Exploring the Fabrication of 3D-Printed Scaffolds for Tissue Engineering
Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorSummary
The topic of tissue engineering is increasingly employing 3D-printing methods. The situation of 3D printing, as it pertains to tissue engineering, has been thoroughly examined in this study. Tissue engineering's end objective is functional tissue that can be used for things like drug testing and regenerative medicine. Recent studies into tissue formation have highlighted the potential of 3D printing's layer-by-layer method, which facilitates direction over structural components on scales ranging from the microscopic to the cosmic. 3D-printed scaffolds for tissue engineering provide a biomimetic structural environment that facilitates extracellular matrix incorporation and tissue synthesis, even when a scaffold is also used (e.g., cellular infiltration, vascularization, and active remodeling). The unique fabrication methods of tissue engineering structures are discussed, along with their impact on the development of 3D printing. It will also cover how 3D printing is being used to fabricate tissues from both synthetic and natural sources.
References
- Langer , R. and Vacanti , J.P. , Tissue engineering . Science , 260 , 5110 , 920 – 6 , 1993 .
- Loh , Q.L. and Choong , C. , Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size . Tissue Eng. Part B Rev. , 19 , 6 , 485 – 502 , 2013 . doi: 10.1089/ten.TEB.2012.0437
- Yang , S. , Leong , K.F. , Du , Z. , Chua , C.K. , The design of scaffolds for use in tissue engineering. Part I. Traditional factors . Tissue Eng. , 7 , 6 , 679 – 89 , Dec. 1, 2001 .
- Elbert , D.L. , Bottom-up tissue engineering . Curr. Opin. Biotechnol. , 22 , 5 , 674 – 80 , Oct. 1, 2011 .
- Jakab , K. , Norotte , C. , Marga , F. , Murphy , K. , Vunjak-Novakovic , G. , Forgacs , G. , Tissue engineering by self-assembly and bio-printing of living cells . Biofabrication , 2 , 2 , 022001 , Jun. 2, 2010 .
- Jakab , K. , Norotte , C. , Damon , B. , Marga , F. , Neagu , A. , Besch-Williford , C.L. , Kachurin , A. , Church , K.H. , Park , H. , Mironov , V. , Markwald , R. , Tissue engineering by self-assembly of cells printed into topologically defined structures . Tissue Eng. Part A , 14 , 3 , 413 – 21 , Mar. 1, 2008 .
- Wang , X. , Yan , Y. , Zhang , R. , Rapid prototyping as a tool for manufacturing bioartificial livers . Trends Biotechnol. , 25 , 11 , 505 – 13 , Nov. 1, 2007 .
- Guillotin , B. and Guillemot , F. , Cell patterning technologies for organotypic tissue fabrication . Trends Biotechnol. , 29 , 4 , 183 – 90 , Apr. 1, 2011 .
- Tsang , V.L. and Bhatia , S.N. , Three-dimensional tissue fabrication . Adv. Drug Deliv. Rev. , 56 , 11 , 1635 – 47 , Sep. 22, 2004 .
- Rivron , N.C. , Rouwkema , J. , Truckenmüller , R. , Karperien , M. , De Boer , J. , Van Blitterswijk , C.A. , Tissue assembly and organization: Developmental mechanisms in microfabricated tissues . Biomaterials , 30 , 28 , 4851 – 8 , Oct. 1, 2009 .
- Perez-Castillejos , R. , Replication of the 3D architecture of tissues . Mater. Today , 13 , 1-2 , 32 – 41 , Jan. 1, 2010 .
- Langridge , B. , Griffin , M. , Butler , P.E. , Regenerative medicine for skeletal muscle loss: A review of current tissue engineering approaches . J. Mater. Sci. Mater. Med. , 32 , 1 – 6 , Jan. 2021 .
- Lee , M. , Wu , B.M. , Dunn , J.C. , Effect of scaffold architecture and pore size on smooth muscle cell growth . J. Biomed. Mater. Res. A , 87 , 4 , 1010 – 6 , Dec. 15, 2008 .
- Kim , S.S. , Utsunomiya , H. , Koski , J.A. , Wu , B.M. , Cima , M.J. , Sohn , J. , Mukai , K. , Griffith , L.G. , Vacanti , J.P. , Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels . Ann. Surg. , 228 , 1 , 8 , Jul. 1998 .
- Griffith , L.G. , Wu , B.E. , Cima , M.J. , Powers , M.J. , Chaignaud , B.E. , Vacanti , J.P. , In vitro organogenesis of liver tissue . Ann. N. Y. Acad. Sci. , 831 , 1 , 382 – 97 , Dec. 1997 .
