Citrus
Leandro Peña
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorMagdalena Cervera
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorCarmen Fagoaga
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorJuan Romero
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorAlida Ballester
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorNuria Soler
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorElsa Pons
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorAna Rodríguez
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorJosep Peris
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorJosé Juárez
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorLuis Navarro
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorLeandro Peña
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorMagdalena Cervera
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorCarmen Fagoaga
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorJuan Romero
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorAlida Ballester
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorNuria Soler
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorElsa Pons
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorAna Rodríguez
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorJosep Peris
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorJosé Juárez
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorLuis Navarro
Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y Biotecnología, Moncada, Spain
Search for more papers by this authorAbstract
Citrus is the most important fruit tree crop in the world, with a production of more than 100 million tons annually. The area of origin of Citrus is believed to be southeastern Asia, where its domestication started. It has become clear that only citron, mandarin, and pummelo are true species within genus Citrus, being other important Citrus types, as sweet orange, sour orange, lemon, lime, grapefruit and other mandarins originated from hybridization between these ancestral species. In spite of the many efforts put in classical breeding programs in the last 100 years, current citrus industry relies on various groups of varieties that are grafted onto rootstocks adapted to different abiotic and biotic stresses. Most of these genotypes have been generated by chance, mostly as budsports but also as natural hybrids or seedlings selected by men in the wild or in orchards. Citrus breeding is complicated due to its complex reproductive biology. In this context, genetic transformation offers an important alternative for the genetic improvement of citrus. Moreover, it is probably the most efficient approach to make reverse genetics in citrus to investigate gene function and thus to gain better understanding in metabolic processes and plant-pathogen-environment interactions.
References
- Allen, G.C., Spiker, S. and Thompson, W.F. (2005) Transgene integration: use of matrix attachment regions. In: L. Peña (ed.) Transgenic Plants. Methods and Protocols. Methods in Molecular Biology. Humana Press, Totowa, Vol. 286, pp. 313–326.
-
Almeida, W.A.B.,
Mourao Filho, F.A.A.,
Mendes, B.M.J.,
Pavan, A. and
Rodríguez, A.P.M.
(2003a)
Agrobacterium-mediated transformation of Citrus sinensis and Citrus limonia epicotyl segments.
Scientia Agrícola
60,
23–29.
10.1590/S0103-90162003000100005 Google Scholar
- Almeida, W.A.B., Mourao Filho, F.A.A., Pino, L.E., Boscariol, R.L., Rodríguez, A.P.M. and Mendes, B.M.J. (2003b) Genetic transformation and plant recovery from mature tissues of Citrus sinensis L. Osbeck. Plant Science 164, 203–211.
- Ballester, A., Cervera, M. and Peña, L. (2007) Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. Plant Cell Reports 26, 39–45.
- Ballester, A., Cervera, M. and Peña, L. (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Reports (in press). DOI: 10.1007/s00299-008-0523-z.
- Boscariol, R.L., Almeida, W.A.B., Derbyshire, M.T.V.C., Mourao Filho, F.A.A. and Mendes, B.M.J. (2003) The use of PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Reports 16, 271–278.
- Boscariol, R.L., Monteiro, M., Takahashi, E.K., Chabregas, S.M., Vieira, M.L.C., Vieira, L.G.E., Pereira, L.F.P., Mourao Filho, F.A.A., Cardoso, S.C., Christiano, R.S.C., Bergamin Filho, A., Barbosa, J.M., Azevedo, F.A. and Mendes, B.M.J. (2006) Attacin A gene from Triclopusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinensis “Hamlin”. Journal of American Society for Horticultural Science 131, 530–536.
- Batuman, O., Mawassi, M. and Bar-Joseph, M. (2006) Transgenes consisting of a dsRNA of an RNAi suppressor plus the 3′UTR provide resistance to Citrus tristeza virus sequences in Nicotiana benthamiana but not in citrus. Virus Genes 33, 319–327.
- Barlass, M. and Skene, K.G.M. (1982) In vitro plantlet formation from Citrus species and hybrids. Scientia Horticulturae 17, 333–341.
-
Barrett, H.C. and
Rhodes, A.M.
(1976)
A numerical taxonomic study of affinity relationships in cultivated Citrus and its close relatives.
