Mass Spectrometry
Jon Barbour
Ruhr-University Bochum, Medical Proteome-Center, Universitätsstrasse 150, 44801 Bochum, Germany
Search for more papers by this authorSebastian Wiese
Ruhr-University Bochum, Medical Proteome-Center, Universitätsstrasse 150, 44801 Bochum, Germany
Search for more papers by this authorHelmut E. Meyer
Ruhr-University Bochum, Medical Proteome-Center, Universitätsstrasse 150, 44801 Bochum, Germany
Search for more papers by this authorBettina Warscheid
Ruhr-University Bochum, Medical Proteome-Center, Universitätsstrasse 150, 44780 Bochum, Germany
Search for more papers by this authorAndreas Tholey
Universität des Saarlandes, Technische Biochemie, Functional Proteomics Group, Campus A 1–5, 66123 Saarbrücken, Germany
Search for more papers by this authorMatthias Glückmann
Applied Biosystems, Mass Spectrometry and Proteomics, 64293 Darmstadt, Germany
Search for more papers by this authorKerstin Seemann
Merck KGaA, Analytical Development and, Bioanalytics, 64293 Darmstadt, Germany
Search for more papers by this authorMichael Karas
Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 91, 60438 Frankfurt, Germany
Search for more papers by this authorCloud P. Paweletz
Merck & CO., Merck Research Laboratories, Rahway NJ, USA
Search for more papers by this authorNathan A. Yates
Merck & CO., Merck Research Laboratories, Rahway NJ, USA
Search for more papers by this authorRonald C. Hendrickson
Merck & CO., Merck Research Laboratories, Rahway NJ, USA
Search for more papers by this authorJosef Kellermann
MPI für Biochemie, Proteinanalysis, Am Klopferspitz 19 a, 82152 Martinsried/Planegg, Germany
Search for more papers by this authorKathryn S. Lilley
University of Cambridge, Department of Biochemistry, Downing Site, Cambridge CB2 1QW, United Kingdom
Search for more papers by this authorTom Dunkley
University of Cambridge, Cambridge Centre for Proteomics, Department of Biochemistry, Downing Site, Cambridge CB2 1QW, United Kingdom
Search for more papers by this authorPawel Sadowski
University of Cambridge, Cambridge Centre for Proteomics, Department of Biochemistry, Downing Site, Cambridge CB2 1QW, United Kingdom
Search for more papers by this authorJon Barbour
Ruhr-University Bochum, Medical Proteome-Center, Universitätsstrasse 150, 44801 Bochum, Germany
Search for more papers by this authorSebastian Wiese
Ruhr-University Bochum, Medical Proteome-Center, Universitätsstrasse 150, 44801 Bochum, Germany
Search for more papers by this authorHelmut E. Meyer
Ruhr-University Bochum, Medical Proteome-Center, Universitätsstrasse 150, 44801 Bochum, Germany
Search for more papers by this authorBettina Warscheid
Ruhr-University Bochum, Medical Proteome-Center, Universitätsstrasse 150, 44780 Bochum, Germany
Search for more papers by this authorAndreas Tholey
Universität des Saarlandes, Technische Biochemie, Functional Proteomics Group, Campus A 1–5, 66123 Saarbrücken, Germany
Search for more papers by this authorMatthias Glückmann
Applied Biosystems, Mass Spectrometry and Proteomics, 64293 Darmstadt, Germany
Search for more papers by this authorKerstin Seemann
Merck KGaA, Analytical Development and, Bioanalytics, 64293 Darmstadt, Germany
Search for more papers by this authorMichael Karas
Johann Wolfgang Goethe University, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 91, 60438 Frankfurt, Germany
Search for more papers by this authorCloud P. Paweletz
Merck & CO., Merck Research Laboratories, Rahway NJ, USA
Search for more papers by this authorNathan A. Yates
Merck & CO., Merck Research Laboratories, Rahway NJ, USA
Search for more papers by this authorRonald C. Hendrickson
Merck & CO., Merck Research Laboratories, Rahway NJ, USA
Search for more papers by this authorJosef Kellermann
MPI für Biochemie, Proteinanalysis, Am Klopferspitz 19 a, 82152 Martinsried/Planegg, Germany
Search for more papers by this authorKathryn S. Lilley
University of Cambridge, Department of Biochemistry, Downing Site, Cambridge CB2 1QW, United Kingdom
Search for more papers by this authorTom Dunkley
University of Cambridge, Cambridge Centre for Proteomics, Department of Biochemistry, Downing Site, Cambridge CB2 1QW, United Kingdom
Search for more papers by this authorPawel Sadowski
University of Cambridge, Cambridge Centre for Proteomics, Department of Biochemistry, Downing Site, Cambridge CB2 1QW, United Kingdom
Search for more papers by this authorDr. Jörg von Hagen
Merck KGaA, Chromatography and Bioscience, Frankfurter Strasse 250, 64271 Darmstadt, Germany
Search for more papers by this authorSummary
This chapter contains sections titled:
-
A Practical Guideline to Electrospray Ionization Mass Spectrometry for Proteomics Application
-
References
-
Sample Preparation for the Application of MALDI Mass Spectrometry in Proteome Analysis
-
References
-
Sample Preparation for Label-Free Proteomic Analyses of Body Fluids by Fourier Transform Ion Cyclotron Mass Spectrometry
-
References
-
Sample Preparation for Differential Proteome Analysis: Labeling Technologies for Mass Spectrometry
-
References
-
Determining Membrane Protein Localization Within Subcellular Compartments Using Stable Isotope Tagging
-
References
References
- Dole, M., Mack, L.L., Hines, R.L., Mobley, R.C., Ferguson, L.D. and Alice, M.B. (1968) Molecular beams of macroions. J. Chem. Physics, 49, 2240.
- Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F. and Whitehouse, C.M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science, 246, 64–71.
- Fenn, J.B. (2002) Electrospray ionization mass spectrometry: How it all began. J. Biomol. Tech., 13, 101–118.
- Meng, C.K., Mann, M. and Fenn, J.B. (1988) Of protons or proteins. Z Phys D Atoms, Molecules and Clusters, 10, 361–368.
- Taylor, G. (1964) Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A, Math. Phys. Sci., 280, 383–397.
- Fenn, J.B., Mann, M., Meng, C.K., Wong, F.S. and Whitehouse, C.M. (1990) Electrospray ionization-principles and practice. Mass Spectrom. Rev., 9, 37–70.
- Wilm, M., Shevchenko, A., Houthaeve, T., Breit, S., Schweigerer, L., Fotsis, T. and Mann, M. (1996) Femtomole sequencing of proteins from polyacrylamide gels by nano-electrospray mass spectrometry. Nature, 379, 466–469.
- Wilm, M. and Mann, M. (1996) Analytical properties of the nanoelectrospray ion source. Anal. Chem., 68, 1–8.
- Schmidt, A., Karas, M. and Dulcks, T. (2003) Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J. Am. Soc. Mass Spectrom., 14, 492–500.
- Wilm, M. and Mann, M. (1994) Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last? Int. J. Mass Spectrom. Ion Process., 136, 167–180.