- Miller , J.S. , Stevens , K.R. , Yang , M.T. , Baker , B.M. , Nguyen , D.H. , Cohen , D.M. , Toro , E. , Chen , A.A. , Galie , P.A. , Yu , X. , Chaturvedi , R. , Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues . Nat. Mater. , 11 , 9 , 768 – 74 , Sep. 2012 .
- Norotte , C. , Marga , F.S. , Niklason , L.E. , Forgacs , G. , Scaffold-free vascular tissue engineering using bioprinting . Biomaterials , 30 , 30 , 5910 – 7 , Oct. 1, 2009 .
- Porteus , M. , Translating the lessons from gene therapy to the development of regenerative medicine . Mol. Ther. , 19 , 3 , 439 – 41 , Mar. 1, 2011 .
- Barrett , A.J. and Melenhorst , J.J. , Is human cell therapy research caught in a mousetrap? Mol. Ther. , 19 , 2 , 224 – 7 , Feb. 1, 2011 .
- Goldberg , A.D. , Allis , C.D. , Bernstein , E. , Epigenetics: A landscape takes shape . Cell , 128 , 4 , 635 – 8 , Feb. 23, 2007 .
- Bernstein , B.E. , Meissner , A. , Lander , E.S. , The mammalian epigenome . Cell , 128 , 4 , 669 – 81 , Feb. 23, 2007 .
- Marga , F. , Neagu , A. , Kosztin , I. , Forgacs , G. , Developmental biology and tissue engineering . Birth Defects Res. C Embryo Today Rev. , 81 , 4 , 320 – 8 , Dec. 2007 .
- Sherwood , J.K. , Riley , S.L. , Palazzolo , R. , Brown , S.C. , Monkhouse , D.C. , Coates , M. , Griffith , L.G. , Landeen , L.K. , Ratcliffe , A. , A three-dimensional osteochondral composite scaffold for articular cartilage repair . Biomaterials , 23 , 24 , 4739 – 51 , Dec. 1, 2002 .
- Lee , M. , Dunn , J.C. , Wu , B.M. , Scaffold fabrication by indirect three-dimensional printing . Biomaterials , 26 , 20 , 4281 – 9 , Jul. 1, 2005 .
-
Schumann , D.
,
Ekaputra , A.K.
,
Lam , C.X.
,
Hutmacher , D.W.
,
Biomaterials/ Scaffolds
, in:
Tissue Engineering
, pp.
101
–
24
,
2007
.
10.1007/978-1-59745-443-8_6 Google Scholar
- Sachlos , E. , Reis , N. , Ainsley , C. , Derby , B. , Czernuszka , J.T. , Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication . Biomaterials , 24 , 8 , 1487 – 97 , Apr. 1, 2003 .
- Gaetani , R. , Doevendans , P.A. , Metz , C.H. , Alblas , J. , Messina , E. , Giacomello , A. , Sluijter , J.P. , Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells . Biomaterials , 33 , 6 , 1782 – 90 , Feb. 1, 2012 .
- Kai , H. , Wang , X. , Madhukar , K.S. , Qin , L. , Yan , Y. , Zhang , R. , Wang , X. , Fabrication of a two-level tumor bone repair biomaterial based on a rapid prototyping technique . Biofabrication , 1 , 2 , 025003 , Jun. 10, 2009 .
- Wang , X. , Yan , Y. , Pan , Y. , Xiong , Z. , Liu , H. , Cheng , J. , Liu , F. , Lin , F. , Wu , R. , Zhang , R. , Lu , Q. , Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system . Tissue Eng. , 12 , 1 , 83 – 90 , Jan. 1, 2006 .
- Nishiyama , Y. , Nakamura , M. , Henmi , C. , et al ., Development of a three-dimensional bioprinter: Construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology . J. Biomech. Eng. , 131 , 3 , 035001 , 2009 . doi: 10.1115/1.3002759
- De Colli , M. , Massimi , M. , Barbetta , A. , Di Rosario , B.L. , Nardecchia , S. , Devirgiliis , L.C. , Dentini , M. , A biomimetic porous hydrogel of gelatin and glycosaminoglycans cross-linked with transglutaminase and its application in the culture of hepatocytes . Biomed. Mater. , 7 , 5 , 055005 , Jul. 26, 2012 .
- Xu , M. , Wang , X. , Yan , Y. , Yao , R. , Ge , Y. , An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix . Biomaterials , 31 , 14 , 3868 – 77 , May 1, 2010 .
