Rosin-Derived Monomers and Their Progress in Polymer Application
Jifu Wang
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorShaofeng Liu
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorJuan Yu
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorChuanwei Lu
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorChunpeng Wang
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorFuxiang Chu
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorJifu Wang
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorShaofeng Liu
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorJuan Yu
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorChuanwei Lu
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorChunpeng Wang
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorFuxiang Chu
Chinese Academy of Forestry, Institute of Chemical Industry of Forestry Products, 210042 Nanjing, P. R. China
Search for more papers by this authorChuanbing Tang
University of South Carolina, Dept. of Chemistry & Biochemistry, 631 Sumter Street, SC, United States
Search for more papers by this authorChang Y. Ryu
Rensselaer Polytechnic Institute, Dept. of Chemistry & Chemical Biology, 110 8th Street, NY, United States
Search for more papers by this authorSummary
This chapter reviews the recent advances in rosin-based monomers and polymers, as well as the recent efforts on rosin based thermoplastic elastomers and antimicrobial materials. Rosin mainly consists of various resin acids (major components), a small amount of fatty acids and non-acidic components. Resin acids in rosin are a mixture with a basic molecular structure of one carboxyl and two double bonds on a hydrogenated phenanthrene ring. The chapter talks about rosin- derived monomers for main-chain polymers, rosin-derived monomers, and rosin-derived monomers for three-dimensional rosin-based polymer. Reversible addition-fragmentation chain transfer (RAFT) is a robust technique used for the preparation of well-defined polymers. The RAFT polymerization was performed with rosin-derived monomer, initiator (AIBN, azobisisobutyronitrile) and RAFT transfer agent. Besides the traditional plastic application, recent efforts in the fabrication of rosin-based elastomers and antimicrobial polymers have been encouraging, which might open an avenue to explore value-added rosin-based polymers.
References
- Corma, A., Iborra, S., and Velty, A. (2007) Chemical routes for the transformation of biomass into chemicals. Chem. Rev. , 107, 2411–2502.
- Dodds, D.R. and Gross, R.A. (2007) Chemicals from biomass. Science , 318, 1250–1251.
- Gunera, F.S., Yagci, Y., and Erciyes, A.T. (2006) Polymers from triglyceride oils. Prog. Polym. Sci. , 31, 633–670.
- Gandini, A. (2008) Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules , 41 (24), 9491–9504.
- Meier, M.A.R., Metzgerb, J.O., and Schubert, U.S. (2007) Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. , 36, 1788–1802.
- Moon, R.J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J. (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. , 40 (7), 3941–3994.
- Yao, K. and Tang, C. (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules , 46 (5), 1689–1712.
- DOE and USDA (1999) The Technology Roadmap for Plant/Crop-Based Renewable Resources 2020. Renewables Vision 2020, Executive Steering Group.
-
Maiti, S., Das, S., Maiti, M., and Ray, A. (1983) in
Polymer Application of Renewable-Resource Materials
(eds C.E. Carraher and L.H. Sperling), Plenum Press, New York, p. 129.
10.1007/978-1-4613-3503-0_10 Google Scholar
- Maiti, S., Ray, S.S., and Kundu, A.K. (1989) Rosin: a renewable resource for polymers and polymer chemicals. Prog. Polym. Sci. , 14 (3), 297–338.
- Silvestre, A.J.D. and Gandini, A. (2008) in Monomers, Polymers and Composites from Renewable Resources (eds M.N. Belgacem and A. Gandini), Elsevier, Amsterdam, pp. 67–88.
- Huang, X., Qian, X., Li, J., Lou, S., and Shen, J. (2015) Starch/rosin complexes for improving the interaction of mineral filler particles with cellulosic fibers. Carbohydr. Polym. , 117, 78–82.
- Chen, P., Zeng, X., Li, H., Liu, X., Liu, D., and Li, X. (2012) Preparation and characterization of polyacrylate/polymerized rosin composite emulsions by seeded semicontinuous emulsion polymerization. J. Appl. Polym. Sci. , 124 (6), 4694–4701.
