), Erlanger Allee 101, 07747 Jena, Germany
Search for more papers by this authorSummary
Fluorescence in situ hybridization (FISH) probes were first developed to locate the positions of specific DNA sequences on chromosomes. This chapter presents the current FISH tests that are available, their future directions, and their role and impact in clinical practice and patient care. Despite FISH tests being commercially available for almost a decade now, there remains very little prospective clinical data on the impact of these tests in the literature. There are currently two commercially available FISH techniques available for microbiology laboratories namely peptide nucleic acid fluorescence in situ hybridization (PNA FISH) and molecular beacons-based (bbFISH). There is now over a decade's clinical data on the use of PNA FISH in the clinical setting with different pathogens and countries. Most of the data is with blood stream infections, but increasingly there is new data on its use from other sites of infection.
References
- Gall, J.G. and Pardue, M.L. (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl. Acad. Sci. U.S.A., 63, 378–383.
- Rudkin, G.T. and Stollar, B.D. (1977) High resolution detection of DNA-RNA hybrids in situ by indirect immunofluorescence. Nature, 265, 472–473.
- Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev., 51, 221–271.
- Williams, B., Stender, H., and Coull, J.M. (2012) in Peptide Nucleic Acids: Methods and Protocols, Methods in Molecular Biology, 208th edn (ed. P.R. Nielsen), United States, Totowa, NJ, pp. 181–193.
- Forrest, G.N. (2007) PNA FISH: present and future impact on patient management. Expert Rev. Mol. Diagn., 7, 231–236.
- Peters, R.P., van Agtmael, M.A., Simoons-Smit, A.M., Danner, S.A., Vandenbroucke-Grauls, C.M., and Savelkoul, P.H. (2006) Rapid identification of pathogens in blood cultures with a modified fluorescence in situ hybridization assay. J. Clin. Microbiol., 44, 4186–4188.
- Stender, H. (2003) PNA FISH: an intelligent stain for rapid diagnosis of infectious diseases. Expert Rev. Mol. Diagn., 3, 649–655.
- Oliveira, K., Haase, G., Kurtzman, C., Hyldig-Nielsen, J.J., and Stender, H. (2001) Differentiation of Candida albicans and Candida dubliniensis by fluorescent in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol., 39, 4138–4141.
- Stender, H., Mollerup, T.A., Lund, K., Petersen, K.H., Hongmanee, P., and Godtfredsen, S.E. (1999) Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes. Int. J. Tuberc. Lung Dis., 3, 830–837.
- Morgan, M.A., Marlowe, E., Novak-Weekly, S., Miller, J.M., Painter, T.M., Salimnia, H., and Crystal, B. (2011) A 1.5 hour procedure for identification of Enterococcus Species directly from blood cultures. J. Vis. Exp., 48, 2616.
- Deck, M.K., Anderson, E.S., Buckner, R.J., Colasante, G., Coull, J.M., Crystal, B., Della-Latta, P., Fuchs, M., Fuller, D., Harris, W., Hazen, K., Klimas, L.L., Lindao, D., Meltzer, M.C., Morgan, M., Shepard, J., Stevens, S., Wu, F., and Fiandaca, M.J. (2012) Multicenter evaluation of the Staphylococcus QuickFISH method for simultaneous identification of Staphylococcus aureus and coagulase-negative staphylococci directly from blood culture bottles in less than 30 minutes. J. Clin. Microbiol., 50, 1994–1998.
- Della-Latta, P., Whittier, S., and Wu, F. (2008) Impact of rapid identification of C. albicans and C. glabrata directly from blood cultures using PNA FISH technology on selection of antifungal therapy. ECCMID, 18th Annual Meeting, Barcelona, Spain, April 19–22, 2008.
- Della-Latta, P., Salimnia, H., Painter, T., Wu, F., Procop, G.W., Wilson, D.A., Gillespie, W., Mender, A., and Crystal, B.S. (2011) Identification of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa in blood cultures: a multicenter performance evaluation of a three-color peptide nucleic acid fluorescence in situ hybridization assay. J. Clin. Microbiol., 49, 2259–2261.
