Toxicity of Nanomaterials – New Carbon Conformations and Metal Oxides
Harald F. Krug
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Department of Molecular Environmental Toxicology, Postfach 3640, Karlsruhe, Germany, 76021
Search for more papers by this authorKatrin Kern
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Department of Molecular Environmental Toxicology, Postfach 3640, Karlsruhe, Germany, 76021
Search for more papers by this authorJörg M. Wörle-Knirsch
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Department of Molecular Environmental Toxicology, Postfach 3640, Karlsruhe, Germany, 76021
Search for more papers by this authorSilvia Diabaté
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Department of Molecular Environmental Toxicology, Postfach 3640, Karlsruhe, Germany, 76021
Search for more papers by this authorHarald F. Krug
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Department of Molecular Environmental Toxicology, Postfach 3640, Karlsruhe, Germany, 76021
Search for more papers by this authorKatrin Kern
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Department of Molecular Environmental Toxicology, Postfach 3640, Karlsruhe, Germany, 76021
Search for more papers by this authorJörg M. Wörle-Knirsch
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Department of Molecular Environmental Toxicology, Postfach 3640, Karlsruhe, Germany, 76021
Search for more papers by this authorSilvia Diabaté
Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Department of Molecular Environmental Toxicology, Postfach 3640, Karlsruhe, Germany, 76021
Search for more papers by this authorAbstract
The sections in this article are
- Introduction
- Nanoscale Materials and Adverse Health Effects: Precautionary Measures
- Hazard Identification and Exposure Estimation
- Production and Use of “New Carbon Modifications” and Metal Oxides
- Health Aspects
- Uptake and Possible Transport, Depots, and Accumulation in Living Organisms
- Biological Effects on Cellular Mechanisms
- Metal Oxides
- Size Dependency
- Inflammation
- Acute Toxicity
- Genotoxicity
- Cytoskeletal Organization
- New Carbon Modifications
- Inflammation
- Genotoxicity
- Metal Oxides
- Possible Hazards – Toxicological Impacts
- Risk Characterization – A Conclusion
- Opportunities and Risks of Nanomaterials
- New Materials without Risks?
References
- 1 Agrawal, A. K., Singhal, A., Gupta, C. M. Functional drug targeting to erythrocytes in vivo using antibody bearing liposomes as drug vehicles. Biochem. Biophys. Res. Commun. 1987, 148, 357–361.
- 2 Clark, A. P. Liposomes as drug delivery systems. Cancer Pract. 1998, 6, 251–253.
- 3 Desmukh, D. S., Bear, W. D., Wisniewski, H. M., Brockerhoff, H. Long-living liposomes as potential drug carriers. Biochem. Biophys. Res. Commun. 1978, 82, 328–334.
- 4 Fendler, J. H., Romero, A. Liposomes as drug carriers. Life Sci. 1977, 20, 1109–1120.
- 5 Gabizon, A. Liposomes as a drug delivery system in cancer chemotherapy. Horiz. Biochem. Biophys. 1989, 9, 185–211.
- 6 Gregoriadis, G. Drug entrapment in liposomes. FEBS Lett. 1973, 36, 292–296.
- 7 Gregoriadis, G., Wills, E. J., Swain, C. P., Tavill, A. S. Drug-carrier potential of liposomes in cancer chemotherapy. Lancet 1974, 1, 1313–1316.
- 8 Kshirsagar, N. A., Gokhale, P. C., Pandya, S. K. Liposomes as drug delivery system in leishmaniasis. J. Assoc. Physicians India 1995, 43, 46–48.
- 9 Speiser, P. P. Nanoparticles and liposomes: A state of the art. Methods Find. Exp. Clin. Pharmacol. 1991, 13, 337–342.
- 10 Allen, T. M., Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818–1822.
- 11 Chen, Y., Xue, Z., Zheng, D., Xia, K., Zhao, Y., Liu, T., Long, Z., Xia, J. Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Curr. Gene Ther. 2003, 3, 273–279.
- 12 Gupta, A. K., Curtis, A. S. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials 2004, 25, 3029–3040.
