Biomedical Polymer Composites and Applications
Dionysis E. Mouzakis
Higher Technological Educational Institute of Thessaly, Department of Mechanical Engineering, Larissas-Trikalon Highway, 41110 Thessaly, Greece
Search for more papers by this authorDionysis E. Mouzakis
Higher Technological Educational Institute of Thessaly, Department of Mechanical Engineering, Larissas-Trikalon Highway, 41110 Thessaly, Greece
Search for more papers by this authorSabu Thomas
Mahatma Gandhi University, School of Chemical Sciences, Priyadarshini Hills P.O., School of Chemical Sciences, Kottayam 686 560, Kerala, India
Search for more papers by this authorKuruvilla Joseph
Indian Institute of Space Science and, Technology, ISRO P. O., Veli, Thiruvananthapuram 695 022, Kerala, India
Search for more papers by this authorDr. S. K. Malhotra
Flat-YA, Kings Mead, Srinagar Colony, South Mada Street 14/3, Srinagar Colony, Saidapet, Chennai 600 015, India
Search for more papers by this authorProf. Koichi Goda
Faculty of Engineering, Yamaguchi University, Tokiwadai 2-16-1, Yamaguchi University, 755-8611 Ube, Yamaguchi, Japan
Search for more papers by this authorDr. M. S. Sreekala
Department of Chemistry, Sree Sankara College, Kalady 683 574, Kerala, India
Search for more papers by this authorSummary
This contribution aims at delivering the progress made in the past decade in the field of polymer composite materials, a.k.a. biomedical composites, which are used in the biomedical sector. The effort to gather all interesting research findings along with commercially available products and patents regarding only polymer matrix systems has yielded interesting facts on the expansion of this category of materials in the last 10 years. Advancement in polymer composite technology has made it easier nowadays for the manufacturing of custom made prostheses in the dental and orthopedics areas. The challenge still exists however, in the field of polymer composite scaffolds, where intensive research is being carried out in the biofunctional properties of many different systems, ranging from natural polymers such as silk, to biodegradable polymers and to synthetic ones. The emergence of nanotechnology and its applications has made things a little bit more complicated for researchers as now scale issues are into play, and size has proven to be another biofunctional parameter. It is generally believed that mankind will witness a revolution in medicine with the arrival of a number of bioactive polymer composite systems with custom made functionalities and properties. Of course, one has to take into account the fact that at least 10–15 years are needed for a biomaterial to establish itself in everyday medical use, after the minimum time and amount required for clinical studies.
References
-
Park, J.B. (1984) Biomaterials Science and Engineering, Plenum Publishing Co., New York.
10.1007/978-1-4613-2769-1 Google Scholar
- J. Charnley. (1974) The Closed Treatment of Common Fractures, 3rd edn, Churchill Livingstone Edinburgh and London, ISBN: 0-443-00119-7.
- Gage, E., Langevin, C.-J., and Papay, F. (2010). Plast. Reconstr. Surg.: Springer Specialist Surg. Ser. Pt. 2, 125–135. doi: 10.1007/978-1-84882-513-0_11
- Colas, A. and Curtis, J. (2004) Silicone biomaterials: history and chemistry and medical applications of silicones, in Biomaterials Science, 2nd edn, Elsevier, New York.
- Wahl, D.A. and Czernuszka, J.T. (2006) Collagen-hydroxyapatite composites for hard tissue repair. J. Eur. Cells Mater., 11, 43–56.
- Vallet-Regı´, M. and González-Calbet, J.M. (2004) Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem., 32, 1–31.
- Goel, R., Aron, M., Kesarwani, P.K., and Gupta, N.P. (2003) An unusual complication of urethral stent. Int. Urol. Nephrol., 35, 197–198.
- Chevalier, J. (2006) What future for zirconia as a biomaterial? Biomaterials, 27 (4), 535–543.
- Skinner, H.B. (1988) Composite technology for total hip arthroplasty. Clin. Orthop. Relat. Res., 235, 224–36.
