Normal and Abnormal Cardiac Development
Adriana C. Gittenberger-De Groot PhD
Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorMonique R. M. Jongbloed MD, PhD
Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorRobert E. Poelmann PhD
Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorAdriana C. Gittenberger-De Groot PhD
Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorMonique R. M. Jongbloed MD, PhD
Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorRobert E. Poelmann PhD
Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
Search for more papers by this authorJames H. Moller MD
University of Minnesota, Minneapolis, MN, USA
Search for more papers by this authorJulien I. E. Hoffman MD, FRCP
University of California San Francisco, San Francisco, CA, USA
Search for more papers by this authorSummary
In this chapter the main events of cardiac morphogenesis are discussed. Attention is focused on morphologic descriptions and insights based on the molecular biologic approaches in animal models that have enhanced and modified our understanding of normal and abnormal cardiac development, including relevance for adult disease with a developmental background.
References
- Sizarov A, Anderson RH, Christoffels VM, et al. Three-dimensional and molecular analysis of the venous pole of the developing human heart. Circulation 2010; 122: 798–807.
- Haak MC, Van Vugt JM. Echocardiography in early pregnancy: review of literature. J Ultrasound Med 2003; 22: 271–80.
- Yutzey KE, Robbins J. Principles of genetic murine models for cardiac disease. Circulation 2007; 115: 792–9.
- Clark EB. Pathogenetic mechanisms of congenital cardiovascular malformations revisited. Semin Perinatol 1996; 20: 465–72.
- Hogers B, DeRuiter MC, Gittenberger-de Groot AC, et al. Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circ Res 1997; 80: 473–81.
- Hove JR, Koster RW, Forouhar AS, et al. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 2003; 421: 172–7.
- Wang Y, Dur O, Patrick MJ, et al. Aortic arch morphogenesis and flow modeling in the chick embryo. Ann Biomed Eng 2009; 37: 1069–81.
- Yashiro K, Shiratori H, Hamada H. Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 2007; 450: 285–28.
- Pardanaud L, Luton D, Prigent M, et al. Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 1996; 122: 1363–71.
- DeRuiter MC, Poelmann RE, Mentink MMT, et al. Early formation of the vascular system in quail embryos. Anat Rec 1993; 235: 261–74.
- Wunsch AM, Little CD, Markwald RR. Cardiac endothelial heterogeneity defines valvular development as demonstrated by the diverse expression of JB3, an antigen of the endocardial cushion tissue. Dev Biol 1994; 165: 585–601.
- Gittenberger-de Groot AC, Bartelings MM, DeRuiter MC, et al. Normal cardiac development. In: Wladimiroff JW, Pilu G, eds. Ultrasound and the Fetal Heart. New York: Parthenon Publishing Group, 1996: 1–14.
- DeRuiter MC, Poelmann RE, VanderPlas-de Vries I, et al. The development of the myocardium and endocardium in mouse embryos. Fusion of two heart tubes? Anat Embryol 1992; 185: 461–73.
- Smith SM, Dickman ED, Thompson RP, et al. Retinoic acid directs cardiac laterality and the expression of early markers of precardiac asymmetry. Dev Biol 1997; 182: 162–71.
- Stainier DYR, Fouquet B, Chen J-N, et al. Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. Development 1996; 123: 285–92.
- Levin M, Johnson AL, Stern CD, et al. A molecular pathway determining left–right asymmetry in chick embryogenesis. Cell 1995; 82: 803–14.
- Cai CL, Liang X, Shi Y, et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2003; 5: 877–89.
- Kelly RG. Building the right ventricle. Circ Res 2007; 100: 943–5.
- Meilhac SM, Esner M, Kelly RG, et al. The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 2004; 6: 685–98.
-
De la Cruz MV, Castillo MM, Villavicencio L, et al. Primitive interventricular septum, its primordium, and its contribution in the definitive interventricular septum: in vivo labelling study in the chick embryo heart. Anat Rec 1997; 247: 512–20.