- Wilson, D.A., Hall, G.S., and Procop, G.W. (2010) Detection of group B Streptococcus bacteria in LIM enrichment broth by peptide nucleic acid fluorescent in situ hybridization (PNA FISH) and rapid cycle PCR. J. Clin. Microbiol., 48, 1947–1948.
- Oliveira, K., Procop, G.W., Wilson, D., Coull, J., and Stender, H. (2002) Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol., 40, 247–251.
- Chapin, K. and Musgnug, M. (2003) Evaluation of three rapid methods for the direct identification of Staphylococcus aureus from positive blood cultures. J. Clin. Microbiol., 41, 4324–4327.
- Gonzalez, V., Padilla, E., Gimenez, M., Vilaplana, C., Perez, A., Fernandez, G., Quesada, M.D., Pallares, M.A., and Ausina, V. (2004) Rapid diagnosis of Staphylococcus aureus bacteremia using S. aureus PNA FISH. Eur. J. Clin. Microbiol. Infect. Dis., 23, 396–398.
- Morgan, M., Marlowe, E., Della-Latta, P., Salimnia, H., Novak-Weekley, S., Wu, F., and Crystal, B.S. (2010) Multicenter evaluation of a new shortened peptide nucleic acid fluorescence in situ hybridization procedure for species identification of select Gram-negative bacilli from blood cultures. J. Clin. Microbiol., 48, 2268–2270.
- Hartmann, H., Stender, H., Schafer, A., Autenrieth, I.B., and Kempf, V.A. (2005) Rapid identification of Staphylococcus aureus in blood cultures by a combination of fluorescence in situ hybridization using peptide nucleic acid probes and flow cytometry. J. Clin. Microbiol., 43, 4855–4857.
- Kempf, V.A., Mandle, T., Schumacher, U., Schafer, A., and Autenrieth, I.B. (2005) Rapid detection and identification of pathogens in blood cultures by fluorescence in situ hybridization and flow cytometry. Int. J. Med. Microbiol., 295, 47–55.
- Azevedo, N.F., Jardim, T., Almeida, C., Cerqueira, L., Almeida, A.J., Rodrigues, F., Keevil, C.W., and Vieira, M.J. (2011) Application of flow cytometry for the identification of Staphylococcus epidermidis by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) in blood samples. Antonie Van Leeuwenhoek, 100, 463–470.
- Trnovsky, J., Merz, W., Della-Latta, P., Wu, F., Arendrup, M.C., and Stender, H. (2008) Rapid and accurate identification of Candida albicans isolates by use of PNA FISHFlow. J. Clin. Microbiol., 46, 1537–1540.
- Tyagi, S. and Kramer, F.R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol., 14, 303–308.
- Neuhausen, N., Thrippleton, I., Von Stein, W., Stange, M., Pfeffer, K., and MacKenzie, C.R. (2010) Beacon-Based Fluorescent in-situ Hybridisation (bbFISH) for the Identification of Common Bacterial Pathogens from Blood Cultures in 30 minutes.
- Lo Cascio, G., Parisato, M., Casotto, F., Mainardi, R., and Fontana, R. (2012) Direct Identification Of Major Blood Culture Pathogens by Lucesco Bacteraemia I and II Panel, a Beacon Based FISH Identification, ECCMID, 22nd Annual Meeting, London, UK, March 31–April 2, No. 1795.
- Bloemeke, E., Thrippleton, I., Von Stein, W., Stange, M., Pfeffer, K., and MacKenzie, C.R. (2010) Rapid Identification of Pathogens Causing Healthcare-Associated Pneumonia (HCAP) Directly in Respiratory Secretions from ICU Patients by Beacon-Based FISH (bbFISH), p. 778.
- Forrest, G.N., Mehta, S., Weekes, E., Lincalis, D.P., Johnson, J.K., and Venezia, R.A. (2006) Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J. Antimicrob. Chemother., 58, 154–158.
- Poppert, S., Riecker, M., Wellinghausen, N., Frickmann, H., and Essig, A. (2010) Accelerated identification of Staphylococcus aureus from blood cultures by a modified fluorescence in situ hybridization procedure. J. Med. Microbiol., 59, 65–68.
- Hensley, D.M., Tapia, R., and Encina, Y. (2009) An evaluation of the advandx Staphylococcus aureus/CNS PNA FISH assay. Clin. Lab. Sci., 22, 30–33.