- Banks, J.F.J. (1996) High-sensitivity peptide mapping using packed-capillary liquid chromatography and electrospray ionization mass spectrometry. J. Chromatogr. A, 743, 99–104.
- Jonsson, A.P. (2001) Mass spectrometry for protein and peptide characterisation. Cell. Mol. Life Sci., 58, 868–884.
- Mann, M., Hendrickson, R.C. and Pandey, A. (2001) Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem., 70, 437–473.
- Steen, H. and Mann, M. (2004) The ABCs (and XYZs) of peptide sequencing. Nat. Rev. Mol. Cell. Biol., 5, 699–711.
- Medzihradszky, K.F. (2005) Peptide sequence analysis. Methods Enzymol., 402, 209–244.
- Wysocki, V.H., Tsaprailis, G., Smith, L.L. and Breci, L.A. (2000) Mobile and localized protons: a framework for understanding peptide dissociation. J. Mass Spectrom., 35, 1399–1406.
- Jonscher, K.R. and Yates, J.R. III, (1997) The quadrupole ion trap mass spectrometer – a small solution to a big challenge. Anal. Biochem., 244, 1–15.
- Brancia, F.L. (2006) Recent developments in ion-trap mass spectrometry and related technologies. Expert Rev. Proteomics, 3, 143–151.
- Schwartz, J.C., Senko, M.W. and Syka, J.E. (2002) A two-dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom., 13, 659–669.
- Wilcox, B.E., Hendrickson, C.L. and Marshall, A.G. (2002) Improved ion extraction from a linear octopole ion trap: SIMION analysis and experimental demonstration. J. Am. Soc. Mass Spectrom., 13, 1304–1312.
- Makarov, A., Denisov, E., Kholomeev, A., Balschun, W., Lange, O., Strupat, K. and Horning, S. (2006) Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal. Chem., 78, 2113–2120.
- Hu, Q., Noll, R.J., Li, H., Makarov, A., Hardman, M. and Graham Cooks, R. (2005) The Orbitrap: a new mass spectrometer. J. Mass Spectrom., 40, 430–443.
- Hardman, M. and Makarov, A.A. (2003) Interfacing the orbitrap mass analyzer to an electrospray ion source. Anal. Chem., 75, 1699–1705.
- Makarov, A. (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal. Chem., 72, 1156–1162.
- Domon, B. and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science, 312, 212–217.
- Smith, R.D. (2002) Trends in mass spectrometry instrumentation for proteomics. Trends Biotechnol. 20, S3-, S7.
- Yates, J.R. III, (2004) Mass spectral analysis in proteomics. Annu. Rev. Biophys. Biomol. Struct., 33, 297–316.
- Washburn, M.P., Wolters, D. and Yates, J.R. III, (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol., 19, 242–247.
- Wolters, D.A., Washburn, M.P. and Yates, J.R. III, (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem., 73, 5683–5690.
- Yates, J.R., III, Eng, J.K., McCormack, A.L. and Schieltz, D. (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal. Chem., 67, 1426–1436.
- Weinglass, A.B., Whitelegge, J.P. and Kaback, H.R. (2004) Integrating mass spectrometry into membrane protein drug discovery. Curr. Opin. Drug Discov. Devel., 7, 589–599.
- Anderson, N.L. and Anderson, N.G. (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics, 1, 845–867.
- Ramstrom, M., Hagman, C., Mitchell, J.K., Derrick, P.J., Hakansson, P. and Bergquist, J. (2005) Depletion of high-abundant proteins in body fluids prior to liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. J. Proteome Res., 4, 410–416.
- Constantopoulos, T.L., Jackson, G.S. and Enke, C.G. (1999) Effects of salt concentration on analyte response using electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom., 10, 625–634.
- Wang, H. and Hanash, S. (2003) Multi-dimensional liquid phase based separations in proteomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 787, 11–18.
- Jens Schindler, H.G.N. (2006) Aqueous polymer two-phase systems: Effective tools for plasma membrane proteomics. Proteomics 9999, NA.
- Macfarlane, D.E. (1989) Two dimensional benzyldimethyl-n-hexadecylammonium chloride–sodium dodecyl sulfate preparative polyacrylamide gel electrophoresis: a high capacity high resolution technique for the purification of proteins from complex mixtures. Anal. Biochem., 176, 457–463.
- Hartinger, J., Stenius, K., Hogemann, D. and Jahn, R. (1996) 16-BAC/SDS-PAGE: A two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal. Biochem., 240, 126–133.
- Fournier, M.L., Gilmore, J.M., Martin-Brown, S.A. and Washburn, M.P. (2007) Multidimensional separations-based shotgun proteomics. Chem. Rev., 107, 3654–3686.
- Mawuenyega, K.G., Kaji, H., Yamauchi, Y., Shinkawa, T., Saito, H., Taoka, M., Takahashi, N. and Isobe, T. (2003) Large-scale identification of Caenorhabditis elegans proteins by multidimensional liquid chromatography-tandem mass spectrometry. J. Proteome Res., 2, 23–35.
- Motoyama, A., Xu, T., Ruse, C.I., Wohlschlegel, J.A. and Yates, J.R. (2007) Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. Anal. Chem., 79, 3623–3634.
- Villen, J., Beausoleil, S.A., Gerber, S.A. and Gygi, S.P. (2007) Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad. Sci. USA, 104, 1488–1493.
- Gruhler, A., Olsen, J.V., Mohammed, S., Mortensen, P., Faergeman, N.J., Mann, M. and Jensen, O.N. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics, 4, 310–327.
- Larsen, M.R., Thingholm, T.E., Jensen, O.N., Roepstorff, P. and Jorgensen, T.J.D. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteomics, 4, 873–886.
- Xiong, L., Andrews, D. and Regnier, F. (2003) Comparative proteomics of glycoproteins based on lectin selection and isotope coding. J. Proteome Res., 2, 618–625.
- Durham, M. and Regnier, F.E. (2006) Targeted glycoproteomics: Serial lectin affinity chromatography in the selection of O-glycosylation sites on proteins from the human blood proteome. J. Chromatogr. A, 1132, 165–173.
- Candiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G.M., Carnemolla, B., Orecchia, P., Zardi, L. and Righetti, P.G. (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis, 25, 1327–1333.
- Nesterenko, M.V., Tilley, M. and Upton, S.J. (1994) A simple modification of Blum's silver stain method allows for 30 minute detection of proteins in polyacrylamide gels. J. Biochem. Biophys. Methods, 28, 239–242.
- Jensen, O.N., Wilm, M., Shevchenko, A. and Mann, M. (1999) Sample preparation methods for mass spectrometric peptide mapping directly from 2-DE gels. Methods Mol. Biol., 112, 513–530.
- Palmblad, M. and Vogel, J.S. (2005) Quantitation of binding, recovery and desalting efficiency of peptides and proteins in solid phase extraction micropipette tips. J. Chromatogr. B, 814, 309–313.
- Wille, S.M. and Lambert, W.E. (2007) Recent developments in extraction procedures relevant to analytical toxicology. Anal. Bioanal. Chem., 388, 1381–1391.