Systematic Botany
1,
105–136.
10.2307/2418763 Google Scholar
- Bond, J.E. and Roose, M.L. (1998) Agrobacterium-mediated transformation of the commercially important citrus cultivar Washington navel orange. Plant Cell Reports 18, 229–234.
- Bordón, Y., Guardiola, J.L. and García-Luis, A. (2000) Genotype affects the morphogenic response in vitro of epicotyl segments of Citrus rootstocks. Annals of Botany 86, 159–166.
- Cervera, M., Juárez, J., Navarro, A., Pina, J.A., Durán-Vila, N., Navarro, L. and Peña, L. (1998a) Genetic transformation and regeneration of mature tissues of woody fruit plants bypassing the juvenile stage. Transgenic Research 7, 51–59.
- Cervera, M., López, M.M., Navarro, L. and Peña, L. (1998b) Virulence and supervirulence of Agrobacterium tumefaciens in woody fruit plants. Physiological and Molecular Plant Pathology 52, 67–78.
- Cervera, M., Navarro, A., Navarro, L. and Peña, L. (2006) Retransformation of APETALA1 (AP1) early-flowering citrus plants as a strategy to rapidly evaluate transgenes addressing fruit quality traits. In: J.A. Teixeira da Silva (ed.) Horticulture, Ornamental and Plant Biotechnology: Advances and Topical Issues. Global Science Books, London, Chapter 16, pp. 117–123.
- Cervera, M., Navarro, A., Navarro, L. and Peña, L. (2008) Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiology 28, 55–66.
- Cervera, M., Ortega, C., Navarro, A., Navarro, L. and Peña, L. (2000a) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast. Journal of Horticultural Science and Biotechnology 75, 26–30.
- Cervera, M., Pina, J.A., Juárez, J., Navarro, L. and Peña, L. (1998c) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Reports 16, 271–278.
- Cervera, M., Pina, J.A., Juárez, J., Navarro, L. and Peña, L. (2000b) A broad exploration of a transgenic population of citrus: stability on gene expression and phenotype. Theoretical and Applied Genetics 100, 670–677.
- Chatuverdi, H.C. and Mitra, G.C. (1974) Clonal propagation of citrus from somatic callus cultures. HortScience 9, 118–120.
- Chiu, W., Niwa, Y., Zeng, W. and Hirano, T. (1996) Engineered GFP as a vital reporter in plants. Current Biology 6, 325–330.
- Cody, C.W., Prasher, D.C., Westler, W.M., Prendergast, F.G. and Ward, W.W. (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32, 1212–1218.
- Cooper, W.C. (1982) In Search of the Golden Apple. An Adventure in Citrus Science and Travel. Vantage Press, New York.
- Costa, M.G.C., Otoni, W.C. and Moore, G.C. (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Reports 21, 365–373.
- Dale, E.C. and Ow, D.W. (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proceedings of the National Academy of Sciences of the USA 88, 10558–10562.
- Daniell, H., Kumar, S. and Dufourmantel, N. (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends in Biotechnology 23, 238–245.
- Deng, Z., Huang, S., Ling, P., Yu, C., Tao, Q., Chen, C., Wendell, M.K., Zhang, H.-B. and Gmitter Jr, F.G. (2001) Fine genetic mapping and BAC contig development for the citrus tristeza virus resistance gene locus in Poncirus trifoliata (Raf.). Molecular Genetics and Genomics 265, 739–747.
- Domínguez, A., Cervera, M., Pérez, R., Romero, J., Fagoaga, C., Cubero, J., López, M.M., Juárez, J., Navarro, L. and Peña, L. (2004) Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Molecular Breeding 14, 171–183.
- Domínguez, A., Fagoaga, C., Navarro, L., Moreno, P. and Peña, L. (2002a) Regeneration of transgenic citrus plants under non selective conditions results in high frequency recovery of plants with silenced transgenes. Molecular Genetics and Genomics 267, 544–556.
- Domínguez, A., Fagoaga, C., Navarro, L., Moreno, P. and Peña, L. (2002b) Constitutive expression of untranslatable versions of the p25 coat protein gene in Mexican lime (Citrus aurantifolia (Christm.) Swing.) transgenic plants does not confer resistance to Citrus tristeza virus (CTV). In: N. Durán-Vila, R.G. Milne and J.V. Da Graca (eds.) Proceedings of the 15th Conference of the International Organization of Citrus Virologists. University of California, Riverside, USA, pp. 341–344.