- 13 Jordan, A., Wust, P., Scholz, R., Tesche, B., Fahling, H., Mitrovics, T., Vogl, T., Cervos-Navarro, J., Felix, R. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro. Int. J. Hyperthermia 1996, 12, 705–722.
- 14 Li, K. C., Guccione, S., Bednarski, M. D. Combined vascular targeted imaging and therapy: A paradigm for personalized treatment. J. Cell Biochem. 2002, 39(Suppl), 65–71.
- 15 Shi Kam, N. W., Jessop, T. C., Wender, P. A., Dai, H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into Mammalian cells. J. Am. Chem. Soc. 2004, 126, 6850–6851.
- 16 Otsuka, H., Nagasaki, Y., Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 2003, 55, 403–419.
- 17 Maynard, A. D., Baron, P. A., Foley, M., Shvedova, A. A., Kisin, E. R., Castranova, V. Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material. J. Toxicol. Environ. Health A 2004, 67, 87–107.
- 18 Krug, H. F., Kern, K., Diabaté, S. Toxikologische Aspekte der Nanotechnologie. Versuch einer Abwägung. Technikfolgenabsch.: Theorie Praxis 2004, 13, 58–64.
- 19 Krug, H. F., Kern, K., Wörle-Knirsch J. M., Diabaté, S. Ultrafine particles. Health risk and possible applications. Internist. prax. 2004, 45, 443–455.
- 20 Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F., Smalley, R. E. C-60 – Buckminsterfullerene. Nature 1985, 318, 162–163.
- 21 Iijima, S., Ajayan, P. M., Ichihashi, T. Growth model for carbon nanotubes. Phys. Rev. Lett. 1992, 69, 3100–3103.
- 22 Ball, P. Roll up for the revolution. Nature 2001, 414, 142–144.
- 23 Price, R. L., Ellison, K., Haberstroh, K. M., Webster, T. J. Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J. Biomed. Mater. Res. A 2004, 70, 129–138.
- 24 Ibald-Mulli, A., Wichmann, H. E., Kreyling, W. G., Peters, A. Epidemiological evidence on health effects of ultrafine particles. J. Aerosol Med. 2002, 15, 189–201.
- 25 Wichmann, H. E., Spix, C., Tuch, T., Wolke, G., Peters, A., Heinrich, J., Kreyling, W. G., Heyder, J. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: Role of particle number and particle mass. Res. Rep. Health Eff. Inst. 2000, 98, 5–86.
- 26 Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., Zeger, S. L. Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N. Engl. J. Med. 2000, 343, 1742–1749.
- 27 Hughes, L. S., Cass, G. R., Gone, J., Ames, M., Olmez, I. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environ. Sci. Technol. 1998, 32, 1153–1161.
- 28 Baggs, R. B., Ferin, J., Oberdörster, G. Regression of pulmonary lesions produced by inhaled titanium dioxide in rats. Vet. Pathol. 1997, 34, 592–597.
- 29 Ferin, J., Oberdörster, G., Penney, D. P. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 1992, 6, 535–542.
- 30 Oberdörster, G., Cox, C., Gelein, R. Intratracheal instillation versus intratracheal-inhalation of tracer particles for measuring lung clearance function. Exp. Lung Res. 1997, 23, 17–34.
- 31 Warheit, D. B. Nanoparticles: Health impacts? Mater. Today 2004, 7, 32–35.
- 32 Oberdörster, G. Toxicology of ultrafine particles: In vivo studies. Philos. Trans. R. Soc. Lond. Ser. A – Math. Phys. Eng. Sci. 2000, 358, 2719–2739.
- 33 Oberdörster, G., Oberdörster, E., Oberdörster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.
- 34 Hext, P. M., Tomenson, J. A., Thompson, P. Titanium dioxide: Inhalation toxicology and epidemiology. Ann. Occup. Hyg. 2005, 49, 461–472.
- 35 Bermudez, E., Mangum, J. B., Wong, B. A., Asgharian, B., Hext, P. M., Warheit, D. B., Everitt, J. I. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol. Sci. 2004, 77, 347–357.
- 36 Takenaka, S., Karg, E., Kreyling, W. G., Lentner, B., Schulz, H., Ziesenis, A., Schramel, P., Heyder, J. Fate and toxic effects of inhaled ultrafine cadmium oxide particles in the rat lung. Inhal. Toxicol. 2004, 16(Suppl 1), 83–92.