- Blonder, J., Chan, K.C., Issaq, H.J. and Veenstra, T.D. (2007) Identification of membrane proteins from mammalian cell/tissue using methanol-facilitated solubilization and tryptic digestion coupled with 2D-LC-MS/MS. Nat. Protocols, 1, 2784.
- Slysz, G.W., Lewis, D.F. and Schriemer, D.C. (2006) Detection and identification of sub-nanogram levels of protein in a NanoLC-Trypsin-MS system. J. Proteome Res., 5, 1959–1966.
- Medzihradszky, K.F. and Burlingame, A.L. (2005) In-solution digestion of proteins for mass spectrometry, in: Methods in Enzymology, Academic Press, pp. 50–65.
- Whitelegge, J., Halgand, F., Souda, P. and Zabrouskov, V. (2006) Top-down mass spectrometry of integral membrane proteins. Expert Rev. Proteomics, 3, 585–596.
- Reid, G.E. and McLuckey, S.A. (2002) ‘Top down’ protein characterization via tandem mass spectrometry. J. Mass Spectrom., 37, 663–675.
- Wells, J.M. and McLuckey, S.A. (2005) Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol., 402, 148–185.
- Heck, A.J. and Van Den Heuvel, R.H. (2004) Investigation of intact protein complexes by mass spectrometry. Mass Spectrom. Rev., 23, 368–389.
- Ruotolo, B.T. and Robinson, C.V. (2006) Aspects of native proteins are retained in vacuum. Curr. Opin. Chem. Biol., 10, 402–408.
- Benesch, J.L. and Robinson, C.V. (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr. Opin. Struct. Biol., 16, 245–251.
- Gruber, K.A., Stein, S., Brink, L., Radhakrishnan, A. and Udenfriend, S. (1976) Fluorometric assay of vasopressin and oxytocin: a general approach to the assay of peptides in tissues. Proc. Natl. Acad. Sci. USA, 73, 1314–1318.
- Schaefer, H., Chervet, J.P., Bunse, C., Joppich, C., Meyer, H.E. and Marcus, K. (2004) A peptide preconcentration approach for nano-high-performance liquid chromatography to diminish memory effects. Proteomics, 4, 2541–2544.
- Mitulovic, G., Smoluch, M., Chervet, J.P., Steinmacher, I., Kungl, A. and Mechtler, K. (2003) An improved method for tracking and reducing the void volume in nano HPLC-MS with micro trapping columns. Anal. Bioanal. Chem., 376, 946–951.
- Wilson, I.D., Nicholson, J.K., Castro-Perez, J., Granger, J.H., Johnson, K.A., Smith, B.W. and Plumb, R.S. (2005) High resolution ‘ultra performance’ liquid chromatography coupled to TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies. J. Proteome Res., 4, 591–598.
- Mitulovic, G. and Mechtler, K. (2006) HPLC techniques for proteomics analysis – a short overview of latest developments. Brief Funct. Genomic Proteomics, 5, 249–260.
- Apffel, A., Fischer, S., Goldberg, G., Goodley, P.C. and Kuhlmann, F.E. (1995) Enhanced sensitivity for peptide mapping with electrospray liquid chromatography-mass spectrometry in the presence of signal suppression due to trifluoroacetic acid-containing mobile phases. J. Chromatogr. A, 712, 177–190.
- Funk, J., Li, X. and Franz, T. (2005) Threshold values for detergents in protein and peptide samples for mass spectrometry. Rapid Commun. Mass Spectrom., 19, 2986–2988.
- Mihailova, A., Lundanes, E. and Greibrokk, T. (2006) Determination and removal of impurities in 2-D LC-MS of peptides. J. Separation Sci., 29, 576–581.
- Molina, H., Horn, D.M., Tang, N., Mathivanan, S. and Pandey, A. (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc. Natl. Acad. Sci. USA, 104, 2199–2204.
- Everley, P.A., Gartner, C.A., Haas, W., Saghatelian, A., Elias, J.E., Cravatt, B.F., Zetter, B.R. and Gygi, S.P. (2007) Assessing enzyme activities using stable isotope labeling and mass spectrometry. Mol. Cell. Proteomics, 10, 1771–1777.
- Liu, H., Sadygov, R.G. and Yates, J.R. III, (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem., 76, 4193–4201.
- Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J. and Mann, M. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteomics, 4, 1265–1272.
- Rappsilber, J., Ryder, U., Lamond, A.I. and Mann, M. (2002) Large-scale proteomic analysis of the human spliceosome. Genome Res., 12, 1231–1245.
- Colinge, J., Masselot, A., Cusin, I., Mahe, E., Niknejad, A., Argoud-Puy, G., Reffas, S., Bederr, N., Gleizes, A., Rey, P.A. and Bougueleret, L. (2004) High-performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics. Proteomics, 4, 1977–1984.
-
Perkins, D.N.,
Pappin, D.J.C.,
Creasy, D.M. and
Cottrell, J.S.
(1999)
Probability-based protein identification by searching sequence databases using mass spectrometry data.
Electrophoresis,
20,
3551–3567.
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar
- Sadygov, R.G., Cociorva, D. and Yates, J.R. III, (2004) Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat. Methods, 1, 195–202.
- Stephan, C., Reidegeld, K.A., Hamacher, M., van Hall, A., Marcus, K., Taylor, C., Jones, P., Muller, M., Apweiler, R., Martens, L., Korting, G., Chamrad, D.C., Thiele, H., Bluggel, M., Parkinson, D., Binz, P.A., Lyall, A. and Meyer, H.E. (2006) Automated reprocessing pipeline for searching heterogeneous mass spectrometric data of the HUPO Brain Proteome Project pilot phase. Proteomics, 6, 5015–5029.
- Elias, J.E. and Gygi, S.P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods, 4, 207–214.
- Elias, J.E., Haas, W., Faherty, B.K. and Gygi, S.P. (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat. Methods, 2, 667–675.
- Higdon, R., Hogan, J.M., Van Belle, G. and Kolker, E. (2005) Randomized sequence databases for tandem mass spectrometry peptide and protein identification. Omics, 9, 364–379.
- Blackler, A.R., Klammer, A.A., MacCoss, M.J. and Wu, C.C. (2006) Quantitative comparison of proteomic data quality between a 2D and 3D quadrupole ion trap. Anal. Chem., 78, 1337–1344.
- Wanders, R.J. and Waterham, H.R. (2006) Biochemistry of Mammalian peroxisomes revisited. Annu. Rev. Biochem., 75, 295–332.
- Wanders, R.J. and Waterham, H.R. (2006) Peroxisomal disorders: The single peroxisomal enzyme deficiencies. Biochim. Biophys. Acta, 1763, 1707–1720.
- Ofman, R., Speijer, D., Leen, R. and Wanders, R.J. (2006) Proteomic analysis of mouse kidney peroxisomes: identification of RP2p as a peroxisomal nudix hydrolase with acyl-CoA diphosphatase activity. Biochem. J., 393, 537–543.