- Morgan, M., Dierboghossian, A., and Youssef, E. (2008) Rapid PNA FISH protocol modification for detection of staphylococci. American Society of Microbiology 108th Annual Meeting, Boston, MA, June 1–5, 2008. No 2456.
- Leerbeck, L. and Schroder, D. (2012) Rapid QuickFISH compared to standard PNA FISH for identification of S. aureus and CNS. ECCMID, 22nd Annual Meeting, London, UK, March 31–April 2, 2012. No 1499.
- Wu, F., Whittler, S., Fiandaca, M., Crystal, B., and Della-Latta, P. (2012) 20-minute identification of enterococci and Staphylococcus aureus causing bloodstream infections by QuickFISH™, a novel assay based on PNA technology. ECCMID, 22nd Annual Meeting, London, UK, March 31–April 2, 2012, No. 2373.
- Kummerfeldt, B., Mortensen, A., Stevens, S., Oliveira, K., and Rasmussen, A.K. (2012) Identification of methicillin-resistant staphylococci by PNA FISH directly on smears made from positive blood cultures from EU and USA. ECCMID, 22nd Annual Meeting, London, UK, March 31–April 2, 2012, No. 2374.
- Rasmussen, A.K., Johansen, H.K., Kummerfeldt, B., Mortensen, A., Bay, L., and Stender, H. (2010) Identification of methicillin-resistant staphylococci by PNA FISH directly from positive blood cultures. ECCMID, 20nd Annual Meeting, Vienna, Austria, April 10–13, 2010, No. 903.
- Ly, T., Gulia, J., Pyrgos, V., Waga, M., and Shoham, S. (2008) Impact upon clinical outcomes of translation of PNA FISH-generated laboratory data from the clinical microbiology bench to bedside in real time. Ther. Clin. Risk Manage., 4, 637–640.
- Huang, B., Wallace, M.R., and DeRyke, C.A. (2010) Peptide nucleic acid fluorescence in-situ hybridization (PNA FISH) for rapid diagnosis of staphylococcal bacteremia – outcomes in a large teaching hospital. Infectious Diseases Society of America 48th Annual Meeting, Vancouver, BC, Canada, October 21–24, 2010. No 1023.
- Jensen, U.S. and Knudson, J.D. (2011) Clinical consequences of using PNA FISH. ECCMID, 21st Annual Meeting, Milan, Italy, May 7–10, 2011. No 1302.
- Schweizer, M.L., Furuno, J.P., Harris, A.D., Johnson, J.K., Shardell, M.D., McGregor, J.C., Thom, K.A., Sakoulas, G., and Perencevich, E.N. (2010) Empiric antibiotic therapy for Staphylococcus aureus bacteremia may not reduce in-hospital mortality: a retrospective cohort study. PLoS ONE, 5, e11432.
- Hermsen, E.D., Shull, S.S., Klepser, D.G., Iwen, P.C., Armbrust, A., Garrett, J., Freifeld, A.G., and Rupp, M.E. (2008) Pharmacoeconomic analysis of microbiologic techniques for differentiating staphylococci directly from blood culture bottles. J. Clin. Microbiol., 46, 2924–2929.
- Holtzman, C., Whitney, D., Barlam, T., and Miller, N.S. (2011) Assessment of impact of peptide nucleic acid fluorescence in situ hybridization for rapid identification of coagulase-negative staphylococci in the absence of antimicrobial stewardship intervention. J. Clin. Microbiol., 49, 1581–1582.
- Chapin, K., Musgnug, M., Oliveira, K., De Girolami, P.C., Dakos, J., Johansen, J., Procop, G.W., Wilson, D., Padilla, E., Gonzalez, V., and Stender, H. (2003) Multicenter evaluation of E. faecalis PNA FISH for rapid identification and differentiation of Enterococcus faecalis and other enterococcus species directly from positive blood cultures. American Society of Microbiology 103rd Annual Meeting, Washington, DC, May 18–23, 2003, No. 1345.
- Novak-Weekly, S., LaForga, M., Carey, L., and Frazier, L. (2006) Validation of S. aureus PNA FISH, E. faecalis PNA FISH & C. albicans PNA FISH for rapid identification of positive blood culture bottles. American Society of Microbiology 106th Annual Meeting, Orlando, FL, May 21–25, 2006.