- 37 Kern, K., Wörle-Knirsch, J. M., Krug, H. F. Nanonoxes: Nanoparticle uptake, transport and toxicity. Signal Transduct. 2004, 3–4, 149.
- 38 Peters, K., Unger, R. E., Kirkpatrick, C. J., Gatti, A. M., Monari, E. Effects of nano-scaled particles on endothelial cell function in vitro: Studies on viability, proliferation and inflammation. J. Mater. Sci. Mater. Med. 2004, 15, 321–325.
- 39 Renwick, L. C., Donaldson, K., Clouter, A. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol. Appl. Pharmacol. 2001, 172, 119–127.
- 40 Möller, W., Hofer, T., Ziesenis, A., Karg, E., Heyder, J. Ultrafine particles cause cytoskeletal dysfunctions in macrophages. Toxicol. Appl. Pharmacol. 2002, 182, 197–207.
- 41 Wottrich, R., Diabaté, S., Krug, H. F. Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture. Int. J. Hyg. Environ. Health 2004, 207, 353–361.
- 42 Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Lunts, A., Kreyling, W. G., Cox, C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health A 2002, 65, 1531–1543.
- 43 Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdörster, G., Ziesenis, A. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 2002, 65, 1513–1530.
- 44 Nemmar, A., Hoet, P. H., VanQuickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M. F., VanBilloen, H., Mortelmans, L., Nemery, B. Passage of inhaled particles into the blood circulation in humans. Circulation 2002, 105, 411–414.
- 45 Brown, J. S., Zeman, K. L., Bennett, W. D. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am. J. Respir. Crit. Care Med. 2002, 166, 1240–1247.
- 46 Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W. G., Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445.
- 47 Khandoga, A., Stampfl, A., Takenaka, S., Schulz, H., Radykewicz, R., Kreyling, W. G., Krombach, F. Ultrafine particles exert prothrombotic but not inflammatory effects on the hepatic microcirculation in healthy mice in vivo. Circulation 2004, 109, 1320–1325.
- 48 Nemmar, A., Hoylaerts, M. F., Hoet, P. H., Nemery, B. Possible mechanisms of the cardiovascular effects of inhaled particles: Systemic translocation and prothrombotic effects. Toxicol. Lett. 2004, 149, 243–253.
- 49 Semmler, M., Seitz, J., Erbe, F., Mayer, P., Heyder, J., Oberdörster, G., Kreyling, W. G. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal. Toxicol. 2004, 16, 453–459.
- 50 Cherukuri, P., Bachilo, S. M., Litovsky, S. H., Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004, 126, 15638–15639.
- 51 Diabaté, S., Pulskamp, K., Krug, H. F. Carbon nanotubes induce oxidative stress, inflammatory responses and cell death in pulmonary epithelial cells and macrophages. Signal Transduct. 2004, 3–4, 116.
- 52 Kapp, N., Kreyling, W. G., Schulz, H., Im Hof, V., Gehr, P., Semmler, M., Geiser, M. Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Microsc. Res. Technol. 2004, 63, 298–305.
- 53 Warheit, D. B., Laurence, B. R., Reed, K. L., Roach, D. H., Reynolds, G. A., Webb, T. R. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol. Sci. 2004, 77, 117–125.
- 54 Lam, C. W., James, J. T., McCluskey, R., Hunter, R. L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 2004, 77, 126–134.
- 55 Berry, C. C., Wells, S., Charles, S., Aitchison, G., Curtis, A. S. Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials 2004, 25, 5405–5413.
- 56 De Campos, A. M., Diebold, Y., Carvalho, E. L., Sanchez, A., Alonso, M. J. Chitosan nanoparticles as new ocular drug delivery systems: In vitro stability, in vivo fate, and cellular toxicity. Pharm. Res. 2004, 21, 803–810.
- 57 Gualbert, J., Shahgaldian, P., Coleman, A. W. Interactions of amphiphilic calix[4]arene-based solid lipid nanoparticles with bovine serum albumin. Int. J. Pharm. 2003, 257, 69–73.