- Wanders, R.J., van Roermund, C.W., Schor, D.S., ten Brink, H.J. and Jakobs, C. (1994) 2-Hydroxyphytanic acid oxidase activity in rat and human liver and its deficiency in the Zellweger syndrome. Biochim. Biophys. Acta, 1227, 177–182.
- Wiese, S., Gronemeyer, T., Ofman, R., Kunze, M., Grou, C.P., Almeida, J.A., Eisenacher, M., Stephan, C., Hayen, H., Schollenberger, L., Korosec, T., Waterham, H.R., Schliebs, W., Erdmann, R., Berger, J., Meyer, H.E., Just, W., Azevedo, J.E., Wanders, R.J. and Warscheid, B. (2007) Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol. Cell. Proteomics, 12, 2045–2057.
- Olsen, J.V., Ong, S.E. and Mann, M. (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics, 3, 608–614.
- Wessel, D. and Flugge, U.I. (1984) A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem., 138, 141–143.
- Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.
- Karas, M. and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem., 60, 2299–2301.
- Cohen, L.H. and Gusev, A.I. (2002) Small molecule analysis by MALDI mass spectrometry. Anal. Bioanal. Chem., 373, 571–586.
- Dreisewerd, K. (2003) The desorption process in MALDI. Chem. Rev., 103, 395–426.
- Karas, M. and Kruger, R. (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem. Rev., 103, 427–440.
- Knochenmuss, R. and Zenobi, R. (2003) MALDI ionization: the role of in-plume processes. Chem. Rev., 103, 441–452.
- Colby, S.M., King, T.B., Reilly, J.P. and Lubman, D.M. (1994) Improving the resolution of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry by exploiting the correlation between ion position and velocity. Rapid Commun. Mass Spectrom., 8, 865–868.
- Brown, R.S. and Lennon, J.J. (1995) Mass resolution improvement by incorporation of pulsed ion extraction in a matrix-assisted laser desorption/ionization linear time-of-flight mass spectrometer. Anal. Chem., 67, 1998–2003.
- Horneffer, V., Gluckmann, M., Kruger, R., Karas, M., Strupat, K. and Hillenkamp, F. (2006) Matrix-analyte-interaction in MALDI MS: pellet and nano-electrospray preparations. Int. J. Mass Spectrom., 249/250, 426–432.
- Schleuder, D., Hillenkamp, F. and Strupat, K. (1999) IR-MALDI-mass analysis of electroblotted proteins directly from the membrane: comparison of different membranes, application to on-membrane digestion, and protein identification by database searching. Anal. Chem., 71, 3238–3247.
- Ehring, H., Karas, M. and Hillenkamp, F. (1992) Role of photoionization and photochemistry in ionization processes of organic molecules and relevance for matrix-assisted laser desorption ionization mass spectrometry. Org. Mass Spectrom., 27, 472–480.
- Beavis, R.C. and Chait, B.T. (1989) Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun. Mass Spectrom., 3, 432–435.
- Beavis, R.C., Chaudhary, T., Chait, B.T. (1992) Alpha-cyano-4-hydroxycinnamic acid as a matrix for matrix assisted laser desorption mass spectrometry. Org. Mass Spectrom., 27, 156–158.
- Strupat, K., Karas, M. and Hillenkamp, F. (1991) 2,5-Dihydroxy benzoic acid – a new matrix for laser desorption/ionization mass-spectrometry. Int. J. Mass Spectrom. Ion Proc., 111, 89–102.
- Juhasz, P., Costello, C.E. and Biemann, K. (1993) Matrix assisted laser desorption ionization mass spectrometry with 2-(4-hydroxyphenylazo)benzoic acid matrix. J. Am. Soc. Mass Spectrom., 4, 399–409.
- Pieles, U., Zurcher, W., Schar, M. and Moser, H.E. (1993) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: a powerful tool for the mass and sequence analysis of natural and modified oligonucleotides. Nucleic Acids Res., 21, 3191–3196.
-
Gorman, J.J.,
Ferguson, B.L. and
Nguyen, T.B.
(1996)
Use of 2,6-dihydroxyacetophenone for analysis of fragile peptides, disulphide bonding and small proteins by matrix-assisted laser desorption/ionization.
Rapid Commun. Mass Spectrom.,
10,
529–536.
10.1002/(SICI)1097-0231(19960331)10:5<529::AID-RCM522>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- Pitt, J.J. and Gorman, J.J. (1996) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of sialylated glycopeptides and proteins using 2,6-dihydroxyacetophenone as a matrix. Rapid Commun. Mass Spectrom., 10, 1786–1788.
- Wu, K.J., Steding, A. and Becker, C.H. (1993) Matrix-assisted laser desorption time-of-flight mass spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun. Mass Spectrom., 7, 142–146.
- Wu, K., Shaler, T.A. and Becker, B.T. (1994) Time-of-flight mass spectrometry of underivatized single-stranded DNA oligomers by matrix-assisted laser desorption. Anal. Chem., 66, 1637–1645.
- Tang, K., Taranenko, N.I., Allman, S.L., Chen, C.H., Chang, L.Y. and Jacobson, K.B. (1994) Picolinic acid as a matrix for laser mass spectrometry of nucleic acids and proteins. Rapid Commun. Mass Spectrom., 8, 673–677.
- Karas, M., Bahr, U., Strupat, K., Hillenkamp, F., Tsarbopoulos, A. and Pramanik, B.N. (1995) Matrix dependence of metastable fragmentation of glycoproteins in MALDI TOF mass-spectrometry. Anal. Chem., 67, 675–679.
- Karas, M., Ehring, H., Nordhoff, E., Stahl, B., Strupat, K., Hillenkamp, F., Grehl, M. and Krebs, B. (1993) Matrix-assisted laser-desorption ionization mass-spectrometry with additives to 2, 5-dihydroxybenzoic acid. Org. Mass Spectrom., 28, 1476–1481.
-
Bahr, U.,
Stahl, B.,
Zeng, J.,
Gleitsmann, E. and
Karas, M.
(1997)
Delayed extraction time-of-flight MALDI mass spectrometry of proteins above 25,000 Da.
J. Mass Spectrom.,
32,
1111–1116.
10.1002/(SICI)1096-9888(199711)32:10<1111::AID-JMS567>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- Laugesen, S. and Roepstorff, P. (2003) Combination of two matrices results in improved performance of MALDI MS for peptide mass mapping and protein analysis. J. Am. Soc. Mass Spectrom., 14, 992–1002.
- Distler, A.M. and Allison, J. (2001) Improved MALDI-MS analysis of oligonucleotides through the use of fucose as a matrix additive. Anal. Chem., 73, 5000–5003.
- Distler, A.M. and Allison, J. (2001) 5-Methoxysalicylic acid and spermine: a new matrix for the matrix-assisted laser desorption/ionization mass spectrometry analysis of oligonucleotides. J. Am. Soc. Mass Spectrom., 12, 456–562.
- Zhang, L.K. and Gross, M.L. (2000) Matrix-assisted laser desorption/ionization mass spectrometry methods for oligodeoxynucleotides: improvements in matrix, detection limits, quantification, and sequencing. J. Am. Soc. Mass Spectrom., 11, 854–865.
