Astonishing Fungal Diversity in Deep-Sea Hydrothermal Ecosystems: An Untapped Resource of Biotechnological Potential?
Gaëtan Burgaud
Université Européenne de Bretagne, Université de Brest, ESMISAB, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Technopole Brest-Iroise, 29280, Plouzané, France
Search for more papers by this authorLaurence Meslet-Cladière
Université Européenne de Bretagne, Université de Brest, ESMISAB, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Technopole Brest-Iroise, 29280, Plouzané, France
Search for more papers by this authorGeorges Barbier
Université Européenne de Bretagne, Université de Brest, ESMISAB, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Technopole Brest-Iroise, 29280, Plouzané, France
Search for more papers by this authorVirginia P. Edgcomb
Woods Hole Oceanographic Institution, Geology and Geophysics Department, Woods Hole, MA, 02543, USA
Search for more papers by this authorGaëtan Burgaud
Université Européenne de Bretagne, Université de Brest, ESMISAB, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Technopole Brest-Iroise, 29280, Plouzané, France
Search for more papers by this authorLaurence Meslet-Cladière
Université Européenne de Bretagne, Université de Brest, ESMISAB, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Technopole Brest-Iroise, 29280, Plouzané, France
Search for more papers by this authorGeorges Barbier
Université Européenne de Bretagne, Université de Brest, ESMISAB, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne (EA3882), IFR 148, Technopole Brest-Iroise, 29280, Plouzané, France
Search for more papers by this authorVirginia P. Edgcomb
Woods Hole Oceanographic Institution, Geology and Geophysics Department, Woods Hole, MA, 02543, USA
Search for more papers by this authorStéphane La Barre
Sorbonne Universités, UPMC Univ Paris 06, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
Search for more papers by this authorJean-Michel Kornprobst
Institut Mer et Littoral,Bâtiment Isomer, 2, rue de la Houssinière, 44322 Nantes, BP 92208,Cedex 3, France
Search for more papers by this authorSummary
Marine fungi have long been considered as exotic microorganisms that fascinate only a very small proportion of scientists. Ecologically important relationships between marine fungi from open oceans or coastal waters and other organisms have been clearly demonstrated. However, the diversity, ecological role(s) and biotechnological potential of fungal communities from deep-sea marine extreme environments such as hydrothermal vents are far from being resolved. Based on data from recent surveys, hydrothermal vents have emerged as oases of life for fungi, with unexpected communities revealed by culture-independent and culture-based methods, in addition to newly described species that can adapt specifically to deep-sea conditions. As the natural product chemolibraries from marine fungi continue to expand rapidly, it can be hypothesized that an extensive exploration of fungi from extreme environments – and in particular from deep-sea hydrothermal vents – will cause the current catalog of natural products to be dramatically enriched with novel active biomolecules.
References
- Amnuaykanjanasin, A., Phonghanpot, S., Sengpanich, N., Cheevadhanarak, S., and Tanticharoen, M. (2009) Insect-specific polyketide synthases (PKSs), potential PKS-nonribosomal peptide synthetase hybrids, and novel PKS clades in tropical fungi. Appl. Environ. Microbiol., 75, 3721–3732.
- Amnuaykanjanasin, A., Punya, J., Paungmoung, P., Rungrod, A., Tachaleat, A., Pongpattanakitshote, S., Cheevadhanarak, S., and Tanticharoen, M. (2005) Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC 1067. FEMS Microbiol. Lett., 251, 125–136.
- Barghoorn, E.S. and Linder, D.H. (1944) Marine fungi: their taxonomy and biology. Farlowia, 1, 395–467.
- Bass, D., Howe, A., Brown, N., Barton, H., Demidova, M., Michelle, H., Li, L., Sanders, H., Watkinson, S.C., Willcock, S. et al. (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc. Biol. Sci., 274, 3069–3077.