- Buddy, D. Ratner, Michael, L. and Myrna, Darland Biomaterials Science, 3rd edn, An Introduction to Materials in Medicine,Academic Press-Elsevier ISBN: 9780123746269.
- Ramakrishna, S., Mayer, J., Wintermantel, E., and Leong, K.W. (2001) Biomedical applications of polymer-composite materials: a review. J. Compos. Sci. Technol., 61 (9), 1189–1224.
- MarketsandMarkets Global Biomaterials Market (2009–2014) http://www.marketsandmarkets.com/PressReleases/global-biomaterials-market-worth-US58.1-Billion-by-2014.asp (accessed 1 April 2013).
- Bischoff, F. (1972) Organic polymer biocompatibility and toxicology. J. Clin. Chem., 18 (9), 869.
- M. Endo, S. Iijima, M.S. Dresselhaus (eds) Carbon Nanotubes, Carbon, Vol. 33 Pergamon Press, New York, (1996) ISBN: 0080426824 (reprinted).
- Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A. (2004) Electric field effect in atomically thin carbon films. Science, 306, 666.
- Smart, S.K., Cassady, A.I., Lu, G.Q., and Martin, D.J. (2006) The biocompatibility of carbon nanotubes. Carbon, 44, 1034–1047.
- Shen, J., Shi, M., Yan, B., Ma, H., Li, N., Hu, Y., and Ye, M. (2010) Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloids Surf., B, 81, 434–438.
- Christopher, M.B. (2009) Biocompatibility of polymer implants for medical applications. MSc thesis. University of Akron, August 2009.
-
Francolini, I., Donelli, G., and Stoodley, P. (2004) Polymer designs to control biofilm growth on medical devices. J. Environ. Sci. Biotechnol., 2, 307–319.
10.1023/B:RESB.0000040469.26208.83 Google Scholar
- Jansen, B. and Kohnen, W. (1995) Prevention of biofilm formation by polymer modification. J. Ind. Microbiol., 15, 391–396.
- Bithelis, G., Bouropoulos, N., Latinos, E., Perimenis, P., Koutsoukos, P., and Barbalias, G. (2004) Assessment of encrustations in polyurethane ureteral stents. J. Endourol., 18, 550.
- Mouzakis, D.E., Bouropoulos, N., Bithelis, G., Liatsikos, E., and Barbalias, G. (2006) Ageing assessment by dynamic mechanical analysis of in-vivo encrusted polymeric urinary stents. J. Endourol., 20, 64.
- Bouropoulos, N., Mouzakis, D.E., Bithelis, G., Liatsikos, E., and Barbalias, G. (2006) Vickers hardness studies of calcium oxalate monohydrate and brushite urinary stones. J. Endourol., 20, 59.
- Veparia, C. and Kaplan, D.L. (2007) Silk as a biomaterial. J. Prog. Polym. Sci., 32, 991–1007.
- Moy, R.L., Lee, A., and Zalka, A. (1991) Commonly used suture materials in skin surgery. J. Am. Fam. Phys., 44 (6), 2123–2128.
- Zhang, Y.-Q. (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv., 20, 91–100.
- Jin, H.-J., Chen, J., Karageorgiou, V., Altman, G.H., and Kaplan, D.L. (2004) Human bone marrow stromal cell responses on electrospun silk fibroin mats. J. Biomater., 25, 1039–1047.
- Li, C., Vepari, C., Jin, H.-J., Kim, H.J., and Kaplan, D.L. (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. J. Biomater., 27, 3115–3124.
- Jayakumar, R., Nwe, N., Tokura, S., and Tamura, H. (2007) Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol., 40, 175–181.
- Chen, F., Wang, Z.-C., and Lin, C.-J. (2002) Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. J. Mater. Lett., 57, 858–861.
- Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F.A., and Zhang, M. (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. J. Biomater., 26, 6176–6184.
- Sarasam, A. and Madihally, S.V. (2005) Characterization of chitosan–polycaprolactone blends for tissue engineering applications. J. Biomater., 26, 5500–5508.
