Thermodynamics of Pressurized Gas Storage
Vanessa Tietze
Forschungszentrum Jülich GmbH, Institute für Elektrochemische Verfahren, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
Search for more papers by this authorDetlef Stolten
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, IEK-3: Electrochemical Process Engineering, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
Search for more papers by this authorVanessa Tietze
Forschungszentrum Jülich GmbH, Institute für Elektrochemische Verfahren, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
Search for more papers by this authorDetlef Stolten
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, IEK-3: Electrochemical Process Engineering, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
Search for more papers by this authorProf. Dr. Detlef Stolten
Forschungszentrum Jülich GmbH IEK 3: Fuel Cells Leo-Brandt-Str. Jülich 52425 Germany
Search for more papers by this authorDr. Bernd Emonts
Forschungszentrum Jülich GmbH IEK 3: Fuel Cells Leo-Brandt-Str. Jülich 52425 Germany
Search for more papers by this authorSummary
This chapter concentrates on the thermodynamics of pressurized gas storage. The pressure and temperature dependency of the compressibility factor, the Joule-Thomson coefficient, and the real isentropic exponent of hydrogen and methane are examined and compared. These thermodynamic properties are especially important for pressurized gas storage. The chapter then introduces the thermodynamic processes that present borderline cases for compression and expansion. It also demonstrates different calculation methods by applying them to hydrogen and methane. The thermodynamic borderline cases for reversible compression are constituted by the isothermal process resulting in the minimum required work and the isentropic process resulting in the maximum required work. To demonstrate the applicability of the thermodynamic model two different examples were selected. In the first the refueling of a vehicle storage tank is examined and in the second the pressure and temperature change within a salt cavern is analyzed.
References
- Stolten, D., Grube, T., Mergel, J. (2012) Beitrag elektrochemischer Energietechnik zur Energiewende. Innovative Fahrzeugantriebe 2012, VDI-Berichte 2183, 8. VDI-Tagung, 199–215.
- Satyapal, S., Petrovic, J., Read, C. et al. (2007) The U.S. department of energy's national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements. Catal. Today, 120 (3–4), 246–256.
- Jensen, J.O., Vestbø, A.P., Li, Q. et al. (2007) The energy efficiency of onboard hydrogen storage. J. Alloys Compd., 446–447, 723–728.
- Maus, S., Hapke, J., Ranong, C.N. et al. (2008) Filling procedure for vehicles with compressed hydrogen tanks. Int. J. Hydrogen Energy, 33 (17), 4612–4621.
- Farzaneh-Gord, M., Deymi-Dashtebayaz, M., Rahbari, H.R. et al. (2012) Effects of storage types and conditions on compressed hydrogen fuelling stations performance. Int. J. Hydrogen Energy, 37 (4), 3500–3509.
-
Klell, M.
(2010)
Storage of hydrogen in the pure form, in Handbook of Hydrogen Storage: New Materials for Future Energy Storage/
(ed. M. Hirscher),
Wiley-VCH Verlag GmbH,
Weinheim,
1–38.
10.1002/9783527629800.ch1 Google Scholar
-
Eichlseder, H. and
Klell, M.
(2010)
Wasserstoff in der Fahrzeugtechnik Erzeugung, Speicherung, Anwendung,
Vieweg+Teubner Verlag,
Wiesbaden.
10.1007/978-3-8348-9674-2 Google Scholar
- Klell, M., Kindermann, H., and Jogl, C. (2007) Thermodynamics of gaseous and liquid hydrogen storage. Presented at International Hydrogen Energy Congress and Exhibition IHEC 2007, 13–15 July 2007, Istanbul, Turkey.
- Krieg, D. (2012) Konzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Strassenverkehrs mit Wasserstoff. PhD thesis, Schriften des Forschungszentrums Jülich. Reihe Energie und Umwelt/energy and environment, Band/Volume 144, Jülich, 1–288.
- Deymi-Dashtebayaz, M., Gord, M.F., and Rahbari, H.R. (2012) Studying transmission of fuel storage bank to NGV cylinder in CNG fast filling station. J. Brazil. Soc. Mech. Sci. Eng., 34, 429–435.
-
Verein Deutscher Ingenieure VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) (eds) (2006)
VDI-Wärmeatlas,
Springer,
Berlin and Heidelberg.
10.1007/978-3-540-32218-4 Google Scholar
- Leachman, J.W., Jacobsen, R.T., Penoncello, S.G. et al. (2009) Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen. J. Phys. Chem. Ref. Data, 38 (3), 721–748.
- Setzmann, U. and Wagner, W. (1991) A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 100 MPa. J. Phys. Chem. Ref. Data, 20 (6), 1061–1155.
- National Institute of Standards and Technology (2011) NIST Chemistry WebBook. http://webbook.nist.gov/chemistry/fluid/ (accessed 20 December 2012).