- Beaulieu, S.E. (2010) InterRidge Global Database of Active Submarine Hydrothermal Vent Fields: prepared for InterRidge, Version 2.0.
- Bhakuni, D.S. and Rawat, D.S. (2010) Bioactive Marine Natural Products, Springer.
- Bhatnagar, I. and Kim, S.K. (2012) Pharmacologically prospective antibiotic agents and their sources: a marine microbial perspective. Environ. Toxicol. Pharmacol., 34, 631–643.
-
Bris, N. and
Gaill, F.
(2007)
How does the annelid Alvinella pompejana deal with an extreme hydrothermal environment? in
Life in Extreme Environments
(eds R. Amils,
C. Ellis-Evans, and
H. Hinghofer-Szalkay),
Springer,
Netherlands, pp.
315–339.
10.1007/978-1-4020-6285-8_20 Google Scholar
- Burgaud, G., Woehlke, S., Rédou, V., Orsi, W., Beaudoin, D., Barbier, G., Biddle, J.F., and Edgcomb, V.P. (2013) Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat. Microb. Ecol., 70, 45–62.
- Burgaud, G., Arzur, D., Durand, L., Cambon-Bonavita, M.A., and Barbier, G. (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol. Ecol., 73, 121–133.
- Burgaud, G., Arzur, D., Sampaio, J.P., and Barbier, G. (2011) Candida oceani sp. nov., a novel yeast isolated from a Mid-Atlantic Ridge hydrothermal vent (−2300 meters). Antonie Van Leeuwenhoek, 100, 75–82.
- Burgaud, G., Le Calvez, T., Arzur, D., Vandenkoornhuyse, P., and Barbier, G. (2009) Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ. Microbiol., 11, 1588–1600.
- Campbell, J., Volkmann-Kohlmeyer, B., Grafenhan, T., Spatafora, J.W., and Kohlmeyer, J. (2005) A re-evaluation of Lulworthiales: relationships based on 18S and 28S rDNA. Mycol. Res., 109, 556–568.
- Cavanaugh, C.M., Levering, P.R., Maki, J.S., Mitchell, R., and Lidstrom, M.E. (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature, 325, 346–348.
- Corliss, J.B., Dymond, J., Gordon, L.I., Edmond, J.M., von Herzen, R.P., Ballard, R.D., Green, K., Williams, D., Bainbridge, A., Crane, K. et al. (1979) Submarine thermal springs on the Galapagos rift. Science, 203, 1073–1083.
- Coyne, K.J., Countway, P.D., Pilditch, C.A., Lee, C.K., Caron, D.A., and Cary, S.C. (2013) Diversity and distributional patterns of ciliates in Guaymas Basin hydrothermal vent sediments. J. Eukaryot. Microbiol., 60, 433–447.
- Damare, S., Singh, P., and Raghukumar, S. (2012) Biotechnology of marine fungi. Prog. Mol. Subcell Biol., 53, 277–297.
- Desbruyères, D., Almeida, A., Biscoito, M., Comtet, T., Khripounoff, A., Le Bris, N., Sarradin, P.M., and Segonzac, M. (2000) A review of the distribution of hydrothermal vent communities along the northern Mid-Atlantic Ridge: dispersal vs. environmental controls. Hydrobiologia, 440, 201–216.
- Desbruyères, D., Biscoito, M., Caprais, J.C., Colaço, A., Comtet, T., Crassous, P., Fouquet, Y., Khripounoff, A., Le Bris, N., Olu, K. et al. (2001) Variations in deep-sea hydrothermal vent communities on the Mid-Atlantic Ridge near the Azores plateau. Deep Sea Res. Part I: Oceanographic Research Papers, 48, 1325–1346.