- Kussmann, M., Nordhoff, E., Rahbek Nielsen, H., Haebel, S., Rossel Larsen, M., Jakobsen, L., Gobom, J., Mirgorodskaya, E., Kroll Kristensen, A., Palm, L. and Roepstorff P. (1997) Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J. Mass Spectrom., 32, 593–601.
- Smirnov, I.P., Zhu, X., Taylor, T., Huang, Y., Ross, P., Papayanopoulos, I.A., Martin, S.A. and Pappin, D.J. (2004) Suppression of alpha-cyano-4-hydroxycinnamic acid matrix clusters and reduction of chemical noise in MALDI-TOF mass spectrometry. Anal. Chem., 76, 2958–2965.
- Kjellstrom, S. and Jensen, O.N. (2004) Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins. Anal. Chem., 76, 5109–5117.
- Cohen, S.L. and Chait, B.T. (1996) Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins. Anal. Chem., 68, 31–37.
- Vorm, O., Roepstorff, P. and Mann, M. (1994) Improved resolution and very high-sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal. Chem., 66, 3281–3287.
- Dai, Y., Whittal, R.M. and Li, L. (1999) Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal. Chem., 71, 1087–1091.
- Xiang, F. and Beavis, R.C. (1994) A method to increase contaminant tolerance in protein MALDI by the fabrication of thin protein-doped polycrystalline films. Rapid Commun. Mass Spectrom., 8, 199–204.
- Chan, T.W.D., Colburn, A.W., Derrick, P.J., Gardiner, D.J. and Bowden, M. (1992) Suppression of matrix ions in ultraviolet-laser desorption – scanning electron-microscopy and Raman-spectroscopy of the solid samples. Org. Mass Spectrom., 27, 188–194.
- Gorisch, H. (1988) Drop dialysis: time course of salt and protein exchange. Anal. Biochem., 173, 393–398.
- Kussmann, M., Nordhoff, E., Rahbek Nielsen, H., Haebel, S., Rossel Larsen, M., Jakobsen, L., Gobom, J., Mirgorodskaya, E., Kroll Kristensen, A., Palm, L. and Roepstorff, P. (1997) Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptide and protein analytes. J. Mass Spectrom., 32, 593–601.
-
Beranova-Giorgianni, S. and
Desiderio, D.M.
(2000)
Mass spectrometry of the human pituitary proteome: identification of selected proteins.
Rapid Commun. Mass Spectrom.,
14,
161–167.
10.1002/(SICI)1097-0231(20000215)14:3<161::AID-RCM859>3.0.CO;2-7 CAS PubMed Web of Science® Google Scholar
- Rappsilber, J., Ishihama, Y. and Mann, M. (2003) Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem., 75, 663–670.
- Majors, R.E. and Shukla, A. (2005) Micropipette tip-based sample preparation for bioanalysis. LCGC North America, 23.
- Fella, K., Gluckmann, M., Hellmann, J., Karas, M., Kramer, P.J. and Kroger, M. (2005) Use of two-dimensional gel electrophoresis in predictive toxicology: identification of potential early protein biomarkers in chemically induced hepatocarcinogenesis. Proteomics, 5, 1914–1927.
- Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A. and Pappin, D.J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics, 3, 1154–1169.
- Kuhn-Holsken, E., Lenz, C., Sander, B., Luhrmann, R. and Urlaub, H. (2005) Complete MALDI-ToF MS analysis of cross-linked peptide-RNA oligonucleotides derived from nonlabeled UV-irradiated ribonucleoprotein particles. Rna, 11, 1915–1930.
- Sinz, A., Kalkhof, S. and Ihling, C. (2005) Mapping protein interfaces by a trifunctional cross-linker combined with MALDI-TOF and ESI-FTICR mass spectrometry. J. Am. Soc. Mass Spectrom., 16, 1921–1931.
- Yanes, O., Villanueva, J., Querol, E. and Aviles, F.X. (2005) Functional screening of serine protease inhibitors in the medical leech Hirudo medicinalis monitored by intensity fading MALDI-TOF MS. Mol. Cell. Proteomics, 4, 1602–1613.
- Shi, J., Koeppe, J.R., Komives, E.A. and Taylor, P. (2006) Ligand-induced conformational changes in the acetylcholine-binding protein analyzed by hydrogen-deuterium exchange mass spectrometry. J. Biol. Chem., 281, 12170–12177.
- Juhasz, P., Papayannopulos, I.A., Zeng, C., Papov, V. and Biemann, K. (1992) The Utility of Matrix-assisted Laser Desorption for the direct Analysis of enzymatic Digests of Proteins. Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics, Washington, DC, USA, 1913–1914.
- Beavis, R.C. and Chait, B.T. (1989) Matrix-assisted laser-desorption mass spectrometry using 355 nm radiation. Rapid Commun. Mass Spectrom., 3, 436–439.
- Karas, M., Nordhoff, E., Stahl, B., Strupat, K. and Hillenkamp, F. (1992) Matrix-Mixtures for a Superior Performance of Matrix-Assisted Laser Desorption Ionization Mass Spectrometry. Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics, Washington, DC, USA, pp. 368–369.
- Karas, M., Bahr, U., Stahl-Zeng, J. (1996) Large ions: their vaporization, detection and structural analysis. In: Steps Towards a More Refined Picture of the Matrix Function in UV MALDI (eds T. Baer C.Y. Ng and I. Powis), John Wiley, pp. 27.
- Papac, D.I., Wong, A. and Jones, A.J. (1996) Analysis of acidic oligosaccharides and glycopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chem., 68, 3215–3223.
-
Zhu, Y.F.,
Chung, C.N.,
Taranenko, N.I.,
Allman, S.L.,
Martin, S.A.,
Haff, L. and
Chen, C.H.
(1996)
The study of 2,3,4-trihydroxyacetophenone and 2,4,6-trihydroxyacetophenone as matrices for DNA detection in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
Rapid Commun. Mass Spectrom.,
10,
383–388.
10.1002/(SICI)1097-0231(199602)10:3<383::AID-RCM485>3.0.CO;2-W CAS PubMed Web of Science® Google Scholar
- Swiderek, K., Alpert, A., Heckendorf, A., Nugent, K. and Patterson, S. (1997) Structural analysis of proteins and peptides in the presence of detergents: Tricks of the trade. ABRF: News, Methods and Reviews, December, 17–25.
- Sabatine, M.S., Morrow, D.A., de Lemos, J.A., Gibson, C.M., Murphy, S.A., Rifai, N., McCabe, C., Antman, E.M., Cannon, C.P. and Braunwald, E. (2002) Multimarker approach to risk stratification in non-ST elevation acute coronary syndromes: simultaneous assessment of troponin I, C-reactive protein, and B-type natriuretic peptide. Circulation, 105, 1760–1763.
- Anderson, N.L. and Anderson, N.G. (2002) The human plasma proteome: History character, and diagnostic prospects. Mol. Cell. Proteomics, 1, 845–867.
- Polanski, M. and Anderson, L.N. (2006) A list of cancer biomarkers for targeted proteomics. Biomarker Insights, 2, 1–48.