- 58 Kristl, J., Volk, B., Ahlin, P., Gombac, K., Sentjurc, M. Interactions of solid lipid nanoparticles with model membranes and leukocytes studied by EPR. Int. J. Pharm. 2003, 256, 133–140.
- 59 Lidke, D. S., Nagy, P., Heintzmann, R., Arndt-Jovin, D. J., Post, J. N., Grecco, H. E., Jares-Erijman, E. A., Jovin, T. M. Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nat. Biotechnol. 2004, 22, 198–203.
- 60 Maye, I., De Fraissinette, A., Cruz-Orive, L. M., VonDerscher, J., Richter, F., Gehr, P. Comparison of the rate of phagocytosis of orthorhombic cyclosporine A (CsA) and latex particles by alveolar macrophages from hamsters. Cell Mol. Life Sci. 1997, 53, 689–696.
- 61 Pryhuber, G. S., Huyck, H. L., Baggs, R., Oberdörster, G., Finkelstein, J. N. Induction of chemokines by low-dose intratracheal silica is reduced in TNFR I (p55) null mice. Toxicol. Sci. 2003, 72, 150–157.
- 62 Beck-Speier, I., Dayal, N., Karg, E., Maier, K. L., Roth, C., Ziesenis, A., Heyder, J. Agglomerates of ultrafine particles of elemental carbon and TiO2 induce generation of lipid mediators in alveolar macrophages. Environ. Health Perspect. 2001, 109(Suppl 4), 613–618.
- 63 Beck-Speier, I., Dayal, N., Karg, E., Maier, K. L., Schulz, H., Schumann, G., Ziesenis, A., Heyder, J. Formation of prostaglandin E2, leukotriene B4 and 8-isoprostane in alveolar macrophages by ultrafine particles of elemental carbon. Adv. Exp. Med. Biol. 2003, 525, 117–120.
- 64 Oberdörster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 2004, 112, 1058–1062.
- 65 Park, K. H., Chhowalla, M., Iqbal, Z., Sesti, F. Single-walled carbon nanotubes are a new class of ion channel blockers. J. Biol. Chem. 2003, 278, 50212–50216.
- 66 Kreyling, W. G. Intracellular particle dissolution in alveolar macrophages. Environ. Health Perspect. 1992, 97, 121–126.
- 67 Lundborg, M., Johard, U., Johansson, A., Eklund, A., Falk, R., Kreyling, W. G., Camner, P. Phagolysosomal morphology and dissolution of cobalt oxide particles by human and rabbit alveolar macrophages. Exp. Lung Res. 1995, 21, 51–66.
- 68 Panyam, J., Zhou, W. Z., Prabha, S., Sahoo, S. K., Labhasetwar, V. Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: Implications for drug and gene delivery. FASEB J. 2002, 16, 1217–1226.
- 69 Cruz, T., Gaspar, R., Donato, A., Lopes, C. Interaction between polyalkylcyanoacrylate nanoparticles and peritoneal macrophages: MTT metabolism, NBT reduction, and NO production. Pharm. Res. 1997, 14, 73–79.
- 70 Knaapen, A. M., Borm, P. J., Albrecht, C., Schins, R. P. Inhaled particles and lung cancer. Part A: Mechanisms. Int. J. Cancer 2004, 109, 799–809.
- 71 Thibodeau, M., Giardina, C., Hubbard, A. K. Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolysis. Toxicol. Sci. 2003, 76, 91–101.
- 72 Carlisle, R. C., Bettinger, T., Ogris, M., Hale, S., Mautner, V., Seymour, L. W. Adenovirus hexon protein enhances nuclear delivery and increases transgene expression of polyethylenimine/plasmid DNA vectors. Mol. Ther. 2001, 4, 473–483.
- 73 Gallagher, J., Sams, R., Inmon, J., Gelein, R., Elder, A., Oberdörster, G., Prahalad, A. K. Formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in rat lung DNA following subchronic inhalation of carbon black. Toxicol. Appl. Pharmacol. 2003, 190, 224–231.
- 74 Lucarelli, M., Gatti, A. M., Savarino, G., Quattroni, P., Martinelli, L., Monari, E., Boraschi, D. Innate defence functions of macrophages can be biased by nano-sized ceramic and metallic particles. Eur. Cytokine Netw. 2004, 15, 339–346.