- Desbruyères, D., Chevaldonné, P., Alayse, A.M., Jollivet, D., Lallier, F.H., Jouin-Toulmond, C., Zal, F., Sarradin, P.M., Cosson, R., Caprais, J.C. et al. (1998) Biology and ecology of the “Pompeii worm” (Alvinella pompejana Desbruyères and Laubier), a normal dweller of an extreme deep-sea environment: A synthesis of current knowledge and recent developments. Deep Sea Res. Part II: Topical Studies in Oceanography, 45, 383–422.
- Duperron, S., Bergin, C., Zielinski, F., Blazejak, A., Pernthaler, A., McKiness, Z.P., DeChaine, E., Cavanaugh, C.M., and Dubilier, N. (2006) A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ. Microbiol., 8, 1441–1447.
- Dupont, J., Magnin, S., Rousseau, F., Zbinden, M., Frebourg, G., Samadi, S., de Forges, B.R., and Jones, E.B. (2009) Molecular and ultrastructural characterization of two ascomycetes found on sunken wood off Vanuatu islands in the deep Pacific ocean. Mycol. Res., 113, 1351–1364.
- Durand, L., Zbinden, M., Cueff-Gauchard, V., Duperron, S., Roussel, E.G., Shillito, B., and Cambon-Bonavita, M.A. (2010) Microbial diversity associated with the hydrothermal shrimp Rimicaris exoculata gut and occurrence of a resident microbial community. FEMS Microbiol. Ecol., 71, 291–303.
- Edgcomb, V.P., Beaudoin, D., Gast, R., Biddle, J.F., and Teske, A. (2011) Marine subsurface eukaryotes: the fungal majority. Environ. Microbiol., 13, 172–183.
- Edgcomb, V.P., Kysela, D.T., Teske, A., de Vera Gomez, A., and Sogin, M.L. (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc. Natl Acad. Sci. USA, 99, 7658–7662.
- Fernandes, P.M., Domitrovic, T., Kao, C.M., and Kurtenbach, E. (2004) Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostatic pressure. FEBS Lett., 556, 153–160.
- Flores, G.E., Campbell, J.H., Kirshtein, J.D., Meneghin, J., Podar, M., Steinberg, J.I., Seewald, J.S., Tivey, M.K., Voytek, M.A., Yang, Z.K. et al. (2011) Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge. Environ. Microbiol., 13, 2158–2171.
- Gadanho, M. and Sampaio, J.P. (2005) Occurrence and diversity of yeasts in the mid-Atlantic ridge hydrothermal fields near the Azores Archipelago. Microb. Ecol., 50, 408–417.
-
German, C.R. and
Von Damm, K.L.
(2003)
6. 07 – Hydrothermal Processes, in
Treatise on Geochemistry,
(Editors-in-Chief: D.H. Heinrich and
K.T. Karl),
Pergamon,
Oxford, pp.
181–222.
10.1016/B0-08-043751-6/06109-0 Google Scholar
- Grzymski, J.J., Murray, A.E., Campbell, B.J., Kaplarevic, M., Gao, G.R., Lee, C., Daniel, R., Ghadiri, A., Feldman, R.A., and Cary, S.C. (2008) Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. Proc. Natl Acad. Sci. USA, 105, 17516–17521.
- Gutiérrez, M.H., Pantoja, S., Tejos, E., and Quiñones, R.A. (2011) The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar. Biol., 158, 205–219.
- Hughes, G.C. (1974) Geographical distribution of the higher marine fungi. Veröff Inst. Meeresforsch. Bremerh., 5, 419–441.
- Hugler, M., Petersen, J.M., Dubilier, N., Imhoff, J.F., and Sievert, S.M. (2011) Pathways of carbon and energy metabolism of the epibiotic community associated with the deep-sea hydrothermal vent shrimp Rimicaris exoculata . PLoS ONE, 6, e16018.
- Hyde, K., Jones, E.B.G., Leaño, E., Pointing, S., Poonyth, A., and Vrijmoed, L.P. (1998) Role of fungi in marine ecosystems. Biodivers. Conserv., 7, 1147–1161.