- Wang, J., Chu, F., Wang, C., and Lin, M. (2010) Development of polymerizable rosin-based monomer used for free radical polymerization and its polymer. Mater. Rev. , 13, 71–74.
- Wang, J., Lin, M., and Wang, C. (2009) Development of polymerizable rosin-based monomer used for step polymerization. Polym. Mater. Sci. Eng. , 25 (4), 170–174.
- Wang, J., Yao, K., Korich, A.L., Li, S.i., Ma, S., Ploehn, H.J., Iovine, P.M., Wang, C., Chu, F., and Tang, C. (2011) Combining renewable gum rosin and lignin: towards hydrophobic polymer composites by controlled polymerization. J. Polym. Sci., Part A: Polym. Chem. , 49 (17), 3728–3738.
- Wang, J., Yao, K., Wang, C., Tang, C., and Jiang, X. (2013) Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. J. Mater. Chem. B , 1 (17), 2324–2332.
- Wang, J., Yao, K., Wilbon, P., Wang, P., Chu, F., Tang, C., and Zhang, J. (2012) in Rosin-Based Chemicals and Polymers (ed. J. Zhang), Smithers Rapra Technology, pp. 85–127.
- Wilbon, P.A., Chu, F., and Tang, C. (2013) Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Commun. , 34 (1), 8–37.
- Yao, K., Wang, J., Zhang, W., Lee, J.S., Wang, C., Chu, F., He, X., and Tang, C. (2011) Degradable rosin-ester–caprolactone graft copolymers. Biomacromolecules , 12 (6), 2171–2177.
- Liu, X., Xin, W., and Zhang, J. (2009) Rosin-based acid anhydrides as alternatives to petrochemical curing agents. Green Chem. , 11 (7), 1018–1025.
- Zhang, J. (2012) Rosin-Based Chemicals and Polymers , Smithers Rapra Technology.
- Wang, J., Chen, Y.P., Yao, K., Wilbon, P.A., Zhang, W., Ren, L., Zhou, J., Nagarkatti, M., Wang, C., Chu, F., He, X., Decho, A.W., and Tang, C. (2012) Robust antimicrobial compounds and polymers derived from natural resin acids. Chem. Commun. , 48 (6), 916–918.
- Ganewatta, M.S., Chen, Y.P., Wang, J., Zhou, J., Ebalunode, J., Nagarkatti, M., Decho, A.W., and Tang, C. (2014) Bio-inspired resin acid-derived materials as anti-bacterial resistance agents with unexpected activities. Chem. Sci. , 5 (5), 2011–2016.
- Liu, Y., Yao, K., Chen, X., Wang, J., Wang, Z., Ploehn, H.J., Wang, C., Chu, F., and Tang, C. (2014) Sustainable thermoplastic elastomers derived from renewable cellulose, rosin and fatty acids. Polym. Chem. , 5 (9), 3170–3181.
- Yu, J., Liu, Y., Liu, X., Wang, C., Wang, J., Chu, F., and Tang, C. (2014) Integration of renewable cellulose and rosin towards sustainable copolymers by “grafting from” ATRP. Green Chem. , 16 (4), 1854–1864.
- Yuan, L., Hamidi, N., Smith, S., Clemons, F., Hamidi, A., and Tang, C. (2015) Molecular characterization of biodegradable natural resin acid-substituted polycaprolactone. Eur. Polym. J. , 62, 43–50.
- Song, Z. (2002) Application of rosin in fine chemicals (I) – composition and properties. J. Chem. Ind. For. Prod. , 36 (4), 29–33.
-
Fieser, L.F. and Campbell, W.P. (1938) Substitution reactions of dehydroabietic acid.
J. Am. Chem. Soc.
, 60 (11), 2631–2636.
10.1021/ja01278a024 Google Scholar
- Wang, J.F., Wu, H., and Lin, M.T. (2009) Synthesis and characterization of rosin-based UV curable functional monomer. Paint Coat. Ind. , 39 (7), 13–16.