- Skardal , A. , Zhang , J. , Prestwich , G.D. , Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates . Biomaterials , 31 , 24 , 6173 – 81 , Aug. 1, 2010 .
- Martins , A. , Chung , S. , Pedro , A.J. , Sousa , R.A. , Marques , A.P. , Reis , R.L. , Neves , N.M. , Hierarchical starch-based fibrous scaffold for bone tissue engineering applications . J. Tissue Eng. Regen. Med. , 3 , 1 , 37 – 42 , Jan. 2009 .
- Xu , W. , Wang , X. , Yan , Y. , Zhang , R. , A polyurethane-gelatin hybrid construct for manufacturing implantable bioartificial livers . J. Bioact. Compat. Polym. , 23 , 5 , 409 – 22 , Sep. 2008 .
- Seitz , H. , Rieder , W. , Irsen , S. , Leukers , B. , Tille , C. , Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering . J. Biomed. Mater. Res. B , 74 , 2 , 782 – 8 , Aug. 2005 .
- Leukers , B. , Gülkan , H. , Irsen , S.H. , Milz , S. , Tille , C. , Schieker , M. , Seitz , H. , Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing . J. Mater. Sci. Mater. Med. , 16 , 12 , 1121 – 4 , Dec. 2005 .
- Tarafder , S. , Balla , V.K. , Davies , N.M. , Bandyopadhyay , A. , Bose , S. , Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering . J. Tissue Eng. Regen. Med. , 7 , 8 , 631 – 41 , Aug. 2013 .
- Butscher , A. , Bohner , M. , Hofmann , S. , Gauckler , L. , Müller , R. , Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing . Actabiomaterialia , 7 , 3 , 907 – 20 , Mar. 1, 2011 .
- Neagu , A. , Kosztin , I. , Jakab , K. , Barz , B. , Neagu , M. , Jamison , R. , Forgacs , G. , Computational modeling of tissue self-assembly . Mod. Phys. Lett. B , 20 , 20 , 1217 – 31 , Aug. 30, 2006 .
- Hollister , S.J. , Porous scaffold design for tissue engineering . Nat. Mater. , 4 , 7 , 518 – 24 , Jul. 1, 2005 .
- Cheah , C.M. , Chua , C.K. , Leong , K.F. , Chua , S.W. , Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: investigation and classification . Int. J. Adv. Manuf. Technol. , 21 , 291 – 301 , Feb. 2003 .
- Griffith , L.G. , Wu , B.E. , Cima , M.J. , Powers , M.J. , Chaignaud , B.E. , Vacanti , J.P. , In vitro organogenesis of liver tissue . Ann. N. Y. Acad. Sci. , 831 , 1 , 382 – 97 , Dec. 1997 .
- Naing , M.W. , Chua , C.K. , Leong , K.F. , Wang , Y. , Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques . Rapid Prototyp. J. , 11 , 4 , 249 – 59 , Sep. 1, 2005 .
- Leong , K.F. , Chua , S.C. , Sudarmadji , N. , Yeong , W.Y. , Engineering functionally graded tissue engineering scaffolds . J. Mech. Behav. Biomed. Mater. , 1 , 2 , 140 – 52 , Apr. 1, 2008 .
- Chua , C.K. , Sudarmadji , N. , Leong , K.F. , Chou , S.M. , Lim , S.C. , Firdaus , W.M. , Process flow for designing functionally graded tissue engineering scaffolds , in: Innovative Developments in Design and Manufacturing , pp. 63 – 68 , CRC Press , Boca Raton, Florida , Sep. 22, 2009 .
- Chua , C.K. , Leong , K.F. , Sudarmadji , N. , Liu , M.J. , Chou , S.M. , Selective laser sintering of functionally graded tissue scaffolds . MRS Bull. , 36 , 12 , 1006 – 14 , Dec. 2011 .
-
Cai , S.
,
Xi , J.
,
Chua , C.K.
,
A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinement
, in:
Computer-Aided Tissue Engineering
, pp.
45
–
55
,
2012
.
10.1007/978-1-61779-764-4_3 Google Scholar
- Yang , N. , Quan , Z. , Zhang , D. , Tian , Y. , Multi-morphology transition hybridization CAD design of minimal surface porous structures for use in tissue engineering . Comput.-Aided Des. , 56 , 11 – 21 , Nov. 1, 2014 .