- Jannasch, H.W. and Taylor, C.D. (1984) Deep-sea microbiology. Annu. Rev. Microbiol., 38, 487–514.
- Johnson, T. and Sparrow, F. (1961) Fungi in Oceans and Estuaries, W. J. Cramer, New York.
- Jones, E.B.G. (2011) Fifty years of marine mycology. Fungal Divers., 50, 73–112.
- Jones, E.B.G. (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers., 4, 53–73.
- Jones, M.D., Forn, I., Gadelha, C., Egan, M.J., Bass, D., Massana, R., and Richards, T.A. (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature, 474, 200–203.
- Jorgensen, B.B. and Boetius, A. (2007) Feast and famine-microbial life in the deep-sea bed. Nat. Rev. Microbiol., 5, 770–781.
- Kohlmeyer, J. and Kohlmeyer, E. (1979) Marine Mycology: The Higher Fungi, Academic Press, New York, p. 690.
- Kubanek, J., Jensen, P.R., Keifer, P.A., Sullards, M.C., Collins, D.O., and Fenical, W. (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc. Natl Acad. Sci. USA, 100, 6916–6921.
- Küpper, F., Maier, I., Müller, D.G., Loiseaux-de Goer, S., and Guillou, L. (2006) Phylogenetic affinities of two eukaryotic pathogens of marine macroalgae, Eurychasma dicksonii (Wright) Magnus and Chrystridium polysiphoniae Cohn. Cryptoga. Algol., 27, 165–184.
- Lauro, F.M. and Bartlett, D.H. (2008) Prokaryotic lifestyles in deep sea habitats. Extremophiles, 12, 15–25.
- Le Calvez, T., Burgaud, G., Mahe, S., Barbier, G., and Vandenkoornhuyse, P. (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol., 75, 6415–6421.
- Lin, Z., Zhu, T., Fang, Y., Gu, Q., and Zhu, W. (2008) Polyketides from Penicillium sp. JP-1, an endophytic fungus associated with the mangrove plant Aegiceras corniculatum . Phytochemistry, 69, 1273–1278.
- Lopez-Garcia, P., Duperron, S., Philippot, P., Foriel, J., Susini, J., and Moreira, D. (2003) Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol., 5, 961–976.
- Lopez-Garcia, P., Vereshchaka, A., and Moreira, D. (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ. Microbiol., 9, 546–554.
- Ludwig, K.A., Kelley, D.S., Butterfield, D.A., Nelson, B.K., and Früh-Green, G. (2006) Formation and evolution of carbonate chimneys at the Lost City Hydrothermal Field. Geochim. Cosmochim. Acta, 70, 3625–3645.
- Lundberg, K.S., Shoemaker, D.D., Adams, M.W., Short, J.M., Sorge, J.A., and Mathur, E.J. (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus . Gene, 108, 1–6.
- Luther, G.W., Rozan, T.F., Taillefert, M., Nuzzio, D.B., Di Meo, C., Shank, T.M., Lutz, R.A., and Cary, S.C. (2001) Chemical speciation drives hydrothermal vent ecology. Nature, 410, 813–816.
-
Mahé, S.,
Rédou, V.,
Calvez, T.L.,
Vandenkoornhuyse, P., and
Burgaud, G.
(2013)
Fungi in deep-sea environments and metagenomics, in
The Ecological Genomics of Fungi
(ed. F. Martin),
John Wiley & Sons Inc.,
Hoboken, New Jersey.
10.1002/9781118735893.ch15 Google Scholar
- Martin, W., Baross, J., Kelley, D., and Russell, M.J. (2008) Hydrothermal vents and the origin of life. Nat. Rev. Microbiol., 6, 805–814.
- Martins, I., Colaço, A., Dando, P.R., Desbruyères, D., Sarradin, P.M., Marques, J.C., and Serrão-Santos, R. (2008) Size-dependent variations on the nutritional pathway of Bathymodiolus azoricus demonstrated by a C-flux model. Ecol. Model., 217, 59–71.