- Wang, J.F., Lin, M.T., Chu, F.X., Wang, C.P., and Liu, M.H. (2008) Synthesis and characterization of allyl ester of dehydroabietic acid. Biomass Chem. Eng. , 42 (3), 1–4.
- Wang, J.F., Lin, M.T., Wang, C.P., and Chu, F.X. (2008) Synthesis and characterization of (2-Acryloyloxy) ethyl ester of dehydroabietic acid. Fine Chem. , 25 (11), 1135–1139.
- Wang, J., Lin, M., Wang, C., and Chu, F. (2009) Study on the synthesis, characterization, and kinetic of bulk polymerization of disproportionated rosin (β-acryloxyl ethyl) ester. J. Appl. Polym. Sci. , 113 (6), 3757–3765.
- Zheng, Y., Yao, K., Lee, J., Chandler, D., Wang, J.-F., Wang, C.-P., Chu, F.-X., and Tang, C. (2010) Well-defined renewable polymers derived from gum rosin. Macromolecules , 43, 5922–5924.
- Liu, X., Xin, W., and Zhang, J. (2010) Rosin-derived imide-diacids as epoxy curing agents for enhanced performance. Bioresour. Technol. , 101 (7), 2520–2524.
- Xie, H. and Cheng, Z. (1999) Study on the synthesis and properties of acrylpimaric acid polyester polyols. Chem. Ind. For. Prod. , 19 (2), 61–65.
-
Bicu, I. and Mustata, F. (1999) Diels-Alder polymerization of some derivatives of abietic acid.
Angew. Makromol. Chem.
, 264 (1), 21–29.
10.1002/(SICI)1522-9505(19990201)264:1<21::AID-APMC21>3.0.CO;2-4 Google Scholar
- Ray, S.S., Kundu, A.K., Maiti, M., Ghosh, M., and Maiti, S. (1984) Polymers from renewable resources, part 7. Synthesis and properties of polyamideimide from rosin-maleic anhydride adduct. Angew. Makromol. Chem. , 122 (1), 153–167.
- Hoa, L.T.N., Pascault, J.P., My, L.T., and Son, C.P.N. (1993) Unsaturated polyester prepolymer from rosin. Eur. Polym. J. , 29 (4), 491–495.
- Roy, S.S., Kundu, A.K., and Maiti, S. (1990) Polymers from renewable resources-13. Polymers from rosin acrylic acid adduct. Eur. Polym. J. , 26, 471–474.
- Atta, A.M., El-Saeed, S.M., and Farag, R.K. (2006) New vinyl ester resins based on rosin for coating applications. React. Funct. Polym. , 66 (12), 1596–1608.
- Do, H.-S., Park, J.-H., and Kim, H.-J. (2009) Synthesis and characteristics of photoactive-hydrogenated rosin epoxy methacrylate for pressure sensitive adhesives. J. Appl. Polym. Sci. , 111 (3), 1172–1176.
- Duan, W., Chen, C., Jiang, L., and Li, G. (2008) Preparation and characterization of the graft copolymer of chitosan with poly[rosin-(2-acryloyloxy)ethyl ester]. Carbohydr. Polym. , 73 (4), 582–586.
- Lewis, J.B. and Hedrick, G.W. (1964) Vinyl esters of rosin. J. Polym. Sci., Part A-1: Polym. Chem. , 4, 2026–2027.
- Lewis, J.B., Lloyd, W.D., and Hedrick, G.W. (1960) Preparation and some reactions of the vinyl ester of maleopimaric acid. J. Org. Chem. , 25, 1206–1208.
- Liepins, R. and Marvel, C.S. (1966) Polymers from vinyl esters of perhydrogenated rosin. J. Polym. Sci., Part A-1: Polym. Chem. , 4 (8), 2003–2014.
- Sowa, J.R. and Marvel, C.S. (1966) Preparation of homopolymers and copolymers of vinyl maleopimarate acid anhydride. J. Polym. Sci., Part B: Polym. Lett. , 4 (6), 431–437.