- Fiandaca, M., Deck, M.K., Coull, J.M., Klimas, L.L., Fuchs, M., Della-Latta, P., Wu, F., Colasante, G., Lindao, D., Hazen, K., Fuller, D., Buckner, R.J., and Morgan, M. (2012) A multi-center evaluation of Enterococcus QuickFISH for the identification of Enterococcus species directly from positive blood culture bottles. American Society of Microbiology 112th Annual Meeting, San Francisco, CA, June 16–19, 2012, No. 92.
- Meyer, E., Schwab, F., Gastmeier, P., Rueden, H., and Daschner, F.D. (2006) Surveillance of antimicrobial use and antimicrobial resistance in German intensive care units (SARI): a summary of the data from 2001 through 2004. Infection, 34, 303–309.
- Hedrick, T.L. and Sawyer, R.G. (2005) Health-care-associated infections and prevention. Surg. Clin. North Am., 85, 1137–1152, ix.
- Forrest, G.N., Roghmann, M.C., Toombs, L.S., Johnson, J.K., Weekes, E., Lincalis, D.P., and Venezia, R.A. (2008) Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier effective antimicrobial therapy. Antimicrob. Agents Chemother., 52, 3558–3563.
- Gamage, D.C., Olson, D.P., Stickell, L.H., Matthias, K.R., Tuttle, E.C., Johnson, D.R., Valentino, C., Nix, D.E., Whitfield, N.N., and Wolk, D.M. (2011) Significant decreases in mortality and hospital costs after laboratory testing with PNA FISH. ICAAC, 51st Annual Meeting, Chicago, IL, September 11–15, 2011, No. 1302.
- Schilling, A., Neuner, E., Sekeres, J., Yeh, J.Y., Shrestha, N., and Hall, G. (2010) Impact of implementation of enterococcal peptide nucleic acid in situ hybridization (PNA FISH) on antimicrobial usage. Infectious Diseases Society of America 48th Annual Meeting, Vancouver, BC, Canada, October 21–24, 2010, No. 1024.
- Raglio, A., Serna Ortega, P., Arosio, M., Vailati, F., Passera, M., Masini, G., Bombana, E., and Grigis, A. (2012) Will the rapid microbiological identification of positive blood cultures by PNA FISH induce the clinician to correct an empiric therapy? ECCMID, 22nd Annual Meeting, London, UK, March 31–April 2, 2012, No. 1498.
- Sogaard, M., Stender, H., and Schonheyder, H.C. (2005) Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J. Clin. Microbiol., 43, 1947–1949.
- Sogaard, M., Hansen, D.S., Fiandaca, M.J., Stender, H., and Schonheyder, H.C. (2007) Peptide nucleic acid fluorescence in situ hybridization for rapid detection of Klebsiella pneumoniae from positive blood cultures. J. Med. Microbiol., 56, 914–917.
- Leerbeck, L. and Hansen, D.S. (2011) Evaluation of the new GNR traffic light PNA FISH fluorescence in situ hybridisation probes for rapid same-day identification of Gram-negative rods from positive blood culture bottles. ECCMID, 21st Annual Meeting, Milan, Italy, May 7–10, 2011, No. 2442.
- Morgan, M., Deck, M.K., Anderson, E.S., Coull, J.M., Fiandaca, M.J., Della-Latta, P., Wu, F., Hazen, K., Deanna, F., and Buckner, R.J. (2012) Multicenter evaluation of gram-negative QuickFISH for rapid identification of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa directly from blood cultures. American Society of Microbiology 112th Annual Meeting, San Francisco, CA, June 16–19, 2012, No. 1711.
- Hartzen, S.H. and Colding, H. (2011) The impact of rapid identification with PNA FISH® of selected bacteria and yeasts from blood cultures on antibiotic treatment and clinical advice: a cross-sectional study of 123 episodes of bacteraemia in 118 patients. ECCMID, 21st Annual Meeting, Milan, Italy, May 7–10, 2011, p. 1905.