10.1002/(SICI)1097-0185(199704)247:4<512::AID-AR10>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- van den Berg G, Abu-Issa R, de Boer BA, et al. A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ Res 2009; 104: 179–88.
- Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 2001; 238: 97–109.
- Waldo K, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field. Development 2001; 128: 3179–88.
- Gittenberger-de Groot AC, Mahtab EAF, Hahurij ND, et al. Nkx2.5 negative myocardium of the posterior heart field and its correlation with podoplanin expression in cells from the developing cardiac pacemaking and conduction system. Anat Rec 2007; 290: 115–22.
-
Abu-Issa R, Kirby ML. Heart field: from mesoderm to heart tube. Annu Rev Cell Dev Biol 2007; 23: 5–68.
10.1146/annurev.cellbio.23.090506.123331 Google Scholar
- Bodmer R. Heart development in drosophila and its relationship to vertebrates. Trends Cardiovasc Med 1995; 5: 21–8.
- Laverriere AC, Macniell C, Mueller C, et al. GATA-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem 1994; 269: 23177–84.
- Saga Y, Miyagawa-Tomita S, Takagi A, et al. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 1999; 126: 3437–47.
- Dodou E, Verzi MP, Anderson JP, et al. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 2004; 131: 3931–42.
- Bax NA, Lie-Venema H, Vicente-Steijn R, et al. Platelet-derived growth factor is involved in the differentiation of second heart field-derived cardiac structures in chicken embryos. Dev Dyn 2009; 238: 2658–69.
- Vicente-Steijn R, Kolditz DP, Mahtab EA, et al. Electrical activation of sinus venosus myocardium and expression patterns of RhoA and Isl-1 in the chick embryo. J Cardiovasc Electrophysiol 2010; 21: 1284–92.
- Draus JM Jr, Hauck MA, Goetsch M, et al. Investigation of somatic NKX2-5 mutations in congenital heart disease. J Med Genet 2009; 46: 115–22.
- Plageman TF Jr, Yutzey KE. T-box genes and heart development: putting the “T” in heart. Dev Dyn 2005; 232: 11–20.
- Poelmann RE, Gittenberger-de Groot AC. A subpopulation of apoptosis-prone cardiac neural crest cells targets to the venous pole: multiple functions in heart development? Dev Biol 1999; 207: 271–86.
- Waldo K, Miyagawa-Tomita S, Kumiski D, et al. Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: aortic sac to ventricular septal closure. Dev Biol 1998; 196: 129–44.
- Gurjarpadhye A, Hewett KW, Justus C, et al. Cardiac neural crest ablation inhibits compaction and electrical function of conduction system bundles. Am J Physiol Heart Circ Physiol 2007; 292: H1291–300.
- Poelmann RE, Jongbloed MR, Molin DGM, et al. The neural crest is contiguous with the cardiac conduction system in the mouse embryo: a role in induction? Anat Embryol 2004; 208: 389–93.
- Baldini A. DiGeorge's syndrome: a gene at last. Lancet 2003; 362: 1342–3.
- Lie-Venema H, van den Akker NMS, Bax NAM, et al. Origin, fate, and function of epicardium-derived cells (EPCDs) in normal and abnormal cardiac development. Sci World J 2007; 7: 1777–98.
- Zhou B, Ma Q, Rajagopal S, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 2008; 454: 109–13.
- Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol 2002; 46: 1005–13.
-
DeRuiter MC, Gittenberger-de Groot AC, Wenink ACG, et al. In normal development pulmonary veins are connected to the sinus venosus segment in the left atrium. Anat Rec 1995; 243: 4–92.
10.1002/ar.1092430110 Google Scholar
- Blom NA, Gittenberger-de Groot AC, Jongeneel TH, et al. Normal development of the pulmonary veins in human embryos and formulation of a morphogenetic concept for sinus venosus defects. Am J Cardiol 2001; 87: 305–9.
- Douglas YL, Jongbloed MR, den Hartog WC, et al. Pulmonary vein and atrial wall pathology in human total anomalous pulmonary venous connection. Int J Cardiol 2009; 134: 302–12.