- Petricoin, E.F., Belluco, C., Araujo, B.P. and Liotta, L.A. (2006) The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat. Rev. Cancer, 6, 961–967.
- Mann, M., Hendrickson, R.C. and Pandey, A. (2001) Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem., 70, 437–473.
- Ramstroem, M., Hagman, C., Mitchell, J.K., Derrick, P.J., Hakansson, P. and Bergquist, J. (2005) Depletion of high abundant proteins in body fluids prior to liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. J. Proteome Res., 4, 410–416.
- Lowenthal, M.S., Mehta, A.L., Frogale, K., Bandle, R.W., Arauja, R.P., Hood, B.L., Veenstra, T.D., Conrads, T.P., Goldsmith, P., Fischman, D., Petricoin, E.F. and Liotta, L.A. (2005) Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin. Chem., 51, 1933–1945.
- Zhang, H., Li, X.J., Martin, D.B. and Aebersold, R. (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotech., 21, 660–666.
- Liu, W., Qian, W.-J., Gritsenko, M.A., Camp, D.G., Monroe, M.E., Moore, R.J. and Smith, R.D. (2005) Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J. Proteome Res., 4, 2070–2080.
- Washburn, M.P., Wolters, D. and Yates, J.R. (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol., 19, 242–247.
- Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A. and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 1, 376–386.
- Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H. and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 19, 994–999.
- Meng, F., Wiener, M.C., Sachs, J.R., Burns, C., Verma, P., Paweletz, C.P., Mazur, M.T., Deyanova, G.D., Yates, N.A. and Hendrickson, R.C. (2007) Quantitative analysis of complex peptide mixtures using FTMS and differential mass spectrometry. J. Am. Soc. Mass Spectrom., 18, 226–233.
- Wang, G., Wu, W.W., Zheng, W., Chou, C.L. and Shen, R.F. (2005) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: Reproducibility, linearity, and application with complex proteomes. J. Proteome Res., 5, 1214–1223.
- Prakash, A., Mallick, P., Whiteaker, J., Zhang, H., Paulovich, A., Flory, M., Lee, H., Aebersold, R. and Schwikowski, B. (2006) Signal maps for mass spectrometry-based comparative proteomics. Mol. Cell. Proteomics, 5, 423–432.
- Li, X.J., Yi, E.C., Kemp, C.J., Zhang, H. and Aebersold, R. (2005) A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry. Mol. Cell. Proteomics, 4, 1328–1340.
- Fang, R., Elias, D.A., Monroe, M.E., Shen, Y., McIntosh, M. et al. (2006) Differential label-free quantitative proteomic analysis of Shewanella oneidensis cultured under aerobic and suboxic conditions by accurate mass and time tag approach. Mol. Cell Proteomics, 5, 714–725.
- Wiener, M.C., Sachs, J.R., Deyanova, E.G. and Yates, N.A. (2004) Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal. Chem., 76, 6085–6096.
- Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T.A., Hill, L.R., Norton, S., Kumar, P., Anderle, M. and Becker, C.H. (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal. Chem., 75, 4818–4826.
- Strittmatter, E.F., Ferguson, P.L., Tang, K. and Smith, R.D. (2003) Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry. J. Am. Soc. Mass Spectrom., 14, 980–991.
- Pieper, R., Gatlin, C.L., Makusky, A.J., Russo, P.S., Schatz, C.R. et al. (2003) The human serum proteome: display of nearly 3700 chromatographically separated protein spots on two-dimensional electrophoresis gels and identification of 325 distinct proteins. Proteomics, 7, 1345–1364.
- Adkins, N.J., Varnum, S.M., Auberry, K.J., Moore, R.J., Angell, N.H. et al. (2002) Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics, 1, 947–955.
- Jin, W.H., Dai, J., Xia, Q.C., Zou, H.F. and Zeng, R. (2005) Human plasma proteome analysis by multidimensional chromatography prefractionation and linear ion trap mass spectrometry identification. J. Proteome Res., 4, 613–619.
- Syka, J.E.P., Marto, J.A., Bai, D.L., Stevan, H., Senko, M.W., Schwartz, J.C., Ueberheide, B., Garcia, B., et al. (2004) Novel linear quadrupole ion trap/FT mass spectrometer: Performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res., 3, 621–626.
- Hardman, M. and Makarov, A.A. (2003) Interfacing the Orbitrap mass analyzer to an electrospray ion source. Anal. Chem., 75, 1699–1705.
- Yates, J.R., Cociorva, D., Liao, L.J. and Zabrouskov, V. (2006) Performance of a linear ion trap-Orbitrap hybrid for peptide analysis. Anal. Chem., 78, 493–500.
- Lee, J.W., Devanaarayan, V., Barrett, Y.C., Weiner, R., Allinson, J., Fountain, S., Keller, S., Weinryb, I., Green, M., Duan, L., Roger, J.A., Millham, R., O'Brien, P.J., Sailsatd, J., Khan, M., Ray, C. and Wagner, J.A. (2006) Fit-for-purpose method development and validation of successful biomarker measurement. Pharm. Res., 23, 312–328.
- Klose, J., Nock, C., Herrmann, M., Stuhler, K., Marcus, K., Bluggel, M., Krause, E., Schalkwyk, L.C., Rastan, S., Brown, S.D., Bussow, K., Himmelbauer, H. and Lehrach, H. (2002) Genetic analysis of the mouse brain proteome. Nat. Genet., 30, 385–393.
- Wildgruber, R., Reil, G., Drews, O., Parlar, H. and Gorg, A. (2002) Web-based two-dimensional database of Saccharomyces cerevisiae proteins using immobilized pH gradients from pH 6 to pH 12 and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Proteomics, 2, 727–732.
- Unlu, M., Morgan, M.E. and Minden, J.S. (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 18, 2071–2077.
-
Lundblad, R.L.
(2004)
Chemical Reactions for Protein Modification,
3rd edn.
CRC Press,
Boca Raton.
10.1201/9781420039511 Google Scholar
- Deleenheer, A.P. and Thienpont, L.M. (1992) Applications of isotope-dilution mass-spectrometry in clinical-chemistry, pharmacokinetics, and toxicology. Mass Spectrom. Rev., 11, 249–307.
- Roe, M.R. and Griffin, T.J. (2006) Gel-free mass spectrometry-based high throughput proteomics: Tools for studying biological response of proteins and proteomes. Proteomics, 6, 4678–4687.
- Leitner, A. and Lindner, W. (2006) Chemistry meets proteomics: The use of chemical tagging reactions for MS-based proteomics. Proteomics, 6, 5418–5434.
- Ong, S.E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol., 1, 252–262.
- Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A. and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 1, 376–386.
- Ibarrola, N., Molina, H., Iwahori, A. and Pandey, A. (2004) A novel proteomic approach for specific identification of tyrosine kinase substrates using [C-13]tyrosine. J. Biol. Chem., 279, 15805–15813.
- Ong, S.E., Mittler, G. and Mann, M. (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat. Methods, 1 (2), 119–126.
- Dieterich, D.C., Link, A.J., Graumann, J., Tirrell, D.A. and Schuman, E.M. (2006) Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA, 103, 9482–9487.