- 75 Zhang, Q., Kusaka, Y., Zhu, X., Sato, K., Mo, Y., Kluz, T., Donaldson, K. Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J. Occup. Health 2003, 45, 23–30.
- 76 Churg, A., Gilks, B., Dai, J. Induction of fibrogenic mediators by fine and ultrafine titanium dioxide in rat tracheal explants. Am. J. Physiol. 1999, 277, L975–L982.
- 77 Koper, O. B., Klabunde, J. S., Marchin, G. L., Klabunde, K. J., Stoimenov, P., Bohra, L. Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr. Microbiol. 2002, 44, 49–55.
- 78
Rajagopalan, S.,
Koper, O.,
Decker, S.,
Klabunde, K. J.
Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures.
Chemistry
2002,
8,
2602–2607.
10.1002/1521-3765(20020603)8:11<2602::AID-CHEM2602>3.0.CO;2-3 CAS PubMed Web of Science® Google Scholar
- 79 Huang, J., Best, S. M., Bonfield, W., Brooks, R. A., Rushton, N., Jayasinghe, S. N., Edirisinghe, M. J. In vitro assessment of the biological response to nano-sized hydroxyapatite. J. Mater. Sci. Mater. Med. 2004, 15, 441–445.
- 80 Okeson, C. D., Riley, M. R., Riley-Saxton, E. In vitro alveolar cytotoxicity of soluble components of airborne particulate matter: Effects of serum on toxicity of transition metals. Toxicol. In Vitro 2004, 18, 673–680.
- 81 Heinrich, U., Fuhst, R., Rittinghausen, S., Creutzenberg, O., Bellmann, B., Koch, W., Levsen, K. Chronic inhalation exposure of Wistar rats and 2 different strains of mice to diesel-engine exhaust, carbon-black, and titanium-dioxide. Inhal. Toxicol. 1995, 7, 533–556.
- 82 Völkel, K., Krug, H. F., Diabaté, S. Formation of reactive oxygen species in rat epithelial cells upon stimulation with fly ash. J. Biosci. 2003, 28, 51–55.
- 83 Wilson, M. R., Lightbody, J. H., Donaldson, K., Sales, J., Stone, V. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol. Appl. Pharmacol. 2002, 184, 172–179.
- 84 Beck-Speier, I., Dayal, N., Karg, E., Maier, K. L., Schumann, G., Schulz, H., Semmler, M., Takenaka, S., Stettmaier, K., Bors, W., Ghio, A., Samet, J. M., Heyder, J. Oxidative stress and lipid mediators induced in alveolar macrophages by ultrafine particles. Free Radic. Biol. Med. 2005, 38, 1080–1092.
- 85 Brown, D. M., Donaldson, K., Borm, P. J., Schins, R. P., Dehnhardt, M., Gilmour, P., Jimenez, L. A., Stone, V. Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles. Am. J. Physiol Lung Cell Mol. Physiol. 2004, 286, L344–L353.
- 86 Castranova, V. Signaling pathways controlling the production of inflammatory mediators in response to crystalline silica exposure: Role of reactive oxygen/nitrogen species. Free Radic. Biol. Med. 2004, 37, 916–925.
- 87 Driscoll, K. E., Carter, J. M., Howard, B. W., Hassenbein, D. G., Pepelko, W., Baggs, R. B., Oberdörster, G. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol. Appl. Pharmacol. 1996, 136, 372–380.
- 88 Roth, C., Ferron, G. A., Karg, E., Lentner, B., Schumann, G., Takenaka, S., Heyder, J. Generation of ultrafine particles by spark discharging. Aerosol Sci. Technol. 2004, 38, 228–235.
- 89 Harder, V., Gilmour, P., Lentner, B., Karg, E., Takenaka, S., Ziesenis, A., Stampfl, A., Kodavanti, U., Heyder, J., Schulz, H. Cardiovascular responses in unrestrained WKY rats to inhaled ultrafine carbon particles. Inhal. Toxicol. 2005, 17, 29–42.