- Peleg, A.Y., Tilahun, Y., Fiandaca, M.J., D'Agata, E.M., Venkataraman, L., Moellering, R.C. Jr. and Eliopoulos, G.M. (2009) Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa. J. Clin. Microbiol., 47, 830–832.
- Wong, E.H., Subramaniam, G., Navaratnam, P., and Sekaran, S.D. (2007) Rapid detection of non-enterobacteriaceae directly from positive blood culture using fluorescent in situ hybridization. Indian J. Med. Microbiol., 25, 391–394.
- Almeida, C., Azevedo, N.F., Bento, J., Vieira, M.J., and Keevil, C.W. (2011) Development of a rapid method for Proteus spp. detection in urine by peptide nucleic acid fluorescence in situ hybridisation (PNA). ECCMID, 21st Annual Meeting, Milan, Italy, May 7–10, 2011, No. 1896.
- Almeida, C., Azevedo, N.F., Fernandes, R.M., Keevil, C.W., and Vieira, M.J. (2010) Fluorescence in situ hybridization method using a peptide nucleic acid probe for identification of Salmonella spp. in a broad spectrum of samples. Appl. Environ. Microbiol., 76, 4476–4485.
- Wellinghausen, N., Wirths, B., and Poppert, S. (2006) Fluorescence in situ hybridization for rapid identification of Achromobacter xylosoxidans and Alcaligenes faecalis recovered from cystic fibrosis patients. J. Clin. Microbiol., 44, 3415–3417.
- Wellinghausen, N., Kothe, J., Wirths, B., Sigge, A., and Poppert, S. (2005) Superiority of molecular techniques for identification of gram-negative, oxidase-positive rods, including morphologically nontypical Pseudomonas aeruginosa, from patients with cystic fibrosis. J. Clin. Microbiol., 43, 4070–4075.
- Garey, K.W., Rege, M., Pai, M.P., Mingo, D.E., Suda, K.J., Turpin, R.S., and Bearden, D.T. (2006) Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin. Infect. Dis., 43, 25–31.
- Ben-Ami, R., Weinberger, M., Orni-Wasserlauff, R., Schwartz, D., Itzhaki, A., Lazarovitch, T., Bash, E., Aharoni, Y., Moroz, I., and Giladi, M. (2008) Time to blood culture positivity as a marker for catheter-related candidemia. J. Clin. Microbiol., 46, 2222–2226.
- Klevay, M.J., Ernst, E.J., Hollanbaugh, J.L., Miller, J.G., Pfaller, M.A., and Diekema, D.J. (2008) Therapy and outcome of Candida glabrata versus Candida albicans bloodstream infection. Diagn. Microbiol. Infect. Dis., 60, 273–277.
- Garey, K.W., Turpin, R.S., Bearden, D.T., Pai, M.P., and Suda, K.J. (2007) Economic analysis of inadequate fluconazole therapy in non-neutropenic patients with candidaemia: a multi-institutional study. Int. J. Antimicrob. Agents, 29, 557–562.
- Forrest, G.N., Weekes, E., and Johnson, J.K. (2007) Increasing incidence of Candida parapsilosis candidemia with caspofungin usage. J. Infect., 56, 126–129.
-
Forrest, G.N. (2008) Early diagnosis of blood culture isolates in patients with candidemia using PNA FISH. Curr. Fungal Infect. Rep., 2, 221–226.
10.1007/s12281-008-0032-0 Google Scholar
- Forrest, G.N., Mankes, K., Jabra-Rizk, M.A., Weekes, E., Johnson, J.K., Lincalis, D.P., and Venezia, R.A. (2006) Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J. Clin. Microbiol., 44, 3381–3383.
- Alexander, B.D., Ashley, E.D., Reller, L.B., and Reed, S.D. (2006) Cost savings with implementation of PNA FISH testing for identification of Candida albicans in blood cultures. Diagn. Microbiol. Infect. Dis., 54, 277–282.
- Heil, E.L., Daniels, L.M., Long, D.M., Rodino, K.G., Weber, D.J., and Miller, M.B. (2012) Impact of a rapid peptide nucleic acid fluorescence in situ hybridization assay on treatment of Candida infections. Am. J. Health Syst. Pharm., 69, 1910–1914.