- Wang, X.H., Li, D.P., Wang, W.J., Feng, Q.L., Cui, F.Z., Xu, Y.X., Song, X.H., and van der Werf, M. (2003) Crosslinked collagen/chitosan matrix for artificial livers. J. Biomater., 24, 3213–3220.
- Vasiliu, S., Popa, M., and Rinaudo, M. (2005) Polyelectrolyte capsules made of two biocompatible natural polymers. Eur. Polym. J., 41, 923–932.
- Rusu, V.M., Ng, C.-H., Wilke, M., Tiersch, B., Fratzl, P., and Peter, M.G. (2005) Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials. J. Biomater., 26, 5414–5426.
- Malafaya, P.B., Silva, G.A., and Reis, R.L. (2007) Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Delivery Rev., 59, 207–233.
- Sikorski, Z.E. (2001). Chemical and Functional Properties of Food Proteins. Boca Raton, FL: CRC Press, p. 242, ISBN: 1566769604.
- Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K., and Tanaka, J. (2001) Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. J. Biomater., 22, 1705–1711.
- Coombes, A.G.A., Verderio, E., Shaw, B., Lib, X., Griffin, M., and Downes, S. (2002) Biocomposites of non-crosslinked natural and synthetic polymers. J. Biomater., 23, 2113–2118.
- Dai, N.-T., Williamson, M.R., Khammo, N., Adams, E.F., and Coombes, A.G.A. (2004) Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. J. Biomater., 25, 4263–4271.
- Zhang, J., Senger, B., Vautier, D., Picart, C., Schaaf, P., Voegel, J.-C., and Lavalle, P. (2005) Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. J. Biomater., 26, 3353–3361.
- Rho, K.S., Jeong, L., Lee, G., Seo, B.-M., Park, Y.J., Hong, S.-D., Roh, S., Cho, J.J., Park, W.H., and Min, B.-M. (2006) Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinocytes and early-stage wound healing. J. Biomater., 27, 1452–1461.
- Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M., Nasr-Esfahani, M.-H., and Ramakrishna, S. (2008) Electrospun poly(3-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. J. Biomater., 29, 4532–4539.
- Li, M., Mondrinos, M.J., Gandhi, M.R., Ko, F.K., Weiss, A.S., and Lelkes, P.I. (2005) Electrospun protein fibers as matrices for tissue engineering. J. Biomater., 26, 5999–6008.
- Mithieux, S.M., Raskob, J.E.J., and Weiss, A.S. (2004) Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. J. Biomater., 25, 4921–4927.
- Kuo, C.K. and Ma, P.X. (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation and mechanical properties. J. Biomater., 22 (6), 511–521.
- Griffith, L.G. (2000) Polymeric biomaterials. Acta Mater., 48, 263–277.
-
Solchaga, L.A., Goldberg, V.M., and Caplan, A.I. (2001) Cartilage regeneration using principles of tissue engineering. Clin. Orthopaedics, 391S, S161.
10.1097/00003086-200110001-00016 Google Scholar
- Hoffman, A. (2002) Hydrogels for biomedical applications. Adv. Drug Delivery Rev., 54 (1), 3–12.
- Lin, H.R. and Yeh, Y.J. (2004) J. Biomed. Mater. Res. Part B, 71, 52.
- Hosoya, K., Ohtsuki, C., Kawai, T., Kamitakahara, M., Ogata, S., Miyazaki, T., and Tanihara, M. (2004) A novel covalently crosslinked gel of alginate and silane with the ability to form bone-like apatite. J. Biomed. Mater. Res., 71A, 596–601. doi: 10.1002/jbm.a.30189
- Bouropoulos, N., Stampolakis, A., and Mouzakis, D.E. (2010) Dynamic mechanical properties of calcium alginate-hydroxyapatite nanocomposite hydrogels. Sci. Adv. Mater., 2, 1–4.
- Dang, J.M. and Leong, K.W. (2006) Natural polymers for gene delivery and tissue engineering. Adv. Drug Delivery Rev., 58, 487–499.