- Domínguez, A., Guerri, J., Cambra, M., Navarro, L., Moreno, P. and Peña, L. (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Reports 19, 427–433.
- Domínguez, A., Hermoso de Mendoza, A., Guerri, J., Cambra, M., Navarro, L., Moreno, P. and Peña, L. (2002c) Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic Mexican lime (Citrus aurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene. Molecular Breeding 10, 1–10.
- Ebinuma, H., Sugita, K., Matsunaga, E. and Yamakado, M. (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proceedings of the National Academy of Sciences of the USA 94, 2117–2121.
- Edriss, M.H. and Burger, D.W. (1984) In vitro propagation of Troyer citrange from epicotyl segments. Scientia Horticulturae 23, 159–162.
- Endo, T., Shimada, T., Fujii, H., Kobayashi, Y., Araki, T. and Omura, M. (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Research 14, 703–712.
- Fagoaga, C., López, C., Hermoso de Mendoza, A., Moreno, P., Navarro, L., Flores, R. and Peña, L. (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Molecular Biology 60, 155–167.
- Fagoaga, C., López, C., Moreno, P., Navarro, L., Flores, R. and Peña, L. (2005) Viral-like symptoms induced by the ectopic expression of the p23 gene of Citrus tristeza virus are citrus-specific and do not correlate with the pathogenicity of the virus strain. Molecular Plant-Microbe Interactions 18, 435–445.
- Fagoaga, C., Rodrigo, I., Conejero, V., Hinarejos, C., Tuset, J.J., Arnau, J., Pina, J.A., Navarro, L. and Peña, L. (2001) Increased tolerance to Phytophthora citrophthora in transgenic orange plants overexpressing a tomato pathogenesis related protein PR-5. Molecular Breeding 7, 175–181.
- Fagoaga, C., Tadeo, F.R., Iglesias, D., Huerta, L., Lliso, I., Vidal, A.M., Talón, M., Navarro, L., García-Martínez, J.L. and Peña, L. (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. Journal of Experimental Botany 58, 1407–1420.
- Fang, D.Q., Federici, C.T. and Roose, M.L. (1998) A high-resolution linkage map of the Citrus tristeza virus resistance gene region in Poncirus trifoliata (L.) Raf. Genetics 150, 883–890.
- Febres, V.J., Niblett, C.L., Lee, R.F. and Moore, G.A. (2003) Characterization of grapefruit plants (Citrus paradisi Macf.) transformed with citrus tristeza closterovirus genes. Plant Cell Reports 21, 421–428.
- FAO website (2006): http://faostat.fao.org/default.aspx.
- Fleming, G.H., Olivares-Fuster, O., Fatta Del-Bosco, S. and Grosser, J.W. (2000) An alternative method for the genetic transformation of sweet orange. In Vitro Cellular and Developmental Biology—Plant 36, 450–455.
- García-Luis, A., Bordón, Y., Moreira-Dias, J.M., Molina, R.V. and Guardiola, J.L. (1999) Explant orientation and polarity determine the morphogenic response of epicotyl segments of Troyer citrange. Annals of Botany 84, 715–723.
- Gentile, A., LaMalfa, S., Deng, Z.N., Domina, F., Nicolosi, E. and Tribulato, E. (1998) Transgenic citrus: first experiences with Rol genes. Rivisti di Frutticoltura e di Ortofloricoltura 61, 59–61.
- Ghorbel, R., Domínguez, A., Navarro, L. and Peña, L. (2000) High efficiency genetic transformation of sour orange (Citrus aurantium L.) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiology 20, 1183–1189.
- Ghorbel, R., Juárez, J., Navarro, L. and Peña, L. (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theoretical and Applied Genetics 99, 350–358.
- Ghorbel, R., LaMalfa, S., López, M.M., Petit, A., Navarro, L. and Peña, L. (2001a) Additional copies of virG from pTiBo542 provide a super-transformation ability to Agrobacterium tumefaciens in citrus. Physiological and Molecular Plant Pathology 58, 103–110.