- Flory, P.J. (1946) Fundamental principles of condensation polymerization. Chem. Rev. , 39 (1), 137–197.
- Zhang, Y., Liu, Z., and Bi, L. (1991) The development of unsaturated polyester resin modified by rosin derivatives. China Plast. Ind. , 19(1), 21–23
- Deng, L. and Wu, Y. (1994) Synthesis of rosin maleic anhydride polyesterimide. Chem. Reagents , 16 (5), 273–276.
- Ray, S.S., Kundu, A.K., and Maiti, S. (1988) Polymers from renewable resources. XII. Structure property relation in polyamideimides from rosin. J. Appl. Polym. Sci. , 36 (6), 1283–1293.
- Kundu, A.K., Ray, S.S., and Maiti, S. (1986) Polymer blends—4: blends of resole with polyamideimide synthesized from rosin. Eur. Polym. J. , 22 (10), 821–825.
- Kundu, A.K., Ray, S.S., Adhikari, B., and Maiti, S. (1986) Polymer blends—2: compatibility and thermal behaviour of blends of novolac and polyamideimide from rosin. Eur. Polym. J. , 22 (5), 369–372.
- Kim, S.J., Kim, B.J., Jang, D.W., Kim, S.H., Park, S.Y., Lee, J.-H., Lee, S.-D., and Choi, D.H. (2001) Photoactive polyamideimides synthesized by the polycondensation of azo-dye diamines and rosin derivative. J. Appl. Polym. Sci. , 79 (4), 687–695.
- Ray, S.S., Kundu, A.K., Ghosh, M., and Maiti, S. (1985) A new route to synthesize polyamideimide from rosin. Eur. Polym. J. , 21 (2), 131–133.
- Bicu, I. and Mustata, F. (2000) Water soluble polymers from Diels-Alder adducts of abietic acid as paper additives. Macromol. Mater. Eng. , 280-281 (1), 47–53.
- Bicu, I. and Mustata, F. (2007) Polymers from a levopimaric acid–acrylic acid Diels–Alder adduct: synthesis and characterization. J. Polym. Sci., Part A: Polym. Chem. , 45 (24), 5979–5990.
- Mustata, F. and Bicu, I. (2010) A novel route for synthesizing esters and polyesters from the Diels–Alder adduct of levopimaric acid and acrylic acid. Eur. Polym. J. , 46 (6), 1316–1327.
- Bicu, I. and Mustata, F. (1993) Study of the condensation products of abietic acid with formaldehyde. Angew. Makromol. Chem. , 213 (1), 169–179.
- Atta, A.M., Mansour, R., Abdou, M.I., and Sayed, A.M. (2004) Epoxy resins from rosin acids: synthesis and characterization. Polym. Adv. Technol. , 15 (9), 514–522.
- Bicu, I. and Mustata, F. (2004) Ketone derivatives of diels-alder adducts of levopimaric acid with acrylic acid and maleic anhydride: synthesis, characterization, and polymerization. J. Appl. Polym. Sci. , 92 (4), 2240–2252.
- Bicu, I. and Mustata, F. (2005) Polymers from a levopimaric acid–acrylonitrile Diels–Alder adduct: synthesis and characterization. J. Polym. Sci., Part A: Polym. Chem. , 43 (24), 6308–6322.
- Wilbon, P.A., Gulledge, A.L., Benicewicz, B.C., and Tang, C. (2013) Renewable rosin fatty acid polyesters: the effect of backbone structure on thermal properties. Green Mater. , 1 (2), 96–104.
-
Odian, G. (2004)
Principles of Polymerization
, 4th edn, John Wiley & Sons, Inc., Hoboken, NJ.
10.1002/047147875X Google Scholar
- Reppe, W. (1936) Vinyl esters of carboxylic acids and their production. US Patent 2066075.
- Fukuda, W. and Marvel, C.S. (1968) Polymers from the vinyl ester of dehydroabietic acid. J. Polym. Sci., Part A-1: Polym. Chem. , 6, 1281–1291.