- Chang, C.-H., Liu, H.-C., Lin, C.-C., Chou, C.-H., and Lin, F.-H. (2003) Gelatin–chondroitin–hyaluronan tri-copolymer scaffold for cartilage tissue engineering. J. Biomater., 24, 4853–4858.
- Paturau, J.M. (1989) By-Products of the Cane Sugar Industry, Sugar Series, Vol. 11, Elsevier, New York.
- Lam, C.X.F., Mo, X.M., Teoh, S.H., and Hutmacher, D.W. (2002) Scaffold development using 3D printing with a starch-based polymer. Mater. Sci. Eng., C, 20, 49–56.
- Alves, C.M., Yang, Y., Carnes, D.L., Ong, J.L., Sylvia, V.L., Dean, D.D., Agrawal, C.M., and Reis, R.L. (2007) Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. J. Biomater., 28 (2), 307–315.
- Shukla, R. and Munir, C. (2001) Zein: the industrial protein from corn. Ind. Crops Prod., 13, 171–92.
- Mathiowitz, E., Bernstein, H., Morrel, E., and Schwaller, K. (1991) Method for producing protein microspheres. WO Patent 91/06286.
- Lai, H.M. and Padua, G.W. (1997) Properties and macrostructure of zein sheets plasticized with palmitic and stearic acids. Cereal Chem., 74 (77), 1–5.
- Dong, J., Sun, Q., and Wang, J.-Y. (2004) Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. J. Biomater., 25, 4691–4697.
- Frankel, V.H., Serafica, G.C., and Damien, C.J. (2004) Development and testing of a novel biosynthesized XCell for treating chronic wounds. Surg Technol Int., 12, 27–33.
- Hutchens, S.A., Benson, R.S., Evans, B.R., O'Neill, H.M., and Rawn, C.J. (2006) Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. J. Biomater., 27, 4661–4670.
- Nair, L.S. and Laurencin, C.T. (2007) Biodegradable polymers as biomaterials. Prog. Polym. Sci., 32, 762–798.
- Gunatillake, P.A. and Adhikari, R. (2003) Biodegradable synthetic polymers for tissue engineering. Eur. Cells Cultures, 5, 1–16.
- John C, Middleton and Arthur J, Tipton (2000) Biodegradable synthetic polymers for tissue engineering. Biomaterials, 21 (23), 2335–2346.
- Holland, S.J., and Tighe, B.J. (2007) in Biodegradable polymers, in Advances in Pharmaceutical Science, Vol. 6 pp. 101–164.
- Hayashi, T. (1994) Biodegradable polymers for biomedical uses. Prog. in Polym. Sci. (Oxford), 19, (4) 663–702.
- Kharas, G.B., Kamenetsky, M, Simantirakis, J., Beinlich, K.C. Rizzo, A.T., Caywood, G.A. and Watson, K. (1997) Synthesis and characterization of fumarate-based polyester for use in bioresorbable bone cement composites. J. Appl. Polym. Sci., 66, 1123–1137.
-
Peter, S.J., Miller, S.T., Zhu, G., Yasko, A.W., and Mikos, A.G. (1998) In vivo degradation of a poly(propylene fumarate)/í-tricalcium phosphate injectable composite scaffold. J. Biomed. Mater. Res., 41, 1–7.
10.1002/(SICI)1097-4636(199807)41:1<1::AID-JBM1>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- Temenoff, J.S., and Mikos, A.G. (2000) Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials, 21 (23), 2405–2412.
- Leong, K.W., Brott, B.C., and Langer, R. (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J. Biomed. Mater. Res., 19, 941–955.
- Uhrich, K.E., Thomas, T.T., Laurencin, C.T., and Langer, R. (1997) In vitro degradation characteristics of poly(anhydride-imide) containing trimellitylimidoglycine. J. Appl. Polym. Sci., 63, 1401–1411.