- Farina, C., Perin, S., Andreoni, S., Conte, M., Fazii, P., Lombardi, G., Manso, E., Morazzoni, C., and Sanna, S. (2012) Evaluation of the peptide nucleic acid fluorescence in situ hybridisation technology for yeast identification directly from positive blood cultures: an Italian experience. Mycoses, 55, 388–392.
- Davis, J.C., Reynolds, D.C., Wallace, M.R., Hoover, V.J., and DeRyke, C.A. (2011) Evaluating the impact of peptide nucleic acid fluorescent in-situ hybridization (PNA FISH) yeast traffic light assay for the management of candidemia. ICAAC, 51st Annual Meeting, Chicago, IL, September 11–15, 2011, No. 1211.
- Rigby, S., Procop, G.W., Haase, G., Wilson, D., Hall, G., Kurtzman, C., Oliveira, K., Von, O.S., Hyldig-Nielsen, J.J., Coull, J., and Stender, H. (2002) Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J. Clin. Microbiol., 40, 2182–2186.
- Jabra-Rizk, M.A., Johnson, J.K., Forrest, G., Mankes, K., Meiller, T.F., and Venezia, R.A. (2005) Prevalence of Candida dubliniensis fungemia at a large teaching hospital. Clin. Infect. Dis., 41, 1064–1067.
- Stevens, S., Shepard, J., Stender, H., Fiandaca, M., and Oliveira, K. (2011) Resolution of C. albicans identification discrepancies using a C. dubliniensis specific PNA probe. ECCMID, 21st Annual Meeting, Milan, Italy, May 7–10, 2011, No. 1945.
- Shepard, J.R., Addison, R.M., Alexander, B.D., Della-Latta, P., Gherna, M., Haase, G., Hall, G., Johnson, J.K., Merz, W.G., Peltroche-Llacsahuanga, H., Stender, H., Venezia, R.A., Wilson, D., Procop, G.W., Wu, F., and Fiandaca, M.J. (2008) Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J. Clin. Microbiol., 46, 50–55.
- Carroll, M.A. and Carver, P. (2009) Impact of the addition of peptide nucleic acid fluorescence in situ hybridization (PNA FISH) to fluconazole susceptibility testing on time to appropriate antifungal therapy for Candida blood stream infections at the University of Michigan Health System. ASHP Mid Year Meeting, Las Vegas, NV, December 6–9, 2009, No. 8-103.
- Rush, T. and Verma, P. (2011) Do rapid results with the C. albicans/C. glabrata PNA FISH assay have an impact on patient management? A community hospital experience. American Society of Microbiology 111th Annual Meeting, New Orleans, LA, May 21–24, 2011, No. 2563.
- Shepard, J.R., Merz, W., Gherna, M., Hall, G., Wilson, D., Procop, G.W., and Fiandaca, M. (2008) Evaluation of yeast traffic light PNA FISH for detection of high prevalence Candida species. American Society of Microbiology 107th Annual Meeting, Toronto, ON, Canada, May 21–25, 2007, No. 27.
- Wu, F., Whittler, S., and Della-Latta, P. (2007) Tri-color PNA FISH detection of five Candida species directly from positive blood culture bottles. ECCMID, 17th Annual Meeting, Munich, Germany, March 30–April 3, 2007, No. 1419.
- Hall, L., Le Febre, K.M., Deml, S.M., Wohlfiel, S.L., and Wengenack, N.L. (2012) Evaluation of the yeast traffic light PNA FISH probes for identification of Candida species from positive blood cultures. J. Clin. Microbiol., 50, 1446–1448.
- Humphries, R.M., Wollenberg, P., Lewinski, M.A., and Dien Bard, J. (2010) Rapid identification of five Candida species using yeast traffic light PNA fish. ECCMID, 20th Annual Meeting, Vienna, Austria, April 10–13, 2010, No. 1516.
- Bishop, J.A., Chase, N., Magill, S.S., Kurtzman, C.P., Fiandaca, M.J., and Merz, W.G. (2008) Candida bracarensis detected among isolates of Candida glabrata by peptide nucleic acid fluorescence in situ hybridization: susceptibility data and documentation of presumed infection. J. Clin. Microbiol., 46, 443–446.