- Ghorbel, R., López, C., Fagoaga, C., Moreno, P., Navarro, L., Flores, R. and Peña, L. (2001b) Transgenic citrus plants expressing the citrus tristeza virus p23 protein exhibit viral-like symptoms. Molecular Plant Pathology 2, 27–36.
- Gilbertson, L. (2003) Cre-lox recombination: creative tools for plant biotechnology. Trends in Biotechnology 21, 550–555.
- Gmitter Jr, F.G., Xiao, S.Y., Huang, S. and Hu, X.L. (1996) A localized linkage map of the Citrus tristeza virus resistance gene region. Theoretical and Applied Genetics 92, 688–695.
- Grinblat, U. (1972) Differentiation of Citrus stem in vitro. Journal of the American Society for Horticultural Science 97, 599–603.
- Grosser, J.W., Chandler, J.L. and Goodrich, R.M. (2002) Somaclonal variation for sweet orange improvement. In: L.C. Donadio and E.S. Stuchi (eds.) Proceeding of the 7th International Citrus Seminar—Improvement. Bebedouro, SP, Brazil, pp. 35–43.
- Grosser, J.W. and Gmitter Jr, F.G. (1990) Protoplast fusion and citrus improvement. Plant Breeding Reviews 8, 339–374.
-
Grosser, J.W.,
Ollitrault, P. and
Olivares-Fuster, O.
(2000)
Somatic hybridization in Citrus: an effective tool to facilitate variety improvement.
In Vitro Cellular and Developmental Biology—Plant
36,
439–449.
10.1007/s11627-000-0080-9 Google Scholar
- Grosser, J.W. and Gmitter Jr, F.G. (2005) Applications of somatic hybridization and cybridization in crop improvement, with citrus as a model. In Vitro Cellular and Developmental Biology—Plant 41, 220–225.
- Guo, W.W., Duan, Y.X., Olivares-Fuster, O., Wu, Z.C., Arias, C.R., Burns, J.K. and Grosser, J.W. (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Reports 24, 482–486.
- Gutiérrez, M.A., Luth, D.E. and Moore, G.A. (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Reports 16, 745–753.
- Haldrup, A., Petersen, S.G. and Okkels, F.T. (1998) Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Reports 18, 76–81.
- Hammond, S.M., Bernstein, E., Beach, D. and Hannon, G.J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.
- Hamilton, C.M., Frary, A., Lewis, C. and Tanksley, S.D. (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proceedings of the National Academy of Sciences of the USA 93, 9975–9979.
- Heim, R., Prasher, D.C. and Tsien, R.Y. (1994) Wavelength mutations and post-translation autooxidation of green fluorescence protein. Proceedings of the National Academy of Sciences of the USA 91, 12501–12504.
- Hidaka, T. and Omura, M. (1993) Transformation of citrus protoplasts by electroporation. Journal of the Japanese Society for Horticultural Science 62, 371–376.
- Hidaka, T., Omura, M., Ugaki, M., Tomiyama, M., Kato, A., Ohshima, M. and Motoyoshi, F. (1990) Agrobacterium-mediated transformation and regeneration of Citrus spp. from suspension cells. Japanese Journal of Breeding 40, 199–207.
- Iwanami, T., Shimizu, T., Ito, T. and Hirabayashi, T. (2004) Tolerance to Citrus mosaic virus in transgenic trifoliate orange lines harboring capsid polyprotein gene. Plant Disease 88, 865–868.
- James, D.J., Uratsu, S., Cheng, J., Negri, P., Viss, P. and Dandekar, A.M. (1993) Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Reports 12, 559–563.
- Janssen, B.J. and Gardner, R.C. (1993) The use of transient GUS expression to develop an Agrobacterium-mediated gene transfer system for kiwifruit. Plant Cell Reports 13, 28–31.
- Kaneyoshi, J. and Kobayashi, S. (1999) Characteristics of transgenic trifoliate orange (Poncirus trifoliata Raf.) possessing the rolC gene of Agrobacterium rhizogenes Ri plasmid. Journal of the Japanese Society for Horticultural Science 68, 734–738.