- Fukuda, W. and Marvel, C.S. (1968) Polymers from the vinyl esters of different samples of hydrogenated rosins. J. Polym. Sci., Part A-1: Polym. Chem. , 6, 1050–1054.
- Wang, J., Yu, J., Liu, Y., Chen, Y., Wang, C., Tang, C., and Chu, F. (2013) Synthesis and characterization of a novel rosin-based monomer: free-radical polymerization and epoxy curing. Green Mater. , 1 (2), 105–113.
- Wang, J., Lin, M., Wang, C., Yu, J., and Chu, F. (2011) Synthesis and characterization of (2-methacryloyloxy) ethyl ester of dehydroabietic acid. Chem. Ind. For. Prod. , 31 (6), 20–24.
- Wilbon, P.A., Zheng, Y., Yao, K., and Tang, C. (2010) Renewable rosin acid-degradable caprolactone block copolymers by atom transfer radical polymerization and ring-opening polymerization. Macromolecules , 43 (21), 8747–8754.
- Yu, J., Wang, C., Ding, L., Chen, M., Liu, Y., Fu, L., Cai, Z., Wang, J., and Chu, F. (2014) Synthesis, characterization and polymerization of activity of flexible monomer derived from dehydroabietic acid. Chem. Ind. For. Prod. , 34 (2), 40–44.
- Duan, W., Shen, C., Fang, H., and Li, G. (2009) Synthesis of dehydroabietic acid-modified chitosan and its drug release behavior. Carbohydr. Res. , 344 (1), 9–13.
- Chen, Y., Wilbon, P.A., Chen, Y.P., Zhou, J., Nagarkatti, M., Wang, C., Chu, F., Decho, A.W., and Tang, C. (2012) Amphipathic antibacterial agents using cationic methacrylic polymers with natural rosin as pendant group. RSC Adv. , 2 (27), 10275–10282.
- Matyjaszewski, K. and Xia, J.H. (2001) Atom transfer radical polymerization. Chem. Rev. , 101 (9), 2921–2990.
- Kamigaito, M., Ando, T., and Sawamoto, M. (2001) Metal-catalyzed living radical polymerization. Chem. Rev. , 101 (12), 3689–3745.
- Wang, J.S. and Matyjaszewski, K. (1995) Controlled living radical polymerization – atom-transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. , 117 (20), 5614–5615.
- Patten, T.E. and Matyjaszewski, K. (1998) Atom transfer radical polymerization and the synthesis of polymeric materials. Adv. Mater. , 10 (12), 901–915.
- Davis, K.A. and Matyjaszewski, K. (2002) Statistical, gradient and segmented copolymers by controlled/living radical polymerizations. Adv. Polym. Sci. , 159, 1–169.
- Moad, G., Rizzardo, E., and Thang, S.H. (2005) Living radical polymerization by the RAFT process. Aust. J. Chem. , 58 (6), 379–410.
- Chiefari, J., Chong, Y.K., Ercole, F., Krstina, J., Jeffery, J., Le, T.P., Mayadunne, R.T.A., Meijs, G.F., Moad, C.L., Moad, G., Rizzardo, E., and Thang, S.H. (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules , 31, 5559–5562.
- Chiefari, J., Mayadunne, R.T.A., Moad, C.L., Moad, G., Rizzardo, E., Postma, A., Skidmore, M., and Thang, S.H. (2003) Thiocarbonylthio compounds (SdC(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z. Macromolecules , 36, 2273–2283.
- Hawker, C.J., Bosman, A.W., and Harth, E. (2001) New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. , 101 (12), 3661–3688.
- Benoit, D., Chaplinski, V., Braslau, R., and Hawker, C.J. (1999) Development of a universal alkoxyamine for “living” free radical polymerizations. J. Am. Chem. Soc. , 121 (16), 3904–3920.
- Ganewatta, M.S., Miller, K.P., Singleton, S.P., Mehrpouya-Bahrami, P., Chen, Y.P., Yan, Y., Nagarkatti, M., Nagarkatti, P., Decho, A.W., and Tang, C. (2015) Antibacterial and biofilm-disrupting coatings from resin acid-derived materials. Biomacromolecules , 16 (10), 3336–3344.