- Poppert, S., Nickel, D., Berger, A., Yildiz, T., Kaestner, N., Mauerer, S., and Spellerberg, B. (2009) Rapid identification of beta-hemolytic streptococci by fluorescence in situ hybridization (FISH). Int. J. Med. Microbiol., 299, 421–426.
- Peltroche-Llacsahuanga, H., Fiandaca, M.J., von Oy, S., Lutticken, R., and Haase, G. (2010) Rapid detection of Streptococcus agalactiae from swabs by peptide nucleic acid fluorescence in situ hybridization. J. Med. Microbiol., 59, 179–184.
- Calderaro, A., Martinelli, M., Motta, F., Bennechi, S., Covan, C., and Chezzi, C. (2012) Evaluation of PNA FISH assays for the rapid diagnosis of sepsis and other severe infections, and identification of Streptococcus agalactiae in the screening of pregnant women. ECCMID, 22nd Annual Meeting, London, UK, March 31–April 2, 2012, No. 1794.
- Stender, H., Lund, K., Petersen, K.H., Rasmussen, O.F., Hongmanee, P., Miorner, H., and Godtfredsen, S.E. (1999) Fluorescence in situ hybridization assay using peptide nucleic acid probes for differentiation between tuberculous and nontuberculous mycobacterium species in smears of mycobacterium cultures. J. Clin. Microbiol., 37, 2760–2765.
- Lefmann, M., Schweickert, B., Buchholz, P., Gobel, U.B., Ulrichs, T., Seiler, P., Theegarten, D., and Moter, A. (2006) Evaluation of peptide nucleic acid-fluorescence in situ hybridization for identification of clinically relevant mycobacteria in clinical specimens and tissue sections. J. Clin. Microbiol., 44, 3760–3767.
- Rodriguez-Nunez, J., Avelar, F.J., Marquez, F., Rivas-Santiago, B., Quinones, C., and Guerrero-Barrera, A.L. (2012) Mycobacterium tuberculosis complex detected by modified fluorescent in situ hybridization in lymph nodes of clinical samples. J. Infect. Dev. Ctries., 6, 58–66.
- Tajbakhsh, S., Samarbaf-Zadeh, A.R., and Moosavian, M. (2008) Comparison of fluorescent in situ hybridization and histological method for the diagnosis of Helicobacter pylori in gastric biopsy samples. Med. Sci. Monit., 14, BR183–BR187.
- Cerqueira, L., Fernandes, R.M., Ferreira, R.M., Carneiro, F., Nis-Ribeiro, M., Figueiredo, C., Keevil, C.W., Azevedo, N.F., and Vieira, M.J. (2011) PNA-FISH as a new diagnostic method for the determination of clarithromycin resistance of Helicobacter pylori. BMC Microbiol., 11, 101.
- Splettstoesser, W.D., Seibold, E., Zeman, E., Trebesius, K., and Podbielski, A. (2010) Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA. BMC Microbiol., 10, 72.
- Kenny, J.H., Zhou, Y., Schriefer, M.E., and Bearden, S.W. (2008) Detection of viable Yersinia pestis by fluorescence in situ hybridization using peptide nucleic acid probes. J. Microbiol. Methods, 75, 293–301.
- Alagappan, A., Tujula, N.A., Power, M., Ferguson, C.M., Bergquist, P.L., and Ferrari, B.C. (2008) Development of fluorescent in situ hybridization for Cryptosporidium detection reveals zoonotic and anthroponotic transmission of sporadic cryptosporidiosis in Sydney. J. Microbiol. Methods, 75, 535–539.
- Lemos, V., Graczyk, T.K., Alves, M., Lobo, M.L., Sousa, M.C., Antunes, F., and Matos, O. (2005) Identification and determination of the viability of Giardia lamblia cysts and Cryptosporidium parvum and Cryptosporidium hominis oocysts in human fecal and water supply samples by fluorescent in situ hybridization (FISH) and monoclonal antibodies. Parasitol. Res., 98, 48–53.
- Radwanska, M., Magez, S., Perry-O'Keefe, H., Stender, H., Coull, J., Sternberg, J.M., Buscher, P., and Hyldig-Nielsen, J.J. (2002) Direct detection and identification of African trypanosomes by fluorescence in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol., 40, 4295–4297.