- Kaneyoshi, J., Kobayashi, S., Nakamura, Y., Shigemoto, N. and Doi, Y. (1994) A simple and efficient gene transfer system of trifoliate orange. Plant Cell Reports 13, 541–545.
- Kayim, M., Ceccardi, T.L., Berretta, M.J.G., Barthe, G.A. and Derrick, K.S. (2004) Introduction of a citrus blight-associated gene into Carrizo citrange (Citrus sinensis (L.) Osbc. X Poncirus trifoliata (L.) Raf.) by Agrobacterium-mediated transformation. Plant Cell Reports 23, 377–385.
- Kobayashi, S., Ikeda, I. and Uchimiya, H. (1985) Conditions for high frequency embryogenesis from orange (Citrus sinensis Osb.) protoplasts. Plant Cell, Tissue and Organ Culture 4, 249–259.
- Kobayashi, S., Nakamura, Y., Kaneyoshi, J., Higo, H. and Higo, K. (1996) Transformation of kiwifruit (Actinidia chinensis) and trifoliate orange (Poncirus trifoliata) with a synthetic gene encoding the human epidermal growth factor (hEGF). Journal of the Japanese Society for Horticultural Science 64, 763–769.
- Kobayashi, S. and Uchimiya, H. (1989) Expression and integration of a foreign gene in orange (Citrus sinensis Osb.) protoplasts by direct DNA transfer. Japanese Journal of Genetics 64, 91–97.
- Kobayashi, S., Uchimiya, H. and Ikeda, I. (1983) Plant regeneration from Trovita orange protoplasts. Japanese Journal of Breeding 33, 119–122.
- Koltunow, A.M., Brennan, P., Protopsaltis, S. and Nito, N. (2000) Regeneration of West Indian limes (Citrus aurantifolia) containing genes for decreased seed set. Acta Horticulturae 535, 81–91.
- Kuraya, Y, Ohta, S., Fukuda, M., Hiei, Y., Murai, N., Hamada, K., Ueki, J., Imaseki, H. and Komari, T. (2004) Suppression of transfer of non-T-DNA “vector backbone” sequences by multiple left border repeats for transformation of higher plants mediated by Agrobacterium tumefaciens. Molecular Breeding 14, 309–320.
- LaMalfa, S., Gentile, A., Deng, Z.N. and Domina, F. (2000) Citrus genetic transformation with a vital reporter gene: Expression of green fluorescent protein in Troyer citrange. Italus Hortus 7, 17–21.
- Le, B.V., Ha, N.T., Hong, L.T.A. and Van, K.T.T. (1999) High frequency shoot regeneration from trifoliate orange (Poncirus trifoliata L. Raf.) using the thin cell layer method. Comptes Rendus Academie des Sciences Paris, Life Siences 322, 1105–1111.
- Li, D.D., Shi, W. and Deng, X.X. (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Reports 21, 153–156.
- Li, D.D., Shi, W. and Deng, X.X. (2003) Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene. Tree Physiology 23, 1209–1215.
- Liu, Y.G., Shirano, Y., Fukaki, H., Yanai, Y., Tasaka, M., Tabata, S. and Shibata, D. (1999) Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning. Proceedings of the National Academy of Sciences of the USA 96, 6535–6540.
- López, C., Navas-Castillo, J., Gowda, S., Moreno, P. and Flores, R. (2000) The 23 kDa protein coded by the 3′-terminal gene of Citrus tristeza virus is an RNA-binding protein. Virology 269, 462–470.
- Lu, R., Folimonov, A., Shintaku, M., Li, W.-X., Falk, B.W., Dawson, W.O. and Ding, S.W. (2004) Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences of the USA 101, 15742–15747.
- Luth, D. and Moore, G. (1999) Transgenic grapefruit plants obtained by Agrobacterium tumefaciens-mediated transformation. Plant Cell, Tissue and Organ Culture 57, 219–222.
- Mandel, M.J. and Yanofsky, M.F. (1995) A gene triggering flower formation in Arabidopsis. Nature 377, 522–524.
- Mendes, B.M.J., Boscariol, R.L., Mourao Filho, F.A.A. and Almeida, W.A.B. (2002) Agrobacterium-mediated genetic transformation of Hamlin sweet orange. Pesquisa Agropecuaria Brasileira 37, 955–961.