- Ishihama, Y., Sato, T., Tabata, T., Miyamoto, N., Sagane, K., Nagasu, T. and Oda, Y. (2005) Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards. Nat. Biotechnol., 23, 617–621.
- Wu, C.C., MacCoss, M.J., Howell, K.E., Matthews, D.E. and Yates, J.R. (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal. Chem., 76, 4951–4959.
- Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H. and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 17, 994–999.
- Krijgsveld, J., Ketting, R.F., Mahmoudi, T., Johansen, J., Artal-Sanz, M., Verrijzer, C.P., Plasterk, R.H. and Heck, A.J. (2003) Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics. Nat. Biotechnol., 21 (8), 927–931.
- Zhang, R., Sioma, C.S., Thompson, R.A., Xiong, L. and Regnier, F.E. (2002) Controlling deuterium isotope effects in comparative proteomics. Anal. Chem., 74, 3662–3669.
-
Fountoulakis, M.,
Juranville, J.F.,
Berndt, P.,
Langen, H. and
Suter, L.
(2001)
Two-dimensional database of mouse liver proteins. An update.
Electrophoresis,
22,
1747–1763.
10.1002/1522-2683(200105)22:9<1747::AID-ELPS1747>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- Fountoulakis, M., Berndt, P., Langen, H. and Suter, L. (2002) The rat liver mitochondrial proteins. Electrophoresis, 23, 311–328.
- Mann, M. and Jensen, O.N. (2003) Proteomic analysis of post-translational modifications. Nat. Biotechnol., 21, 255–261.
- Hansen, K.C., Schmitt-Ulms, G., Chalkley, R.J., Hirsch, J., Baldwin, M.A. and Burlingame, A.L. (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable C-13-isotope-coded affinity tag and multidimensional chromatography. Mol. Cell. Proteomics, 2, 299–314.
- Li, J.X., Steen, H. and Gygi, S.P. (2003) Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents – The yeast salinity stress response. Mol. Cell. Proteomics, 2, 1198–1204.
- Chakraborty, A. and Regnier, F.E. (2002) Global internal standard technology for comparative proteomics. J. Chromatogr. A, 949, 173–184.
- Yao, X.D., Freas, A., Ramirez, J., Demirev, P.A. and Fenselau, C. (2001) Proteolytic O-18 labeling for comparative proteomics: Model studies with two serotypes of adenovirus. Anal. Chem., 73, 2836–2842.
- Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A. and Pappin, D.J. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics, 3 (12), 1154–1169.
- Wiese, S., Reidegeld, K.A., Meyer, H.E. and Warscheid, R. (2006) Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics, 7 (3), 340–350.
- Schmidt, A., Kellermann, J. and Lottspeich, F. (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics, 5, 4–15.
- Kusmierz, J.J., Sumrada, R. and Desiderio, D.M. (1990) Fast-atom-bombardment mass-spectrometric quantitative-analysis of methionine-enkephalin in human pituitary tissues. Anal. Chem., 62, 2395–2400.
- Stemmann, O., Zou, H., Gerber, S.A., Gygi, S.P. and Kirschner, M.W. (2001) Dual inhibition of sister chromatid separation at metaphase. Cell, 107 (6), 715–726.
- Aebersold, R. (2003) Constellations in a cellular universe. Nature, 422, 115–116.
- Che, F.Y. and Fricker, L.D. (2002) Quantitation of neuropeptides in Cpe(fat)/Cpe(fat) mice using differential isotopic tags and mass spectrometry. Anal. Chem., 74, 3190–3198.
- Hsu, J.L., Huang, S.Y., Chow, N.H. and Chen, S.H. (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal. Chem., 75 (24), 6843–6852.
- Zhang, X., Jin, Q.K., Carr, S.A. and Annan, R.S. (2002) N-Terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry. Rapid Commun. Mass Spectrom., 16 (24), 2325–2332.
- Wang, S.H. and Regnier, F.E. (2001) Proteomics based on selecting and quantifying cysteine containing peptides by covalent chromatography. J. Chromatogr., 924, 345–357.
- Munchbach, M., Quadroni, M., Miotto, G. and James, P. (2000) Quantitation and facilitated de novo sequencing of proteins by isotopic N-terminal labeling of peptides with a fragmentation directing moiety. Anal. Chem., 72, 4047–4057.
- Ji, J.Y., Chakraborty, A., Geng, M., Zhang, X., Amini, A., Bina, M. and Regnier, F. (2000) Strategy for qualitative and quantitative analysis in proteomics based on signature peptides. J. Chromatogr. B, 745, 197–210.
- Mason, D.E. and Liebler, D.C. (2003) Quantitative analysis of modified proteins by LC-MS/MS of peptides labeled with phenyl isocyanate. J. Proteome Res., 2, 265–272.
- Hoang, V.M., Conrads, T.P., Veenstra, T.D., Blonder, J., Terunuma, A., Vogel, J.C. and Fisher, R.J. (2003) Quantitative proteomics employing primary amine affinity tags. J. Biomol. Techniques, 14 (3), 216–223.
- Lee, Y.H., Han, H., Chang, S.B. and Lee, S.W. (2004) Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability. Rapid Commun. Mass Spectrom., 18 (24), 3019–3027.
- Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T. and Hamon, C. (2003) Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem., 75, 4942.
- Cagney, G. and Emili, A. (2002) De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat. Biotechnol., 20, 163–170.
- Brancia, F.L., Montgomery, H., Tanaka, K. and Kumashiro, S. (2004) Guanidino labeling derivatization strategy for global characterization of peptide mixtures by liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Anal. Chem., 76, 2748–2755.
- Beardsley, R.L. and Reilly, J.P. (2003) Quantitation using enhanced signal tags: A technique for comparative proteomics. J. Proteome Res., 2, 15–21.
- Peters, E.C., Horn, D.M., Tully, D.C. and Brock, A. (2001) A novel multifunctional labeling reagent for enhanced protein characterization with mass spectrometry. Rapid Commun. Mass Spectrom., 15, 2387–2392.
- Zhou, H.L., Ranish, J.A., Watts, J.D. and Aebersold, R. (2002) Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry. Nat. Biotechnol., 20, 512–515.
- Olsen, J.V., Andersen, J.R., Nielsen, P.A., Nielsen, M.L., Figeys, D., Mann, M. and Wisniewski, J.R. (2004) HysTag – A novel proteomic quantification tool applied to differential display analysis of membrane proteins from distinct areas of mouse brain. Mol. Cell. Proteomics, 3, 82–92.
- Sechi, S. (2002) A method to identify and simultaneously determine the relative quantities of proteins isolated by gel electrophoresis. Rapid Commun. Mass Spectrom., 16, 1416–1424.
- Shen, M., Guo, L., Wallace, A., Fitzner, J., Eisenman, J., Jacobson, E. and Johnson, R.S. (2003) Isolation and isotope labeling of cysteine- and methionine-containing tryptic peptides – Application to the study of cell surface proteolysis. Mol. Cell. Proteomics, 2, 315–324.