- Van Praagh R, Corsini J. Cor triatriatum: pathologic anatomy and a consideration of morphogenesis based on 13 postmortem cases and a study of normal development of the pulmonary vein and atrial septum in 83 human embryos. Am Heart J 1969; 78: 379–405.
- Anderson RH, Brown NA, Moorman AF. Development and structures of the venous pole of the heart. Dev Dyn 2006; 235: 2–9.
- Snarr BS, Wirrig EE, Phelps AL, et al. A spatiotemporal evaluation of the contribution of the dorsal mesenchymal protrusion to cardiac development. Dev Dyn 2007; 236: 1287–94.
- Christoffels VM, Mommersteeg MT, Trowe MO, et al. Formation of the venous pole of the heart from an Nkx2–5-negative precursor population requires Tbx18. Circ Res 2006; 98: 1555–1563.
- Blaschke RJ, Hahurij ND, Kuijper S, et al. Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation 2007; 115: 1830–1838.
- Garcia-Frigola C, Shi Y, Evans SM. Expression of the hyperpolarization- activated cyclic nucleotide-gated cation channel HCN4 during mouse heart development. Gene Expr Patterns 2003; 3: 777–83.
- Bleyl SB, Saijoh Y, Bax NA, et al. Dysregulation of the PDGFRA gene causes inflow tract anomalies including TAPVR: integrating evidence from human genetics and model organisms. Hum Mol Genet 2010; 19: 1286–301.
- DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE, et al. Development of the pharyngeal arch system related to the pulmonary and bronchial vessels in the avian embryo. Circulation 1993; 87: 1306–19.
- Douglas YL, Mahtab EA, Jongbloed MR, et al. Pulmonary vein, dorsal atrial wall and atrial septum abnormalities in podoplanin knockout mice with disturbed posterior heart field contribution. Pediatr Res 2009; 65: 27–32.
- Douglas YL, Jongbloed MR, DeRuiter MC, et al. Normal and abnormal development of pulmonary veins: state of the art and correlation with clinical entities. Int J Cardiol 2011; 147: 13–24.
- Bruneau BG, Nemer G, Schmitt JP, et al. A murine model of Holt–Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 2001; 106: 709–21.
- Benson DW, Silberbach GM, Kavanaugh-McHugh A, et al. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 1999; 104: 1567–73.
- Barlow GM, Chen X-N, Lyons GE, et al. Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet Med 2001; 3: 91–101.
- Blom NA, Ottenkamp J, Wenink AG, et al. Deficiency of the vestibular spine in atrioventricular septal defects in human fetuses with down syndrome. Am J Cardiol 2003; 91: 180–4.
- Bax NAM, Bleyl SB, Gallini R, et al. Cardiac malformations in Pdgfra mutant embryos are associated with increased expression of WT1 and Nkx2.5 in the second heart field. Dev Dyn 2010; 239: 2307–17.
- Wenink ACG, Gittenberger-de Groot AC, Van Gils FAW, et al. Pathogenetic aspects of atrioventricular septal defects. Acta Morphol Neerl Scand 1984; 22: 181.
- Franco D, Campione M. The role of Pitx2 during cardiac development. Linking left–right signaling and congenital heart diseases. Trends Cardiovasc Med 2003; 13: 157–63.
- Poelmann RE, Jongbloed MR, Gittenberger-de Groot AC. Pitx2: a challenging teenager. Circ Res 2008; 102: 749–51.
- Gudbjartsson DF, Arnar DO, Helgadottir A, et al. Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 2007; 448: 353–7.
- Gittenberger-de Groot AC, Bartelings MM, DeRuiter MC, et al. Basics of cardiac development for the understanding of congenital heart malformations. Pediatr Res 2005; 57: 169–76.
- Jongbloed MR, Wijffels MC, Schalij MJ, et al. Development of the right ventricular inflow tract and moderator band: a possible morphological and functional explanation for Mahaim tachycardia. Circ Res 2005; 96: 776–83.