- Pulapura, S., and Kohn, J. (1992) Tyrosine-derived polycarbonates: Backbone-modified “pseudo”-poly(amino acids) designed for biomedical applications. Biopolymers, 32, 411–471 doi: 10.1002/bip.360320418
- Muggli, D.S., Burkoth, A.K., Keyser, S.A., Lee, H.R., and Anseth, K.S. (1998) Reaction behaviour of biodegradable, photo cross-linkable polyanhydrides. Macromolecules, 31, 4120–4125.
- Bruin, P., Venstra, G.J., Nijenhuis, A.J., and Pennings, A.J. (1988) Design and synthesis of biodegradable poly(esterurethane) elastomer networks composed of non-toxic building blocks. Makromol. Chem. Rapid Commun., 9, 589–594.
- Qui, L.Y. and Zhu, K.J. (2000) Novel biodegrable polyphosphazenes containing glycine ethyl ester and benzyl ester of amino acethydroxamic acid as cosubsituents: synthesis, characterization and degradation properties. J. Appl. Polym. Sci., 77, 2987–2955.
- Rezwan, K., Chen, Q.Z., Blaker, J.J., and Boccaccini, A.R. (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. J. Biomater., 27, 3413–3431.
- Kurtz, S.M. and Devine, J.N. (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. J. Biomater., 28, 4845–4869.
- Chowdhury, S., Vohra, Y.K., Lemons, J.E., Ueno, M., and Ikeda, J. (2006) Accelerating aging of zirconia femoral head implants: change of surface structure and mechanical properties. J. Biomed. Mater. Res. Part B, 81B (2007), 486–492.
- Haraguchi, K., Sugano, N., Nishii, T., Miki, H., Oka, K., and Yoshikawa, H. (2001) Phase transformation of a zirconia ceramic head after total hip arthroplasty. J. Bone Joint Surg. Br., 83-B, 996–1000.
- Panagiotopoulos, E.C., Kallivokas, A.G., Koulioumpas, I., and Mouzakis, D.E. (2007) Early failure of a zirconia femoral head prosthesis: fracture or fatigue? Clin. Biomech., 22 (7), 856–60.
- Abu Bakar, M.S., Cheng, M.H.W., Tang, S.M., Yuc, S.C., Liao, K., Tan, C.T., Khor, K.A., and Cheang, P. (2003) Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants. J. Biomater., 24, 2245–2250.
- Kim, J.K., Wo, D.Z., Zhou, L.M., Huang, H.T., Lau, K.T., and Wang, M. (2007) Study on a stiffness design method of femoral prosthesis stem using fiber reinforced composites. Key Eng. Mater., 334–335, 1257–1260.
- Biermann, P.J., Roberts, J.C., and Corvelli, A.A. (2003) Polymeric composite orthopedic implant. US Patent 6,602,293, Aug. 5, 2003.
- Fujihara, K., Huang, Z.-M., Ramakrishna, S., Satknanantham, K., and Hamada, H. (2004) Feasibility of knitted carbon/PEEK composites for orthopedic bone plates. J. Biomater., 25, 3877–3885.
- Fujihara, K., Huang, Z.-M., Ramakrishna, S., Satknanantham, K., and Hamada, H. (2003) Performance study of braided carbon/PEEK composite compression bone plates. J. Biomater., 24, 2661–2667.
- Zhao, J.-L., Fu, T., Han, Y., and Xu, K.-W. (2003) Reinforcing hydroxyapatite/thermosetting epoxy composite with 3-D carbon fiber fabric through RTM processing. Mater. Lett., 58, 163–168.
- Bonfield, W., Wang, M., and Tanner, K.E. (1998) Interfaces in analogue biomaterials. Acta Mater., 46, 2509–2518.
- Salernitano, E. and Migliaresi, C. (2003) Composite materials for biomedical applications: a review. J. Appl. Biomater. Biomech., 1, 3–18.
- Ohtsuki, C., Miyazaki, T., Kyomoto, M., Tanihara, M., and Osaka, A. (2001) Development of bioactive PMMA-based cement by modification with alkoxysilane and calcium salt. J. Mater. Sci. - Mater. Med., 12 (10–12), 895–899.