- Matyjaszewski, K. and Xia, J. (2001) Atom transfer radical polymerization. Chem. Rev. (Washington, DC) , 101 (9), 2921–2990.
- Finn, M.G. and Fokin, V.V. (2010) Click chemistry: function follows form. Chem. Soc. Rev. , 39 (4), 1231–1232.
- Kappe, C.O. and Van der Eycken, E. (2010) Click chemistry under non-classical reaction conditions. Chem. Soc. Rev. , 39 (4), 1280–1290.
- Nandivada, H., Jiang, X., and Lahann, J. (2007) Click chemistry: versatility and control in the hands of materials scientists. Adv. Mater. , 19 (17), 2197–2208.
- Qin, A., Lam, J.W.Y., and Tang, B. (2010) Click polymerization. Chem. Soc. Rev. , 39 (7), 2522–2544.
- Such, G.K., Gunawan, S.T., Liang, K., and Caruso, F. (2013) Design of degradable click delivery systems. Macromol. Rapid Commun. , 34(11), 894–902.
- Binder, W.H. and Sachsenhofer, R. (2007) ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. , 28 (1), 15–54.
- Klemm, D., Heublein, B., Fink, H., and Bohn, A. (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. , 44 (22), 3358–3393.
- Roy, D., Semsarilar, M., Guthrie, J.T., and Perrier, S. (2009) Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. , 38 (7), 2046–2064.
- Kim, Y.S. and Kadla, J.F. (2010) Preparation of a thermoresponsive lignin-based biomaterial through atom transfer radical polymerization. Biomacromolecules , 11 (4), 981–988.
- Ragauskas, A.J., Beckham, G.T., Biddy, M.J., Chandra, R., Chen, F., Davis, M.F., Davison, B.H., Dixon, R.A., Gilna, P., Keller, M., Langan, P., Naskar, A.K., Saddler, J.N., Tschaplinski, T.J., Tuskan, G.A., and Wyman, C.E. (2014) Lignin valorization: improving lignin processing in the biorefinery. Science , 344 (6185), 709–719.
- Thakur, V.K., Thakur, M.K., Raghavan, P., and Kessler, M.R. (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chem. Eng. , 2 (5), 1072–1092.
- Abeer, M.M., Amin, M.C.I.M., Lazim, A.M., Pandey, M., and Martin, C. (2014) Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation. Carbohydr. Polym. , 110, 505–512.
- Hussain, M.A. (2008) Unconventional synthesis and characterization of novel abietic acid esters of hydroxypropylcellulose as potential macromolecular prodrugs. J. Polym. Sci., Part A: Polym. Chem. , 46 (2), 747–752.
- Blanche, P.A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R.A., Yamamoto, M., and Peyghambarian, N. (2010) Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature , 468 (7320), 80–83.
- Zhang, Y., Shang, S., Zhang, X., Wang, D., and Hourston, D.J. (1996) Influence of the composition of rosin-based rigid polyurethane foams on their thermal stability. J. Appl. Polym. Sci. , 59 (7), 1167–1171.
- Jin, J., Chen, C., Wang, D., Hu, C., Zhu, S., Vanoverloop, L., and Randall, D. (2002) Structures and physical properties of rigid polyurethane foam prepared with rosin-based polyol. J. Appl. Polym. Sci. , 84 (3), 598–604.
- Li, C. and Song, Z. (2000) Synthesis and property of dimaleopimaric acid type poly (urethane-amideimide) baking paint. Chem. Ind. For. Prod. , 20 (1), 41–46.
- Xu, X., Song, Z., Shang, S., Cui, S., and Rao, X. (2011) Synthesis and properties of novel rosin-based water-borne polyurethane. Polym. Int. , 60 (10), 1521–1526.
- Sánchez–Adsuar, M.S., Papon, E., and Villenave, J.J. (2001) Properties of thermoplastic polyurethane elastomers chemically modified by rosin. J. Appl. Polym. Sci. , 82 (14), 3402–3408.