- Lemmon, E.W. and Jacobsen, R.T. (2005) A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HFC125). J. Phys. Chem. Ref. Data, 34 (1), 69–108.
- Span, R., Lemmon, E.W., Jacobsen, R.T. et al. (2000) A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. J. Phys. Chem. Ref. Data, 29 (6), 1361–1433.
- Kunz, O. (2006) A new equation of state for natural gases and other mixtures for the gas and liquid regions and the phase equilibrium. PhD thesis, University of Bochum.
- Yang, J.C. (2009) A thermodynamic analysis of refueling of a hydrogen tank. Int. J. Hydrogen Energy, 34 (16), 6712–6721.
- VDI (August 1993) Acceptance and performance test on turbo compressors and displacement compressors. Theory and Examples, VDI 2045.
- Yang, J.C. and Huber, M.L. (2008) Analysis of thermodynamic processes involving hydrogen. Int. J. Hydrogen Energy, 33 (16), 4413–4418.
- Doering, E., Schedwill, H., Dehli, M. (2008) Grundlagen der Technischen Thermodynamik. Vieweg + Teubner Verlag, Wiesbaden.
- J. Mischner, H.G. Fasold, and K. Kadner (eds) (2011) Gas2energy.net: Systemplanung in der Gasversorgung; gaswirtschaftliche Grundlagen, Oldenbourg Industrieverla, Munich.
- Maytal, B.Z. and Pfotenhauer, J.M. (2012) Miniature joule–thomson cryocooling: principles and practice, Springer.
- Andreas, T. (2011) Thermodynamische Zustandsänderung realer Gase. Cahier Scientifique: Revue Technique Luxembourgeoise 1.
- Kouremenos, D.A. and Kakatsios, X.K. (1985) The three isentropic exponents of dry steam. Forschung Ingenieurwesen, 51 (4), 117–122.
- Scholz, R. (1974) Verschiedene Definitionen und Verwendungen des Isentropenexponenten bei realen Gasen. Gas Wärme Int., 23 (12), 486–488.
- Fasold, H.-G. (2011) Ein thermodynamisches Modell zur Berechnung der Verdichtungsarbeit von Turboverdichtern, in gas2energy.net: Systemplanerische Grundsatzfragen der Gasversorgung (eds. J. Mischner, H.G. Fasold, and K. Kadner), Oldenbourg Industrieverlag, Munich, 652–668.
- Fasold, H.G. (2011) Berücksichtigung des Realgasverhaltens bei der Planung von Erdgasversorgungssystemen, in gas2energy.net Systemplanung in der Gasversorgung; Gaswirtschaftliche Grundlagen (eds J. Mischner, H.G. Fasold, and K. Kadner), Oldenbourg Industrieverla, Munich, 159–185.
- Fasold, H.G. (2011) Gasentspannung in Expansionsmaschinen unter Berücksichtigung des Realgasverhaltens, in gas2energy.net Systemplanung in der Gasversorgung; Gaswirtschaftliche Grundlagen (eds J. Mischner, H.G. Fasold, and K. Kadner), Oldenbourg Industrieverla, Munich, 307–326.
- Wolowski, E. and Hartmann, H. (1964) Über den Joule-Thomson Effekt von Gasen. Ruhrgas-Forschungsheft, 14, 13–22.
- Rothuizen, E., Mérida, W., Rokni, M. et al. (2013) Optimization of hydrogen vehicle refueling via dynamic simulation. Int. J. Hydrogen Energy, 38 (11), 4221–4231.
- Hosseini, M., Dincer, I., Naterer, G.F. et al. (2012) Thermodynamic analysis of filling compressed gaseous hydrogen storage tanks. Int. J. Hydrogen Energy, 37 (6), 5063–5071.
- Dicken, C.J.B. and Mérida, W. (2007) Measured effects of filling time and initial mass on the temperature distribution within a hydrogen cylinder during refuelling. J. Power Sources, 165 (1), 324–336.
- Galassi, M.C., Baraldi, D., AcostaIborra, B. et al. (2012) CFD analysis of fast filling scenarios for 70 MPa hydrogen type IV tanks. Int. J. Hydrogen Energy, 37 (8), 6886–6892.
- Galassi, M.C., Papanikolaou, E., Heitsch, M., Baraldi, D., Iborra, B.A., and Moretto, P. (2014) Assessment of CFD models for hydrogen fast filling simulations. Int. J. Hydrogen Energy, 39 (11), 6252–6260.
- Heitsch, M., Baraldi, D., and Moretto, P. (2011) Numerical investigations on the fast filling of hydrogen tanks. Int. J. Hydrogen Energy, 36 (3), 2606–2612.
- Farzaneh-Gord, M., Deymi-Dashtebayaz, M., and Rahbari, H.R. (2011) Studying effects of storage types on performance of CNG filling stations. J. Nat. Gas Sci. Eng., 3 (1), 334–340.