- 90 Frampton, M. W., Utell, M. J., Zareba, W., Oberdorster, G., Cox, C., Huang, L. S., Morrow, P. E., Lee, F. E., Chalupa, D., Frasier, L. M., Speers, D. M., Stewart, J. Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res. Rep. Health Eff. Inst. 2004, 1–47.
- 91 Brown, D. M., Stone, V., Findlay, P., MacNee, W., Donaldson, K., Increased inflammation and intracellular calcium caused by ultrafine carbon black is independent of transition metals or other soluble components. Occup. Environ. Med. 2000, 57, 685–691.
- 92 Kim, Y. M., Reed, W., Lenz, A. G., Jaspers, I., Silbajoris, R., Nick, H. S., Samet, J. M. Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells. Am. J. Physiol Lung Cell Mol. Physiol. 2005, 288, L432–L441.
- 93 Adelmann, P., Baierl, T., Drosselmeyer, E., Politis, C., Polzer, G., Seidel, A., Schwegler-Berry, D., Steinleitner, C. Effects of fullerenes on alveolar macrophages in vitro. In: Toxic and Carcinogenic effects of Solid Particles in the Respiratory Tract (ed. U. Mohr, D. L. Dungworth, J. Maulderly, G. Oberdörster), ILSI Press, Washington DC, 1994.
- 94 Baierl, T., Drosselmeyer, E., Seidel, A., Hippeli, S. Comparison of immunological effects of fullerene C60 and raw soot from fullerene production on alveolar macrophages and macrophage like cells in vitro. Exp. Toxicol. Pathol. 1996, 48, 508–511.
- 95 Baierl, T., Seidel, A. In vitro effects of fullerene C-60 and fullerene black on immunofunctions of macrophages. Fullerene Sci. Technol. 1996, 4, 1073–1085.
- 96 Hesterberg, T. W., Hart, G. A. Synthetic vitreous fibers: A review of toxicology research and its impact on hazard classification. Crit. Rev. Toxicol. 2001, 31, 1–53.
- 97 Godleski, J. J. Role of asbestos in etiology of malignant pleural mesothelioma. Thorac. Surg. Clin. 2004, 14, 479–487.
- 98 Huczko, A., Lange, H., Calko, E., Grubek-Jaworska, H., Droszcz, P. Physiological testing of carbon nanotubes: Are they asbestos-like? Fullerene Sci. Technol. 2001, 9, 251–254.
- 99 Huczko, A., Lange, H., Calko, E. Fullerenes: Experimental evidence for a null risk of skin irritation and allergy. Fullerene Sci. Technol. 1999, 7, 935–939.
- 100 Huczko, A., Lange, H. Carbon nanotubes: Experimental evidence for a null risk of skin irritation and allergy. Fullerene Sci. Technol. 2001, 9, 247–250.
- 101 Eedy, D. J. Carbon-fibre-induced airborne irritant contact dermatitis. Contact Dermatitis 1996, 35, 362–363.
- 102 Shvedova, A. A., Castranova, V., Kisin, E. R., Schwegler-Berry, D., Murray, A. R., Gandelsman, V. Z., Maynard, A., Baron, P. Exposure to carbon nanotube material: Assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 2003, 66, 1909–1926.
- 103 Monteiro-Riviere, N. A., Nemanich, R. J., Inman, A. O., Wang, Y. Y., Riviere, J. E. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol. Lett. 2005, 155, 377–384.
- 104 Jia, G., Wang, H., Yan, L., Wang, X., Pei, R., Yan, T., Zhao, Y., Guo, X. Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ. Sci. Technol. 2005, 39, 1378–1383.
- 105 Pantarotto, D., Briand, J. P., Prato, M., Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 16–17.
- 106 Aitken, R. J., Creely, K. S., Tran, C. L. Nanoparticles: An occupational hygiene review. HSE Books, Inst. of Occupational Medicine, Edinburgh, UK, 2004, Vol. 274.
- 107 Krug, H. F., Grunwald, A. Risk assessment and risk management. In: Assessment and Perspectives of Nanotechnology (ed. H. Brune, H. Ernst, A. Grunwald, W. Grünwald, H. Hofmann, P. Janich, H. F. Krug, M. Mayor, G. Schmid, U. Simon, V. Vogel, C. F. Gethmann), Springer, Berlin, 2005.