- Jenkins SJ, Hutson DR, Kubalak SW. Analysis of the proepicardium–epicardium transition during the malformation of the RXRalpha–/– epicardium. Dev Dyn 2005; 233: 1091–101.
- Van Loo PF, Mahtab EAF, Wisse LJ, et al. Transcription factor Sp3 knockout mice display serious cardiac malformations. Mol Cell Biol 2007; 27: 8571–82.
- Lie-Venema H, Gittenberger-de Groot AC, van Empel LJP, et al. Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos. Circ Res 2003; 92: 749–56.
- Bartram U, Molin DGM, Wisse LJ, et al. Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGFâ2-knockout mice. Circulation 2001; 103: 2745–52.
- Waldo KL, Hutson MR, Ward CC, et al. Secondary heart field contributes myocardium and smooth muscle to the arterial pole of the developing heart. Dev Biol 2005; 281: 78–90.
- Bartelings MM, Gittenberger-de Groot AC. The outflow tract of the heart – embryologic and morphologic correlations. Int J Cardiol 1989; 22: 289–300.
- Pexieder T. Conotruncus and its septation at the advent of the molecular biology era. In: Clark EB, Markwald RR, Takao A, eds. Developmental Mechanisms of Heart Disease. New York: Futura Publishing, 1995: 227–47.
- Zaffran S, Kelly RG, Meilhac SM, et al. Right ventricular myocardium derives from the anterior heart field. Circ Res 2004; 95: 261–8.
- Bartelings MM, Gittenberger-de Groot AC. Morphogenetic considerations on congenital malformations of the outflow tract. Part I: common arterial trunk and tetralogy of Fallot. Int J Cardiol 1991; 32: 213–30.
-
Poelmann RE, Mikawa T, Gittenberger-de Groot AC. Neural crest cells in outflow tract septation of the embryonic chicken heart: differentiation and apoptosis. Dev Dyn 1998; 212: 373–84.
10.1002/(SICI)1097-0177(199807)212:3<373::AID-AJA5>3.0.CO;2-E CAS PubMed Web of Science® Google Scholar
- Sumida H, Akimoto N, Nakamura H. Distribution of the neural crest cells in the heart of birds:a three dimensional analysis. Anat Embryol 1989; 180: 29–35.
- van Mierop LHS, Kutsche LM. Cardiovascular anomalies in DiGeorge syndrome and importance of neural crest as a possible pathogenetic factor. Am J Cardiol 1986; 58: 133–7.
- Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation. Science 1983; 220: 1059–61.
- Brown CB, Feiner L, Lu MM, et al. PlexinA2 and semaphorin signaling during cardiac neural crest development. Development 2001; 128: 3071–80.
- Epstein JA. Pax3, neural crest and cardiovascular development. Trends Cardiovasc Med 1996; 6: 255–61.
- Van Den Akker NM, Molin DG, Peters PP, et al. Tetralogy of Fallot and alterations in vascular endothelial growth factor-A signaling and notch signaling in mouse embryos solely expressing the VEGF120 isoform. Circ Res 2007; 100: 842–9.
- Molin DGM, Roest PA, Nordstrand H, et al. Disturbed morphogenesis of cardiac outflow tract and increased rate of aortic arch anomalies in the offspring of diabetic rats. Birth Defects Res A Clin Mol Teratol 2004; 70: 927–38.
- McKellar SH, Tester DJ, Yagubyan M, et al. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg 2007; 134: 290–6.
- Wooten EC, Iyer LK, Montefusco MC, et al. Application of gene network analysis techniques identifies AXIN1/PDIA2 and endoglin haplotypes associated with bicuspid aortic valve. PLoS One 2010; 5: e8830.
- Hogers B, DeRuiter MC, Gittenberger-de Groot AC, et al. Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. Cardiovasc Res 1999; 41: 87–99.
- Aicher D, Urbich C, Zeiher A, et al. Endothelial nitric oxide synthase in bicuspid aortic valve disease. Ann Thorac Surg 2007; 83: 1290–4.