- Farzaneh-Gord, M., Reza Rahbari, H., and Deymi-Dashtebayaz, M. (2014) Effects of natural gas compositions on CNG fast filling process for buffer storage system. Oil & Gas Sci. Technol.–Rev. d'IFP Energies Nouv., 69 (2), 319–330.
- US Department of Energy Office of Energy Efficiency and Renewable Energy and The FreedomCAR and Fuel Partnership (September 2009) Targets for onboard hydrogen storage systems for light-duty vehicles. Available at http://energy.gov/sites/prod/files/2014/03/f11/targets_onboard_hydro_storage_explanation.pdf (last accessed 3 February 2015).
- Daney, D.E. (1976) Turbulent natural convection of liquid deuterium, hydrogen and nitrogen within enclosed vessels. Int. J. Heat Mass Transfer, 19 (4), 431–441.
-
Monde, M.,
Mitsutake, Y.,
Woodfield, P.L.
et al.
(2007)
Characteristics of heat transfer and temperature rise of hydrogen during rapid hydrogen filling at high pressure.
Heat Transfer—Asian Res., 36
(1),
13–27.
10.1002/htj.20140 Google Scholar
- Monde, M., Woodfield, P., Takano, T. et al. (2012) Estimation of temperature change in practical hydrogen pressure tanks being filled at high pressures of 35 and 70 MPa. Int. J. Hydrogen Energy, 37 (7), 5723–5734.
- Woodfield, P., Monde, M., and Mitsutake, Y. (2007) Measurement of averaged heat transfer coefficients in high-pressure vessel during charging with hydrogen, nitrogen or argon gas. J. Thermal Sci. Technol., 2 (2), 180–191.
- Schneider, J., Klugman, J., Boyd, B., and Ward, J. (2010) The implementation of SAE J2601: hydrogen fuelling protocol guideline for demonstration projects, in Proceedings 18th World Hydrogen Energy Conference; 2010 –WHEC 2010, 16–21 May 2010, Essen (ed. D. Stolten and T. Grube), Energy and Environment, vol. 78, Forschungszentrum Jülich, Book 1, 419–422.
- Hypos (2013) Hypos-Projekt bietet Ostdeutschland vielfältige Chancen. http://www.hypos-eastgermany.de/hypos-%E2%80%93-die-idee-im-idealen-umfeld (accessed 1 December 2013).
- IVG Caverns (2012) IVG Caverns plant Pilotanlage zur Speicherung von Windwasserstoff. http://www.kavernen-informationszentrum-etzel.de/detail-aktuelles/ivg-pilotanlage.html (accessed 20 November 2013).
- Crotogino, F. and Huebner, S. (2008) Energy storage in salt caverns. Developments and concrete projects for adiabatic compressed air and for hydrogen storage. Presented at the SMRI Spring Meeting 2008, 27–30 April 2008, Porto, Portugal.
- Crotogino, F., Donadei, S., Bünger, U. et al. (2010) Large-scale hydrogen underground storage for securing future energy supplies, in Proceedings 18th World Hydrogen Energy Conference; 2010 –WHEC 2010, 16–21 May 2010, Essen (ed. D. Stolten and T. Grube), Energy and Environment, vol. 78, Forschungszentrum Jülich, Book 4, 37–45.
- Landesamt für Bergbau, Energie und Geologie (LBEG) (2013) Untertage-Gasspeicherung in Deutschland. Erdöl Erdgas Kohle, 129 (11), 378–388.
- Wirths, A. (2006) Thermische Energiespeicherung in Druckluftspeicherkraftwerken – Theorie der Speicherung im fluiden Einphasengebiet diploma thesis, FH Gießen-Friedberg, Dresden.
- Tek, M.R. (1996) Natural gas underground storage: inventory and deliverability, PennWell Pub, Tulsa, Oklahoma.
- Kushnir, R., Dayan, A., and Ullmann, A. (2012) Temperature and pressure variations within compressed air energy storage caverns. Int. J. Heat Mass Trans., 55 (21–22), 5616–5630.
- Raju, M. and Kumar Khaitan, S. (2012) Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant. Appl. Energy, 89 (1), 474–481.
- Raju, M. and Khaitan, S.K. (2012) System simulation of compressed hydrogen storage based residential wind hybrid power systems. J. Power Sources, 210, 303–320.
- Steinberger, A., Civan, F., Hughes, R.G. et al. (2002) Phenomenological inventory analysis of underground gas storage in salt caverns. Presented at the SPE Annual Technical Conference and Exhibition, 29 September to 2 October 2002, San Antonio, Texas.
- Acht, A. and Donadei, S. (2012) Hydrogen storage in salt caverns. State of the art, new developments and R&D projects. Presented at the SMRI Fall Conference, 30 September to 2 October 2012, Bremen, Germany.
-
Voigt, H.D.
(2011)
Lagerstättentechnik: Berechnungsmethoden für das Reservoir Engineering.
Springer,
Heidelberg.
10.1007/978-3-642-21013-6 Google Scholar