- Sebastiano, R., Citterio, A., Lapadula, M. and Righetti, P.G. (2003) A new deuterated alkylating agent for quantitative proteomics. Rapid Commun. Mass Spectrom., 17, 2380–2386.
- Pasquarello, C., Sanchez, J.C., Hochstrasser, D.F. and Corthals, G.L. (2004) N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins. Rapid Commun. Mass Spectrom., 18, 117–127.
- Qiu, Y.C., Sousa, E.A., Hewick, R.M. and Wang, J.H. (2002) Acid-labile isotope-coded extractants: A class of reagents for quantitative mass spectrometric analysis of complex protein mixtures. Anal. Chem., 74, 4969–4979.
- Shi, Y., Xiang, R., Crawford, J.K., Colangelo, C.M., Horvath, C. and Wilkins, J.A. (2004) A simple solid phase mass tagging approach for quantitative proteomics. J. Proteome Res., 3, 104–111.
- Shi, Y., Xiang, R., Horvath, C. and Wilkins, J.A. (2005) Quantitative analysis of membrane proteins from breast cancer cell lines BT474 and MCF7 using multi-step solid phase mass tagging and 2D LC/MS. J. Proteome Res., 4, 1427–1433.
- Goodlett, D.R., Keller, A., Watts, J.D., Newitt, R., Yi, E.C., Purvine, S., Eng, J.K., von Haller, P., Aebersold, R. and Kolker, E. (2001) Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation 3. Rapid Commun. Mass Spectrom., 15, 1214–1221.
- Syka, J.E., Marto, J.A., Bai, D.L., Horning, S., Senko, M.W., Schwartz, J.C., Ueberheide, B., Garcia, B., Busby, S., Muratore, T., Shabanowitz, J. and Hunt, D.F. (2004) Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. J. Proteome Res., 3 (3), 621–626.
- Gevaert, K., Van Damme, J., Goethals, M., Thomas, G.R., Hoorelbeke, B., Demol, H., Martens, L., Puype, M., Staes, A. and Vandekerckhove, J. (2002) Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis: identification of more than 800 Escherichia coli proteins. Mol. Cell. Proteomics, 1, 896–903.
- Gevaert, K., Damme, P.V., Martens, L. and Vandekerckhove, J. (2005) Diagonal reverse-phase chromatography applications in peptide-centric proteomics: Ahead of catalogue-omics? Anal. Biochem., 345, 18–29.
- Goshe, M.B., Conrads, T.P., Panisko, E.A., Angell, N.H., Veenstra, T.D. and Smith, R.D. (2001) Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem., 73, 2578–2586.
- Qian, W.J., Gosche, M.B., Camp, D.G., Yu, L.R., Tang, K.Q. and Smith, R.D. (2003) Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. Anal. Chem., 75, 5441–5450.
- Amoresano, A., Marino, G., Cirulli, C. and Quemeneur, E. (2004) Mapping phosphorylation sites: a new strategy based on the use of isotopically-labeled dithiothreitol and mass spectrometry. Eur. J. Mass Spectrom., 10, 401–412.
- Vosseller, K., Hansen, K.C., Chalkley, R.J., Trinidad, J.C., Wells, L., Hart, G.W. and Burlingame, A.L. (2005) Quantitative analysis of both protein expression and serine/threonine post-translational modifications through stable isotope labeling with dithiothreitol. Proteomics, 5, 388–398.
- Wells, L., Vosseller, K., Cole, R.N., Cronshaw, J.M., Matunis, M.J. and Hart, G.W. (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics, 1 (10), 791–804.
- Kuyama, H., Watanabe, M., Toda, C., Ando, E., Tanaka, K. and Nishimura, O. (2003) An approach to quantitative proteome analysis by labeling tryptophan residues. Rapid Commun. Mass Spectrom., 17, 1642–1650.
- Dunkley, T.P.J., Hester, S., Shadforth, I., Runnions, J., Weimar, T., Hanton, S., Griffin, J.L., Bessant, C., Brandizzi, F., Hawes, C., Watson, R., Dupree, P. and Lilley, K.S. (2006) Mapping the Arabidopsis organelle proteome. Proc. Natl. Acad. Sci. USA, 103 (17), 6518–6523.
- Gabaldon, T. and Huynen, M.A. (2004) Shaping the mitochondrial proteome. Biochim. Biophys. Acta - Bioenergetics, 1659, 212–220.
- Peck, S.C. (2005) Update on proteomics in Arabidopsis. Where do we go from here? Plant Physiol., 138, 591–599.
- Hanton, S.L., Bortolotti, L.E., Renna, L., Stefano, G. and Brandizzi, F. (2005) Crossing the divide – transport between the endoplasmic reticulum and Golgi apparatus in plants. Traffic, 6, 267–277.
- Andersen, J.S., Lam, Y.W., Leung, A.K., Ong, S.E., Lyon, C.E., Lamond, A.I. and Mann, M. (2005) Nucleolar proteome dynamics. Nature, 433, 77–83.
- Foster, L.J., de Hoog, C.L., Zhang, Y., Zhang, Y., Xie, X., Mootha, V.K. and Mann, M. (2006) A mammalian organelle map by protein correlation profiling. Cell, 125 (1), 187–199.
- Dunkley, T.P.J., Watson, R., Griffin, J.L., Dupree, P. and Lilley, K.S. (2004) Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell. Proteomics, 3, 1128–1134.
- Gilchrist, A., Au, C.E., Hiding, J., Bell, A.W., Fernandez-Rodriguez, J., Lesimple, S., Nagaya, H., Roy, L., Gosline, S.J., Hallett, M., Paiement, J., Kearney, R.E., Nilsson, T. and Bergeron, J.J. (2006) Quantitative proteomics analysis of the secretory pathway. Cell, 127 (6), 1265–1281.
- Ross, P.L., Huang, Y.L.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S. et al. (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics, 3, 1154–1169.
- Shadforth, I., Dunkley, T., Lilley, K. and Bessant, C. (2005) i-Tracker: for quantitative proteomics using iTRAQ. BMC Genomics, 6, 145.
- Sadowski, P.G., Dunkley, T.P., Shadforth, I.P., Dupree, P., Bessant, C., Griffin, J.L. and Lilley, K.S. (2006) Quantitative proteomic approach to study subcellular localization of membrane proteins. Nat. Protoc., 1 (4), 1778–1789.
-
Sherrier, D.J.,
Prime, T.A. and
Dupree, P.
(1999)
Glycosylphosphatidylinositol-anchored cell-surface proteins from Arabidopsis.
Electrophoresis,
20,
2027–2035.
10.1002/(SICI)1522-2683(19990701)20:10<2027::AID-ELPS2027>3.0.CO;2-A CAS PubMed Web of Science® Google Scholar
- Ford, T., Graham, J. and Rickwood, D. (1994) Iodixanol: a nonionic iso-osmotic centrifugation medium for the formation of self-generated gradients. Anal. Biochem., 220, 360–366.
- Graham, J., Ford, T. and Rickwood, D. (1994) The preparation of subcellular organelles from mouse liver in self-generated gradients of iodixanol. Anal. Biochem., 220, 367–373.