- Mayer, A.M., Rodriguez, A.D., Berlinck, R.G., and Fusetani, N. (2011) Marine pharmacology in 2007–8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C, Toxicol. Pharmacol., 153, 191–222.
- Mayer, A.M., Rodriguez, A.D., Berlinck, R.G., and Hamann, M.T. (2009) Marine pharmacology in 2005–6: Marine compounds with anthelmintic, antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Biochim. Biophys. Acta, 1790, 283–308.
- Medema, M.H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M.A., Weber, T., Takano, E., and Breitling, R. (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res., 39, W339–W346.
- Minic, Z., Serre, V., and Herve, G. (2006) Adaptation of organisms to extreme conditions of deep-sea hydrothermal vents. C. R. Biol., 329, 527–540.
- Mohamed, D.J. and Martiny, J.B. (2011) Patterns of fungal diversity and composition along a salinity gradient. ISME J., 5, 379–388.
- Nagahama, T., Hamamoto, M., and Horikoshi, K. (2006) Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deep-sea floor of the north-west Pacific Ocean. Int. J. Syst. Evol. Microbiol., 56, 295–299.
- Nagahama, T., Takahashi, E., Nagano, Y., Abdel-Wahab, M.A., and Miyazaki, M. (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ. Microbiol., 13, 2359–2370.
- Nagano, Y., Nagahama, T., Hatada, Y., Nunoura, T., Takami, H., Miyazaki, J., Takai, K., and Horikoshi, K. (2010) Fungal diversity in deep-sea sediments – the presence of novel fungal groups. Fungal. Ecol., 3, 316–325.
- Ōmura, S., Miyadera, H., Ui, H., Shiomi, K., Yamaguchi, Y., Masuma, R., Nagamitsu, T., Takano, D., Sunazuka, T., Harder, A. et al. (2001) An anthelmintic compound, nafuredin, shows selective inhibition of complex I in helminth mitochondria. Proc. Natl Acad. Sci. USA, 98, 60–62.
- Orcutt, B.N., Sylvan, J.B., Knab, N.J., and Edwards, K.J. (2011) Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev., 75, 361–422.
- Orsi, W.D., Edgcomb, V.P., Christman, G.D., and Biddle, J.F. (2013) Gene expression in the deep biosphere. Nature, 499, 205–208.
- Petersen, J.M., Ramette, A., Lott, C., Cambon-Bonavita, M.A., Zbinden, M., and Dubilier, N. (2010) Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environ. Microbiol., 12, 2204–2218.
-
Prieur, D. and
Marteinsson, V.
(1998)
Prokaryotes living under elevated hydrostatic pressure, in
Biotechnology of Extremophiles
(ed. G. Antranikian),
Springer,
Berlin, Heidelberg, pp.
23–35.
10.1007/BFb0102288 Google Scholar
- Rateb, M.E. and Ebel, R. (2011) Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep., 28, 290–344.
- Richards, T.A., Jones, M.D., Leonard, G., and Bass, D. (2012) Marine fungi: their ecology and molecular diversity. Annu. Rev. Mar. Sci., 4, 495–522.
- Rodibart, J.C., Bench, S.R., Feldman, R.A., Novoradovsky, A., Podell, R.A., Gaasterland, T., Allen, E.E., and Felbeck, H. (2008) Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ. Microbiol., 10, 727–737.
- Sauvadet, A.L., Gobet, A., and Guillou, L. (2010) Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ. Microbiol., 12, 2946–2964.
- Schmidt, C., Le Bris, N., and Gaill, F. (2008) Interactions of deep-sea vent invertebrates with their environment: the case of Rimicaris exoculata . J. Shellfish Res., 27, 79–90.
- Schmit, J. and Mueller, G. (2007) An estimate of the lower limit of global fungal diversity. Biodivers. Conserv., 16, 99–111.