- Mestre, P.F., Asins, M.J., Pina, J.A., Carbonell, E.A. and Navarro, L. (1997) Molecular markers flanking citrus tristeza virus resistance gene from Poncirus trifoliata (L.) Raf. Theoretical and Applied Genetics 94, 458–464.
- Mizutani, F. (2006) Citrus. In: S. Yazawa, N. Sugiyama, S. Kawabata, K. Kanahama, S. Komori, M. Koshioka, S. Nishimura, H. Gemma, Y. Hasegawa, H. Yoshioka, M. Tanaka, F. Mizutani, S. Terabayashi, S. Hikosaka, K. Yamane, Y. Kanayama, W. Ohkawa and M. Nishiyama (eds.) Horticulture in Japan. The Japanese Society for Horticultural Science, Kyoto, pp. 21–34.
- Molinari, H.B.C., Bespalhok, J.C.F., Kobayashi, A.K., Pereira, L.F.P. and Vieira, L.G.E. (2004a) Agrobacterium tumefaciens-mediated transformation of Swingle citrumelo (Citrus paradisi Macf. x Poncirus trifoliata L. Raf.) using thin epicotyl sections. Scientia Horticulturae 99, 379–385.
- Molinari, H.B.C., Marur, C.J., Bespalhok, J.C.F., Kobayashi, A.K., Pileggi, M., Leite Junior, R.P., Pereira, L.F.P. and Vieira, L.G.E. (2004b) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus sinensis Osb. Poncirus trifoliata L. Raf.) overproducing proline. Plant Science 167, 1375–1381.
- Moore, G.A., Jacono, C.C., Neidigh, J.L., Lawrence, S.D. and Cline, K. (1992) Agrobacterium-mediated transformation of citrus stem segments and regeneration of transgenic plants. Plant Cell Reports 11, 238–242.
- Moreira-Dias, J.M., Molina, R.V., Bordón, Y., Guardiola, J.L. and García-Luis, A. (2000) Direct and indirect shoot organogenic pathways in epicotyl cuttings of Troyer citrange differ in hormone requirements and in their response to light. Annals of Botany 85, 103–110.
- Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiolia Plantarum 15, 473–479.
- Murashige, T. and Tucker, D.H.P. (1969) Growth factor requirements of citrus tissue culture. Proceedings of the 1st International Citrus Symposium. Vol. 3, 1155–1161.
- Murguía, J.R., Bellés, J.M. and Serrano, R. (1995) A salt-sensitive 3′(2′),5′-bisphosphate nucleotidase involved in sulfate activation. Science 267, 232–234.
- Navarro, L. (1992) Citrus shoot tip grafting in vitro. In: Y.P.S. Bajaj (ed.) Biotechnology in Agriculture and Forestry. Springer-Verlag, Berlin, Vol. 18, pp. 328–338.
- Navarro, L., Juárez, J., Aleza, P. and Pina, J.A. (2003). Recovery of triploid seedless mandarin hybrids from 2n × 2n and 2n × 4n crosses by embryo rescue and flow cytometry. In: I.K. Vasil (ed.) Plant Biotechnology 2002 and Beyond. Kluwer, Dordrecht, pp. 541–544.
- Navarro, L., Roistacher, C.N. and Murashige, T. (1975) Improvement of shoot-tip grafting in vitro for virus-free citrus. Journal of the American Society for Horticultural Science 100, 471–479.
- Nicolosi, E. (2007) Origin and taxonomy. In: I. Khan (ed.) Citrus Genetics, Breeding and Biotechnology. CAB International, Wallingford, UK, pp. 19–43.
- Niedz, R.P., McKendree, W.L. and Shatters, J.R. (2003) Electroporation of embryogenic protoplasts of sweet orange (Citrus sinensis (L.) Osbeck) and regeneration of transformed plants. In Vitro Cellular and Developmental Biology—Plant 36, 586–594.
- Niedz, R.P., Sussman, M.R. and Satterlee, J.S. (1995) Green fluorescent protein: an in vivo reporter of plant gene expression. Plant Cell Reports 14, 403–406.