- Mouzakis, D.E., Dimogianopoulos, D., and Giannikas, D. (2009) Contact-free magnetoelastic smart microsensors with stochastic noise filtering for diagnosing orthopedic implant failures. IEEE Trans. Ind. Electron., 56 (4), 1092–1100.
- Brooks, R.A., Jones, E., Storer, A., and Rushton, N. (2004) Biological evaluation of carbon-fibre-reinforced polybutyleneterephthalate (CFRPBT) employed in a novel acetabular cup. J. Biomater., 25, 3429–3438.
- Aho, A.J., Hautamäki, M., Mattila, R., Alander, P., Strandberg, N., Rekola, J., Gunn, J., Lassila, L.V.J., and Vallittu, P.K. (2004) Surface porous fibre-reinforced composite bulk bone substitute. Cell Tissue Banking, 5, 213–221.
- Pegoretti, A., Fambri, L., Zappini, G., and Bianchetti, M. (2002) Finite element analysis of a glass fibre reinforced composite endodontic post. J. Biomater., 23, 2667–2682.
- Papadopoulos, T., Papadogiannis, D., Mouzakis, D.E., Giannadakis, K., and Papanicolaou, G. (2010) Experimental and numerical determination of the mechanical response of teeth with reinforced posts. Biomed. Mater., 5. doi: 10.1088/1748-6041/5/3/035009
- Lassila, L.V.J., Tanner, J., Le Bell, A.-M., Narva, K., and Vallittu, P.K. (2004) Flexural properties of fiber reinforced root canal posts. Dent. Mater., 20, 29–36.
- Xie, Q., Lassila, L.V.J., and Vallittu, P.K. (2007) Comparison of load-bearing capacity of direct resin-bonded fiber-reinforced composite FPDs with four framework designs. J. Dent., 35, 578–582.
- Vallittu, P.K. (2004) Survival rates of resin-bonded, glass fiber–reinforced composite fixed partial dentures with a mean follow-up of 42 months: a pilot study. J. Prosthet. Dent., 91, 241–6.
- Narva, K.K., Lassila, L.V.J., and Vallittu, P.K. (2004) Fatigue resistance and stiffness of glass fiber-reinforced urethane dimethacrylate composite. J. Prosthet. Dent., 91 (2), 158–163.
- Fennis, W.M.M., Tezvergil, A., Kuijs, R.H., Lassila, L.V.J., Kreulen, C.M., Creugers, N.H.J., and Vallittu, P.K. (2005) In vitro fracture resistance of fiber reinforced cusp-replacing composite restorations. Dent. Mater., 21, 565–572.
- Fujihara, K., Teo, K., Gopal, R., Loh, P.L., Ganesh, V.K., Ramakrishna, S., Foong, K.W.C., and Chew, C.L. (2004) Fibrous composite materials in dentistry and orthopaedics: review and applications. Compos. Sci. Technol., 64, 775–788.
- Dyer, S.R., Lassila, L.V.J., Jokinen, M., and Vallittu, P.K. (2004) Effect of fiber position and orientation on fracture load of fiber-reinforced composite. Dent. Mater., 20, 947–955.
- Tezvergil, A., Lassila, L.V.J., and Vallittu, P.K. (2005) The shear bond strength of bidirectional and random-oriented fibre-reinforced composite to tooth structure. J. Dent., 33, 509–516.
- Garoushi, S., Vallittu, P.K., and Lassila, L.V.J. (2007) Short glass fiber reinforced restorative composite resin with semi-inter penetrating polymer network matrix. Dent. Mater., 23, 1356–1362.
- Väkiparta, M., Forsback, A.-P., Lassila, L.V., Jokinen, M., Yli-Urpo, A.U.O., and Vallittu, P.K. (2005) Biomimetic mineralization of partially bioresorbable glass fiber reinforced composite. J. Mater. Sci. - Mater. Med., 16, 873–879.
- Kurunmäki, H., Kantola, R., Hatamleh, M.M., Watts, D.C., and Vallittu, P.K. (2008) A fiber-reinforced composite prosthesis restoring a lateral midfacial defect: a clinical report. J. Prosthet. Dent., 100, 348–352.