- Liu, H., Cui, S., Shang, S., Wang, D., and Song, J. (2013) Properties of rosin-based waterborne polyurethanes/cellulose nanocrystals composites. Carbohydr. Polym. , 96 (2), 510–515.
- Shang, S., Zhang, Y., and Wang, D. (1996) Study on the synthesis of dimaleopimaric acid esters polyols. Chem. Ind. For. Prod. , 16 (2), 1–6.
- Zhang, M., Zhou, Y., Li, S., Liu, H., and Hu, L. (2007) Study on synthesis of novel rosin polyether polyol. Mod. Chem. Ind. , 27 (s2), 328–330.
- Atta, A.M., Abdel-Rauf, M.E., Maysour, N.E., and Gafer, A.K. (2010) Water-based oil spill dispersants based on rosin formaldehyde resins. J. Dispersion Sci. Technol. , 31 (5), 583–595.
- Zhang, Y. and Hourston, D.J. (1998) Rigid interpenetrating polymer network foams prepared from a rosin-based polyurethane and an epoxy resin. J. Appl. Polym. Sci. , 69 (2), 271–281.
- Zhang, L., Jiang, Y., Xiong, Z., Liu, X., Na, H., Zhang, R., and Zhu, J. (2013) Highly recoverable rosin-based shape memory polyurethanes. J. Mater. Chem. A , 1 (10), 3263–3267.
- Xia, J., Shang, S., Xie, H., Huang, H., and Wang, D. (2002) Study on curing reaction and properties of the acrylic modified rosin based epoxy resin. Thermosetting Resin , 17 (6), 1–5.
- Xia, J., Shang, S., Xie, H., Huang, H., and Wang, D. (2004) Acrylic-modified rosin epoxy/turpentine polyester-polyurethane IPN structure and its properties. Thermosetting Resin , 19 (3), 9–12.
- Xia, J., Shang, S., Xie, H., Huang, H., and Wang, D. (2002) Study on synthesis of epoxy resin by acrylic modified rosin. Chem. Ind. For. Prod. , 22 (3), 15–18.
- Chen, Q., Li, X., Ke, J., and Liu, Y. (2007) Synthesis and characteristics of rosin modified phenol-aldehyde epoxy resins. Guangzhou Chem. , 4, 6–11.
- Atta, A., Mansour, R., Abdou, M., and El-Sayed, A. (2005) Synthesis and characterization of tetra-functional epoxy resins from rosin. J. Polym. Res. , 12 (2), 127–138.
- Mantzaridis, C., Brocas, A., Llevot, A., Cendejas, G., Auvergne, R., Caillol, S., Carlotti, S., and Cramail, H. (2013) Rosin acid oligomers as precursors of DGEBA-free epoxy resins. Green Chem. , 15 (11), 3091–3098.
- Huang, K., Zhang, J., Li, M., Xia, J., and Zhou, Y. (2013) Exploration of the complementary properties of biobased epoxies derived from rosin diacid and dimer fatty acid for balanced performance. Ind. Crops Prod. , 49, 497–506.
- Liu, X., Li, C., Zhang, D., Xiao, Y., and Guan, G. (2006) Synthesis, characterization and properties of poly(butylene succinate) modified with rosin maleopimaric acid anhydride. Polym. Int. , 55 (5), 545–551.
- Liu, X. and Zhang, J. (2010) High-performance biobased epoxy derived from rosin. Polym. Int. , 59 (5), 607–609.
- Qin, J., Liu, H., Zhang, P., Wolcott, M., and Zhang, J. (2014) Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties. Polym. Int. , 63 (4), 760–765.
- Wang, H., Liu, X., Liu, B., Zhang, J., and Xian, M. (2009) Synthesis of rosin-based flexible anhydride-type curing agents and properties of the cured epoxy. Polym. Int. , 58 (12), 1435–1441.
- Wang, H., Wang, H., and Zhou, G. (2011) Synthesis of rosin-based imidoamine-type curing agents and curing behavior with epoxy resin. Polym. Int. , 60 (4), 557–563.