- Yasui H, Nakazawa M, Morishima M, et al. Morphological observations on the pathogenetic process of transposition of the great arteries induced by retinoic acid in mice. Circulation 1995; 91: 2478–86.
- Bartelings MM, Gittenberger-de Groot AC. Morphogenetic considerations on congenital malformations of the outflow tract. Part 2: complete transposition of the great arteries and double outlet right ventricle. Int J Cardiol 1991; 33: 5–26.
- Oosthoek PW, Wenink ACG, Vrolijk BCM, et al. Development of the atrioventricular valve tension apparatus in the human heart. Anat Embryol 1998; 198: 317–29.
- Wessels A, Markman MW, Vermeulen JL, et al. The development of the atrioventricular junction in the human heart. Circ Res 1996; 78: 110–7.
- Eisenberg LM, Markwald RR. Molecular regulation of atrioventricular valvuloseptal morphogenesis. Circ Res 1995; 77: 1–6.
- Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Mentink MMT, et al. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 1998; 82: 1043–52.
- Norris RA, Moreno-Rodriguez RA, Sugi Y, et al. Periostin regulates atrioventricular valve maturation. Dev Biol 2008; 316: 200–13.
- Hurle JM, Colvee E, Blanco AM. Development of mouse semilunar valves. Anat Embryol 1980; 160: 83–91.
- Hokken RB, Bartelings MM, Bogers AJJC, et al. Morphology of the pulmonary and aortic roots with regard to the pulmonary autograft procedure. J Thorac Cardiovasc Surg 1997; 113: 453–61.
- Bartram U, Bartelings MM, Kramer HH, et al. Congenital polyvalvular disease: a review. Pediatr Cardiol 2001; 22: 93–101.
- Oosthoek PW, Wenink ACG, Macedo AJ, et al. The parachutelike asymmetric mitral valve and its two papillary muscles. J Thorac Cardiovasc Surg 1997; 114: 9–15.
- Oosthoek PW, Wenink ACG, Wisse LJ, et al. Development of the papillary muscles of the mitral valve: morphogenetic background of parachute-like asymmetrical mitral valves and other mitral valve anomalies. J Thorac Cardiovasc Surg 1998; 116: 36–46.
- Lie-Venema H, Eralp I, Markwald RR, et al. Periostin expression by epicardium-derived cells (EPDCs) is involved in the development of the atrioventricular valves and fibrous heart skeleton. Differentiation 2008; 76: 809–19.
- De la Pompa JL, Timmerman LA, Takimoto H, et al. Role of the NF-Atc transcription factor in morphogenesis of cardiac valves and septum. Nature 1998; 392: 182–6.
- Schilham MW, Oosterwegel MA, Moerer P, et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature 1996; 380: 711–4.
- Hartwig NG, Vermeij-Keers C, De Vries HE, et al. Aplasia of semilunar valve leaflets: two case reports and developmental aspects. Pediatr Cardiol 1991; 12: 114–7.
- Fernandez B, Duran AC, Fernandez-Gallego T, et al. Bicuspid aortic valves with different spatial orientations of the leaflets are distinct etiological entities. J Am Coll Cardiol 2009; 54: 2312–8.
- Blom NA, Gittenberger-de Groot AC, DeRuiter MC, et al. Development of the cardiac conduction tissue in human embryos using HNK-1 antigen expression: possible relevance for understanding of abnormal atrial automaticity. Circulation 1999; 99: 800–6.
- James TN. The internodal pathways of the human heart. Prog Cardiovasc Dis 2001; 43: 495–535.
- Jongbloed MRM, Schalij MJ, Poelmann RE, et al. Embryonic conduction tissue: a spatial correlation with adult arrhythmogenic areas? Transgenic CCS/lacZ expression in the cardiac conduction system of murine embryos. J Cardiovasc Electrophysiol 2004; 15: 349–55.
- Kondo RP, Anderson RH, Kupershmidt S, et al. Development of the cardiac conduction system as delineated by minK-lacZ. J Cardiovasc Electrophysiol 2003; 14: 383–91.