- Olivares-Fuster, O., Fleming, G.H., Albiach-Martí, M.R., Gowda, S., Dawson, W.O. and Grosser, J.W. (2003) Citrus tristeza virus (CTV) resistance in transgenic citrus based on virus challenge of protoplasts. In Vitro Cellular and Developmental Biology—Plant 39, 567–572.
- Olivares-Fuster, O., Peña, L., Durán-Vila, N. and Navarro, L. (2002) GFP as visual marker in somatic hybridization. Annals of Botany 89, 491–497.
- Ollitrault, P., Dambier, D., Sudahono, Mademba-Sy, F., Vanel, F., Luro, F. and Aubert, B. (1998) Biotechnology for triploid mandarin breeding. Fruits 53, 307–317.
- Park, S.H., Rose, S.C., Zapata, C., Srivatanakul, M. and Smith, R.H. (1998) Cross-protection and selectable marker genes in plant transformation. In Vitro Cellular and Developmental Biology—Plant 34, 117–121.
- Peña, L., Cervera, M., Fagoaga, C., Pérez, R., Romero, J., Juárez, J., Pina, J.A. and Navarro, L. (2004a) Agrobacterium-mediated transformation of citrus. In: I.S. Curtis (ed.) Transgenic Crops of the World—Essential Protocols. Kluwer, Dordrecht, pp. 145–157.
- Peña, L., Cervera, M., Juárez, J., Navarro, A., Pina, J.A., Durán-Vila, N. and Navarro, L. (1995a) Agrobacterium-mediated transformation of sweet orange and regeneration of transgenic plants. Plant Cell Reports 14, 616–619.
- Peña, L., Cervera, M., Juárez, J., Navarro, A., Pina, J.A. and Navarro, L. (1997) Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration. Plant Cell Reports 16, 731–737.
- Peña, L., Cervera, M., Juárez, J., Ortega, C., Pina, J.A., Durán-Vila, N. and Navarro, L. (1995b) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Science 104, 183–191.
- Peña, L., Martín-Trillo, M., Juárez, J., Pina, J.A., Navarro, L. and Martínez-Zapater, J.M. (2001) Constitutive expression of Arabidopsis LEAFY and APETALA1 genes in citrus reduces their generation time. Nature Biotechnology 19, 263–267.
- Peña, L., Pérez, R., Cervera, M., Juárez, J.A. and Navarro, L. (2004b) Early events in Agrobacterium-mediated genetic transformation of citrus explants. Annals of Botany 94, 67–74.
- Pérez-Molphe, E. and Ochoa-Alejo, N. (1998) Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Reports 17, 591–596.
- Pina, J.A., Moreno, P., Juárez, J., Guerri, J., Cambra, M., Gorris, M.T. and Navarro, L. (2005) A new procedure to index Citrus tristeza virus-induced decline on sour orange rootstocks. In: M.A. Rocha-Peña, M. Iracheta-Cárdenas and J.V. da Graca (eds.) 16th Conference of the International organization of Citrus Virologists. University of California, Riverside, USA, p. 491.
- Rai, M. (2006) Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region. Plant Molecular Biology 61, 399–414.
- Rodríguez, A., Cervera, M., Peris, J. E. and Peña, L. (2008) The same treatment for transgenic shoot regeneration elicits the opposite effect in mature explants from who closely related sweet orange [Citrus sinensis (L.) Osb.] genotypes. Plant Cell, Tissue and Organ Culture (in press). DOI: 10.1007/s11240-008-9347-3.
- Rodrigo, I., Vera, P., Tornero, P., Hernández-Yago, J. and Conejero, V. (1993) cDNA cloning of viroid-induced tomato pathogenesis-related protein P23. Characterization as a vacuolar antifungal factor. Plant Physiology 102, 939–945.
- Satyanarayana, T., Gowda, S., Ayllón, M.A., Albiach-Martí, M.R., Rabindran, S. and Dawson, W.O. (2002) The p23 protein of Citrus tristeza virus controls asymmetrical RNA accumulation. Journal of Virology 76, 473–483.
- Saunt, J. (2000) Citrus Varieties of the World. An Illustrated Guide, 2nd edn. Sinclair International Limited, Norwich.
-
Spiegel-Roy, P. and
Goldschmidt, E.E.
(1996).
Biology of Citrus.
Cambridge University Press,
Cambridge.