- Mustata, F.R. and Tudorachi, N. (2010) Epoxy resins cross-linked with rosin adduct derivatives. Cross-linking and thermal behaviors. Ind. Eng. Chem. Res. , 49 (24), 12414–12422.
- Huang, H., Ha, C., Li, Y., and Shen, M. (2008) Synthesis and characterization of polymerized rosin epoxy resin. Chem. Ind. For. Prod. , 28 (5), 40–44.
- Kong, Z. and Wang, D. (1995) Properties of cured epoxy resin of maleopimaric acid type. Thermosetting Resin , 2, 25–29.
- Liu, H., Shen, M., Zhang, K., and Ha, C. (2010) Study on synthesis and properties of epoxy resin based on rosin. Fine Chem. , 27 (9), 922–925.
- Lee, J.S. and Hong, S.I. (2002) Synthesis of acrylic rosin derivatives and application as negative photoresist. Eur. Polym. J. , 38 (2), 387–392.
- Do, H.S., Park, J.H., and Kim, H.J. (2008) UV-curing behavior and adhesion performance of polymeric photoinitiators blended with hydrogenated rosin epoxy methacrylate for UV-crosslinkable acrylic pressure sensitive adhesives. Eur. Polym. J. , 44 (11), 3871–3882.
- Ahn, B.K., Sung, J., Kim, N., Kraft, S.n., and Sun, X.S. (2013) UV-curable pressure-sensitive adhesives derived from functionalized soybean oils and rosin ester. Polym. Int. , 62 (9), 1293–1301.
- Jang, Q., Lin, M., Wang, J., Chu, F., and Wang, C. (2008) Study on hybrid paint of nano-silica/acrylpimaric acid modified rosin with UV curing technology. Biomass Chem. Eng. , 42 (06), 10–14.
- Wu, H., Lin, M., Wang, J., Wang, C., Chu, F., and Liu, M. (2010) Study on properties and performance of UV-curing coating of 2-hydroxyethyl acrylate/acrylic rosin derivatives. Chem. Ind. For. Prod. , 30 (02), 43–46.
- Wu, H., Wang, J., Chu, F., Wang, C., and Liu, M. (2011) The UV curing kinetics of acrylic rosin(β-acryloxyl ethyl) ester. Chem. Ind. For. Prod. , 31 (05), 76–80.
- Sang, L., Xie, H., Huang, L., and Xu, H. (2015) Film properties of rosin – based polyurethane acrylate via dual curing process. Paint Coat. Ind. , 49 (3), 12–16.
- Shi, H., Huang, L., Xie, H., and Zhu, Q. (2010) Synthesis of UV- curable rosin- based polyurethane acrylate. Paint Coat. Ind. , 40 (12), 37–40.
- Zhang, J., Xu, X.-D., Wu, D.Q., Zhang, X.-Z., and Zhuo, R.-X. (2009) Synthesis of thermosensitive P(NIPAAm-co-HEMA)/cellulose hydrogels via “click” chemistry. Carbohydr. Polym. , 77 (3), 583–589.
- Bai, L., Zhang, X., and Lan, H. (2007) Adsorption and separation of ginkgo biloba flavone by functional polymer of rosin allyl alcohol ester. Chem. Bioeng. , 24 (3), 24–26.
- Zuo, Z., Lei, F., and Duan, W. (2007) Preparation and characterization of polymer of allyl maleated rosin ester. J. Guangxi Univ. Natl. (Nat. Sci. Ed.), 13 (1), 88–92, 103.
- Bicu, I. and Mustata, F. (1997) Allylic polymers from resin acids. Angew. Makromol. Chem. , 246 (1), 11–22.
- Ma, Q., Liu, X., Zhang, R., Zhu, J., and Jiang, Y. (2013) Synthesis and properties of full bio-based thermosetting resins from rosin acid and soybean oil: the role of rosin acid derivatives. Green Chem. , 15 (5), 1300–1310.