- Schultz, A., Delaney, J.R., and McDuff, R.E. (1992) On the partitioning of heat flux between diffuse and point source seafloor venting. J. Geophys. Res., B Solid Earth, 97, 12299–12314.
- Segonzac, M., de Saint Laurent, M., and Casanova, B. (1993) L'énigme du comportement trophique des crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-atlantique. Cah. Biol. Mar., 34, 535–571.
- Shushni, M.A., Mentel, R., Lindequist, U., and Jansen, R. (2009) Balticols A-F, new naphthalenone derivatives with antiviral activity, from an ascomycetous fungus. Chem. Biodivers., 6, 127–137.
- Spatafora, J.W., Volkmann-Kohlmeyer, B., and Kohlmeyer, J. (1998) Independent terrestrial origins of the Halosphaeriales (marine Ascomycota). Am. J. Bot., 85, 1569–1580.
- Thaler, A.D., Van Dover, C.L., and Vilgalys, R. (2012) Ascomycete phylotypes recovered from a Gulf of Mexico methane seep are identical to an uncultured deep-sea fungal clade from the Pacific. Fungal Ecol., 5, 270–273.
- Thomas, T.R., Kavlekar, D.P., and LokaBharathi, P.A. (2010) Marine drugs from sponge-microbe association – a review. Mar. Drugs, 8, 1417–1468.
- Tivey, M.K. (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography, 20, 50–65.
- Trindade-Silva, A.E., Rua, C.P., Andrade, B.G., Vicente, A.C., Silva, G.G., Berlinck, R.G., and Thompson, F.L. (2013) Polyketide synthase gene diversity within the microbiome of the sponge Arenosclera brasiliensis, endemic to the Southern Atlantic Ocean. Appl. Environ. Microbiol., 79, 1598–1605.
- Van Dover, C.L., Ward, M.E., Scott, J.L., Underdown, J., Anderson, B., Gustafson, C., Whalen, M., and Carnegie, R.B. (2007) A fungal epizootic in mussels at a deep-sea hydrothermal vent. Mar. Ecol., 28, 54–62.
- von Cosel, R. (2002) A new species of bathymodioline mussel (Mollusca, Bivalvia, Mytilidae) from Mauritania (West Africa), with comments on the genus Bathymodiolus Kenk & Wilson, 1985. Zoosystema, 24, 259–271.
- Yamada, T., Muroga, Y., and Tanaka, R. (2009) New azaphilones, seco-chaetomugilins A and D, produced by a marine-fish-derived Chaetomium globosum . Mar. Drugs, 7, 249–257.
- Zbinden, M., Bris, N.L., Gaill, F.o., and Compère, P. (2004) Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes. Mar. Ecol. Prog. Ser., 284, 237–251.
- Ziemert, N., Podell, S., Penn, K., Badger, J.H., Allen, E., and Jensen, P.R. (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS ONE, 7, e34064.
- Zobell, C.E. and Morita, R.Y. (1959) Deep-sea bacteria. Galathea Rep., 1, 139–154.
-
Zuccaro, A. and
Mitchell, J.I.
(2005)
Fungal communities of seaweeds, in
The Fungal Community,
3rd edn
(eds J.F. White,
J. Dighton,, and
P. Oudemans),
CRC Press, pp.
533–579.
10.1201/9781420027891.ch27 Google Scholar
- Zuccaro, A., Summerbell, R.C., Gams, W., Schroers, H.J., and Mitchell, J.I. (2004) A new Acremonium species associated with Fucus spp., and its affinity with a phylogenetically distinct marine Emericellopsis clade. Stud. Mycol., 50, 283–297.
- Zuccaro, A., Schulz, B., and Mitchell, J.I. (2003) Molecular detection of ascomycetes associated with Fucus serratus . Mycol. Res., 107, 1451–1466.