- Williamson, M.R., Black, R., and Kielty, C. (2006) PCL–PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. J. Biomater., 27, 3608–3616.
- Baker, B.M., Gee, A.O., Metter, R.B., Nathan, A.S., Marklein, R.A., Burdick, J.A., and Mauck, R.L. (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. J. Biomater., 29, 2348–2358.
- Losi, P., Briganti, E., Magera, A., Spiller, D., Ristori, C., Battolla, B., Balderi, M., Kull, S., Balbarini, A., Di Stefano, R., and Soldani, G. (2010) Tissue response to poly(ether)urethane-polydimethylsiloxane-fibrin composite scaffolds for controlled delivery of pro-angiogenic growth factors. J. Biomater., 31 (20), 5336–5344.
- Gautam, P. and Valiathan, A. (2008) Bio-smart dentistry: stepping into the future!. Trends Biomater. Artif. Organs, 21 (2), 94–97.
- Yakacki, C.M. and Gall, K. (2010) Shape-memory polymers for biomedical applications in: shape-memory polymers. Adv. Polym. Sci., 226, 147–175. doi: 10.1007/978-3-642-12359-7_23
- Aguilar, M.R., Elvira, C., Gallardo, A., Vázquez, B., and Román, J.S. (2007) in Smart Polymers and Their Applications as Biomaterials, Topics in Tissue Engineering, Vol. 3 (eds N. Ashammakhi, R. Reis, and E. Chiellini). e-book, University of Oulu, Finland http://www.oulu.fi/spareparts/ebook_topics_in_t_e_vol3/index.html.
- Chrisnan, M. (2002) Polyurethane elastomer article with “shape memory” and medical devices therefrom. US Patent 2002/0065373 A1, May 30.
- Behl, M. and Lendlein, A. (2007) Shape-memory polymers. Mater. Today, 10 (4), 20–28.
- Ratna, D. and Karger-Kocsis, J. (2008) Recent advances in shape memory polymers and composites: a review. J. Mater. Sci., 43, 254–269.
- Klouda, L. and Mikos, A.G. (2008) Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm., 68, 34–45.
- Kopecek, J. (2007) Hydrogel biomaterials: a smart future? J. Biomater., 28, 5185–5192.
- Chaterji, S., Kwon, K. II, and Park, K. (2007) Smart polymeric gels: redefining the limits of biomedical devices. Prog. Polym. Sci., 32, 1083–1122.
- Stoop, R. (2008) Smart biomaterials for tissue engineering of cartilage. Injury. Int. J. Care Inj., 39S1, S77–S87.
- Barrere, F., Mahmood, T.A., de Groot, K., and van Blitterswijk, C.A. (2008) Advanced biomaterials for skeletal tissue regeneration: instructive and smart functions. Mater. Sci. Eng. R, 59, 38–71.
- Zheng, X., Zhou, S., Li, X., and Weng, J. (2006) Shape memory properties of poly(D,L-lactide)/hydroxyapatite composites. J. Biomater., 27, 4288–4295.
- Sokolowski, W., Metcalfe, A., Hayashi, S., Yahia, L., and Raymond, J. (2007) Medical applications of shape memory polymers. Biomed. Mater., 2, S23–S27.
- Sokolowski, W. (2004) Cold hibernated elastic memory self-deployable and rigidizable structure and method therefore. US Patent 6,702,976 B2, Mar. 9, 2004.
- Metcalfe, A., Desfaits, A.C., Salazkin, I., Yahia, L., Sokolowski, W.M., and Raymond, J. (2003) Cold hibernated elastic memory foams for endovascular interventions. J. Biomater., 24, 491–497.
- G.M. Luz, J.F. Mano. Mineralized structures in nature: examples and inspirations for the design of new composite materials and biomaterials. Compos. Sci. Technol. (2010) 70 (13), 1777–1788 doi: 10.1016/j.compscitech.2010.05.013
- Barnes, C.P., Sell, S.A., Boland, E.D., Simpson, D.G., and Bowlin, G.L. (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv. Drug Delivery Rev., 59, 1413–1433.