- Hoogaars WM, Engel A, Brons JF, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 2007; 21: 1098–112.
- Anderson RH, Ho SY. The morphology of the cardiac conduction system. Novartis Found Symp 2003; 250: 6–17.
-
Gittenberger-de Groot AC, Wenink ACG. The specialized myocardium in the fetal heart. In: van Mierop LHS, Oppenheimer-Dekker A, Bruins CLDC, eds. Embryology and Teratology of the Heart and the Great Arteries. Leiden: Leiden University Press, 1978: 15–24.
10.1007/978-94-009-9944-2_2 Google Scholar
- Hahurij ND, Gittenberger-de Groot AC, Kolditz DP, et al. Accessory atrioventricular myocardial connections in the developing human heart: relevance for perinatal supraventricular tachycardias. Circulation 2008; 117: 2850–8.
- Kolditz DP, Wijffels MC, Blom NA, et al. Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation 2008; 117: 1508–17.
- Jongbloed MR, Mahtab EAF, Blom NA, et al. Development of the cardiac conduction system and the possible relation to predilection sites of arrhythmogenesis. Sci World J 2008; 8: 239–69.
- Wenink ACG. Development of the human cardiac conducting system. J Anat 1976; 121(Pt 3): 617–31.
- Christoffels VM, Hoogaars WM, Tessari A, et al. T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn 2004; 229: 763–70.
- Moskowitz IP, Pizard A, Patel VV, et al. The T-Box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 2004; 131: 4107–16.
- Moskowitz IP, Kim JB, Moore ML, et al. A molecular pathway including Id2, Tbx5, and Nkx2–5 required for cardiac conduction system development. Cell 2007; 129: 1365–76.
- Espinoza-Lewis RA, Yu L, He F, et al. Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2–5. Dev Biol 2009; 327: 376–85.
- Christoffels VM, Grieskamp T, Norden J, et al. Tbx18 and the fate of epicardial progenitors. Nature 2009; 458: E8–9.
- Sun Y, Liang X, Najafi N, et al. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 2007; 304: 286–96.
- Aanhaanen WT, Mommersteeg MT, Norden J, et al. Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ Res 2010; 107: 728–36.
- Gourdie RG, Mima T, Thompson RP, et al. Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 1995; 121: 1423–31.
- Hyer J, Johansen M, Prasad A, et al. Induction of Purkinje fiber differentiation by coronary arterialization. Proc Natl Acad Sci USA 1999; 96: 13214–8.
- Eralp I, Lie-Venema H, Bax NAM, et al. Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart. Anat Rec 2006; 288A: 1272–80.
- Kalman JM, Olgin JE, Karch MR, et al. “Cristal tachycardias”: origin of right atrial tachycardias from the crista terminalis identified by intracardiac echocardiography. J Am Coll Cardiol 1998; 31: 451–9.
- Olgin JE, Kalman JM, Fitzpatrick AP, et al. Role of right atrial endocardial structures as barriers to conduction during human type I atrial flutter. Activation and entrainment mapping guided by intracardiac echocardiography. Circulation 1995; 92: 1839–48.
- Tsai CF, Tai CT, Hsieh MH, et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation 2000; 102: 67–74.
- Katritsis D, Ioannidis JP, Giazitzoglou E, et al. Conduction delay within the coronary sinus in humans: implications for atrial arrhythmias. J Cardiovasc Electrophysiol 2002; 13: 859–62.
- Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998; 339: 659–66.
- Becker AE, Anderson RH. The Wolff–Parkinson–White syndrome and its anatomical substrates. Anat Rec 1981; 201: 169–77.
- Pressley JC, Wharton JM, Tang AS, et al. Effect of Ebstein's anomaly on short- and long-term outcome of surgically treated patients with Wolff–Parkinson–White syndrome. Circulation 1992; 86: 1147–55.
- Winter EM, Gittenberger-de Groot AC. Cardiovascular development: towards biomedical applicability: epicardiumderived cells in cardiogenesis and cardiac regeneration. Cell Mol Life Sci 2007; 64: 692–703.