10.1017/CBO9780511600548 Google Scholar
- Srivastava, V. and Ow, D.W. (2002) Biolistic mediated site-specific integration in rice. Molecular Breeding 8, 345–350.
- Sugita, K., Matsunaga, E. and Ebinuma, H. (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Reports 18, 941–947.
- Swingle, W.T. and Reece, P.C. (1967) The botany of Citrus and its wild relatives. In: W. Reuther, H.J. Webber and L.D. Batchelor (eds.) The Citrus Industry. University of California Press, Berkeley, Vol. 1, pp. 190–423.
- Tanaka, T. (1954) Species Problem in Citrus. Japanese Society for the Promotion of Science, Veno, Tokyo.
- Trainin, T., Lipsky, A., Levy, A.A. and Holland, D. (2005) Prolonged somatic transposition in citrus: the autonomous Ac transposable element remains active in the citrus genome for several years. Journal of the American Society for Horticultural Science 130, 95–101.
- Vardi, A., Bleichman, S. and Aviv, D. (1990) Genetic transformation of citrus protoplasts and regeneration of transgenic plants. Plant Science 69, 199–206.
- Vardi, A. and Galun, E. (1989) Isolation and culture of citrus protoplasts. In: Y.P.S. Bajaj (ed.) Biotechnology in Agriculture and Forestry. Springer-Verlag, Berlin, Vol. 8, pp. 147–159.
- Vardi, A., Spiegel-Roy, P. and Galun, E. (1982) Plant regeneration from Citrus protoplasts: variability in methodological requirements among cultivars and species. Theoretical and Applied Genetics 62, 171–176.
- Watson, J.M., Fusaro, A.F., Wang, M.B. and Waterhouse, P.M. (2005) RNA silencing platforms in plants. FEBS Letters 579, 5982–5987.
- Webber, H.J. (1967) History and development of the Citrus industry. In: W. Reuther, H.J. Webber and L.D. Batchelor (eds.) The Citrus Industry. University of California Press, Berkeley, Vol. 1, pp. 1–39.
- Weigel, D. and Nilsson, O. (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377, 495–500.
- Weiss, J., Ros-Chumillas, M., Peña, L. and Egea-Cortines, M. (2007) Effect of storage on plasmid, yeast and plant genomic DNA stability in juice from genetically modified oranges. Journal of Biotechnology 128, 194–203.
- Wong, W.S., Li, G.G., Ning, W., Xu, Z.F., Hsiao, W.L.W., Zhang, L.Y. and Li, N. (2001) Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense 1-aminocyclopropane-1-carboxylate synthase RNA. Plant Science 161, 969–977.
- Wolffenstein, O. (1880) Descripción y Clasificación de la Enfermedad que Ataca al Naranjo y Demás Acidos. Imprenta de N. Rius, Valencia.
- Yang, Z.-N., Ingelbrecht, I.L., Louzada, E., Skaria, M. and Mirkov, T.E. (2000) Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (Citrus paradidi Macf.). Plant Cell Reports 19, 1203–1211.
- Yang, Z.-N., Ye, X.-R., Molina, J., Roose, M.L., Mirkov, T.E. (2003) Sequence analysis of a 282-kilobase region surrounding the Citrus tristeza virus resistance gene (ctv) locus in Poncirus trifoliata (L.) Raf. Plant Physiology 131, 482–492.
- Yao, J.-L., Wu, J.-H., Gleave, A.P. and Morris, B.A.M. (1996) Transformation of citrus embryogenic cells using particle bombardment and production of transgenic embryos. Plant Science 113, 175–183.
- Yu, C., Huang, S., Chen, C., Deng, Z., Ling, P. and Gmitter, F.G. (2002) Factors affecting Agrobacterium-mediated transformation of sweet orange and citrange. Plant Cell, Tissue and Organ Culture 71, 147–155.
Further Reading
- Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W. and Prasher, D.C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 663–664.
- Hood, E.E., Gelvin, S.B., Melchers, L.S. and Hoekema, A. (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Research 2, 208–218.
- Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6, 3901–3907.
- Sanford, J.C. and Johnston, S.A. (1985) The concept of parasite-derived resistance. Deriving resistance genes from the parasite's own genome. Journal of Theoretical Biology 113, 395–405.