- Liu, H. and Webster, T.J. (2007) Nanomedicine for implants: a review of studies and necessary experimental tools. J. Biomater., 28, 354–369.
- Cen, L., Liu, W., Cui, L., Zhang, W., and Cao, Y. (2008) Collagen tissue engineering: development of novel biomaterials and applications. Pediatric Res., 63 (5), 492–496.
- Chen, Z., Mo, X., and Qing, F. (2007) Electrospinning of collagen–chitosan complex. Mater. Lett., 61, 3490–3494.
- Choi, J.S., Lee, S.J., Christ, G.J., Atala, A., and Yoo, J.J. (2008) The influence of electrospun aligned poly(3-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. J. Biomater., 29, 2899–2906.
- Furuzono, T., Kishida, A., and Tanaka, J. (2004) Nano-scaled hydroxyapatite/polymer composite I. Coating of sintered hydroxyapatite particles on poly(γ-methacrylopropyl trimethoxysilane)-grafted silk fibroin fibers through chemical bonding. J. Mater. Sci. - Mater. Med., 15, 19–23.
- Ito, Y., Hasuda, H., Kamitakahara, M., Ohtsuki, C., Tanihara, M., Kang, I.-K., and Kwon, O.H. (2005) A composite of hydroxyapatite with electrospun biodegradable nanofibers as a tissue engineering material. J. Biosci. Bioeng., 100 (1), 43–49. doi: 10.1263/jbb.100.43
- Zhang, Y., Venugopal, J.R., El-Turki, A., Su, S.R.B., and Lim, C.T. (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. J. Biomater., 29, 4314–4322.
- Duan, B., Yuan, X., Zhu, Y., Zhang, Y., Li, X., Zhang, Y., and Yao, K. (2006) A nanofibrous composite membrane of PLGA–chitosan/PVA prepared by electrospinning. Eur. Polym. J., 42, 2013–2022.
- Ma, Z., Kotaki, M., Yong, T., Heb, W., and Ramakrishna, S. (2005) Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. J. Biomater., 26, 2527–2536.
- Xie, J., Willerth, S.M., Li, X., Macewan, M.R., Rader, A., Sakiyama-Elbert, S.E., and Xia, Y. (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. J. Biomater., 30, 354–362.
- Fujihara, K., Kotaki, M., and Ramakrishna, S. (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. J. Biomater., 26, 4139–4147.
- Mouzakis, D.E., Papadopoulos, T.D., Polyzois, G.L., and Griniari, P.G. (2010) Dynamic mechanical properties of a maxillofacial silicone elastomer incorporating a ZnO additive: the effect of artificial aging. J. Craniofac. Surg., 21 (6), 1867–1871.
- Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z., and Mano, J.F. (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos. Sci. Technol., 70, 1764–1776.
- Ruan, S.L., Gao, P., Yang, X.G., and Yu, T.X. (2003) Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes. J. Polym., 44, 5643–5654.
- Ruan, S., Gao, P., and Yu, T.X. (2006) Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes. J. Polym., 47, 1604–1611.
- Price, R.L., Waid, M.C., Haberstroh, K.M., and Webster, T.J. (2003) Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials, 24, 1877–1887.
- McKenzie, J.L., Waid, M.C., Shi, R., and Webster, T.J. (2004) Decreased functions of astrocytes on carbon nanofiber materials. J. Biomater., 25, 1309–1317.
- Webster, T.J., Waid, M.C., McKenzie, J.L., Price, R.L., and Ejiofor, J.U. (2004) Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants. Nanotechnology, 15, 48–54.
- Fan, H., Wang, L., Zhao, K., Li, N., Shi, Z., Ge, Z., and Jin, Z. (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. J. Biomacromol., 11, 2345–2351.
- Furth, M.E., Atala, A., and Van Dyke, M.E. (2007) Smart biomaterials design for tissue engineering and regenerative medicine. J. Biomater., 28, 5068–5073.