- Bogers AJJC, Gittenberger-de Groot AC, Poelmann RE, et al. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol 1989; 180: 437–41.
- Waldo KL, Willner W, Kirby ML. Origin of the proximal coronary artery stems and a review of ventricular vascularization in the chick embryo. Am J Anat 1990; 188: 109–20.
- Red-Horse K, Ueno H, Weissman IL, et al. Coronary arteries form by developmental reprogramming of venous cells. Nature 2010; 464: 549–53.
- Poelmann RE, Gittenberger-de Groot AC, Mentink MMT, et al. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken–quail chimeras. Circ Res 1993; 73: 559–68.
-
Vrancken Peeters M-PFM, Gittenberger-de Groot AC, Mentink MMT, et al. The development of the coronary vessels and their differentiation into arteries and veins in the embryonic quail heart. Dev Dyn 1997; 208: 338–48.
10.1002/(SICI)1097-0177(199703)208:3<338::AID-AJA5>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- Vrancken Peeters M-PFM, Gittenberger-de Groot AC, Mentink MMT, et al. Differences in development of coronary arteries and veins. Cardiovasc Res 1997; 36: 101–10.
- Gittenberger-de Groot AC, Vrancken Peeters M-PFM, Bergwerff M, et al. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res 2000; 87: 969–71.
- Winter EM, Grauss RW, Hogers B, et al. Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation 2007; 116: 917–27.
-
Gittenberger-de Groot AC, Bartelings MM, Bogers AJJC, et al. The embryology of the common arterial trunk. Prog Pediatr Cardiol 2002; 15: 1–8.
10.1016/S1058-9813(02)00002-4 Google Scholar
- Bogers AJJC, Bartelings MM, Bökenkamp R, et al. Common arterial trunk, uncommon coronary arterial anatomy. J Thorac Cardiovasc Surg 1993; 106: 1133–7.
- Eralp I, Lie-Venema H, DeRuiter MC, et al. Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated Fas ligand associated apoptosis patterns. Circ Res 2005; 96: 526–34.
- Gittenberger-de Groot AC, Eralp I, Lie-Venema H, et al. Development of the coronary vasculature and its implications for coronary abnormalities in general and specifically in pulmonary atresia without ventricular septal defect. Acta Paediatr Suppl 2004; 93: 13–9.
-
Gittenberger-de Groot AC, Tennstedt C, Chaoui R, et al. Ventriculo coronary arterial communications (VCAC) and myocardial sinusoids in hearts with pulmonary atresia with intact ventricular septum: two different diseases. Prog Pediatr Cardiol 2001; 13: 157–64.
10.1016/S1058-9813(01)00102-3 Google Scholar
- Van Den Akker NM, Caolo V, Wisse LJ, et al. Developmental coronary maturation is disturbed by aberrant cardiac vascular endothelial growth factor expression and Notch signalling. Cardiovasc Res 2008; 78: 366–75.
- Van Den Akker NM, Winkel LC, Nisancioglu MH, et al. PDGF-B signaling is important for murine cardiac development: its role in developing atrioventricular valves, coronaries, and cardiac innervation. Dev Dyn 2008; 237: 494–503.
- Bergwerff M, Verberne ME, DeRuiter MC, et al. Neural crest cell contribution to the developing circulatory system. Implications for vascular morphology? Circ Res 1998; 82: 221–31.
- Molin DGM, DeRuiter MC, Wisse LJ, et al. Altered apoptosis pattern during pharyngeal arch artery remodelling is associated with aortic arch malformations in Tgf beta 2 knock-out mice. Cardiovasc Res 2002; 56: 312–22.
- Moulaert AJ, Bruins CC, Oppenheimer-Dekker A. Anomalies of the aortic arch and ventricular septal defects. Circulation 1976; 53: 1011–5.
- Gittenberger-de Groot AC, Azhar M, Molin DGM. Transforming growth factor beta-SMAD2 signaling and aortic arch development. Trends Cardiovasc Med 2006; 16: 1–6.