- Rouwkema , J. , Rivron , N.C. , van Blitterswijk , C.A. , Vascularization in tissue engineering . Trends Biotechnol. , 26 , 8 , 434 – 41 , Aug. 1, 2008 .
- Druecke , D. , Langer , S. , Lamme , E. , Pieper , J. , Ugarkovic , M. , Steinau , H.U. , Homann , H.H. , Neovascularization of poly (ether ester) block-copolymer scaffolds in vivo : Long-term investigations using intravital fluorescent microscopy . J. Biomed. Mater. Res. A , 68 , 1 , 10 – 8 , Jan. 1, 2004 .
- Karageorgiou , V. and Kaplan , D. , Porosity of 3D biomaterial scaffolds and osteogenesis . Biomaterials , 26 , 27 , 5474 – 91 , Sep. 1, 2005 .
- Wang , M.O. , Vorwald , C.E. , Dreher , M.L. , Mott , E.J. , Cheng , M.H. , Cinar , A. , Mehdizadeh , H. , Somo , S. , Dean , D. , Brey , E.M. , Fisher , J.P. , Evaluating 3D-Printed biomaterials as scaffolds for vascularized bone tissue engineering . Adv. Mater. , 27 , 1 , 138 – 44 , Jan. 2015 .
- Suntornnond , R. , An , J. , Yeong , W. , Chua , C. , 3D hybrid membrane based structure: A novel approach for tissue engineering scaffold , in: Tissue Engineering Part A , vol. 20 , pp. S66 – S66 , Mary Ann Liebert, INC , 140 Huguenot Street, 3rd Fl, New Rochelle, NY 10801 USA , Dec. 1, 2014 .
- Hutmacher , D.W. , Schantz , T. , Zein , I. , Ng , K.W. , Teoh , S.H. , Tan , K.C. , Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling . J. Biomed. Mater. Res. , 55 , 2 , 203 – 16 , May 2001 .
-
Leong , K.F.
,
Chua , C.K.
,
Gui , W.S.
,
Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering
.
Int. J. Adv. Manuf. Technol.
,
31
, Dec. 15,
2006
.
10.1007/s00170-005-0217-4 Google Scholar
- Kim , S.S. , Utsunomiya , H. , Koski , J.A. , Wu , B.M. , Cima , M.J. , Sohn , J. , Mukai , K. , Griffith , L.G. , Vacanti , J.P. , Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels . Ann. Surg. , 228 , 1 , 8 , Jul. 1998 .
- Chen , C.H. , Shyu , V.B. , Chen , J.P. , Lee , M.Y. , Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering . Biofabrication , 6 , 1 , 015004 , Jan. 15, 2014 .
- Gomes , M.E. , Azevedo , H.S. , Moreira , A.R. , Ellä , V. , Kellomäki , M. , Reis , R.L. , Starch–poly (ε-caprolactone) and starch–poly (lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: Structure, mechanical properties and degradation behaviour . J. Tissue Eng. Regen. Med. , 2 , 5 , 243 – 52 , Jul. 2008 .
- Martin , I. , Wendt , D. , Heberer , M. , The role of bioreactors in tissue engineering . Trends Biotechnol. , 22 , 2 , 80 – 6 , Feb. 1, 2004 .
- Kinstlinger , I.S. , Bastian , A. , Paulsen , S.J. , Hwang , D.H. , Ta , A.H. , Yalacki , D.R. , Schmidt , T. , Miller , J.S. , Open-source selective laser sintering (OpenSLS) of nylon and biocompatible polycaprolactone . PloS One , 11 , 2 , e0147399 , Feb. 3, 2016 .
- Modulevsky , D.J. , Cuerrier , C.M. , Pelling , A.E. , Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials . PloS One , 11 , 6 , e0157894 , Jun. 21, 2016 .
- Lewis , P.L. and Shah , R.N. , 3D printing for liver tissue engineering: Current approaches and future challenges . Curr. Transpl. Rep. , 3 , 100 – 8 , Mar. 2016 .
- Wang , X. , Yan , Y. , Pan , Y. , Xiong , Z. , Liu , H. , Cheng , J. , Liu , F. , Lin , F. , Wu , R. , Zhang , R. , Lu , Q. , Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system . Tissue Eng. , 12 , 1 , 83 – 90 , Jan. 1, 2006 .
- Silva , T.H. , Alves , A. , Popa , E.G. , Reys , L.L. , Gomes , M.E. , Sousa , R.A. , Silva , S.S. , Mano , J.F. , Reis , R.L. , Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches . Biomatter , 2 , 4 , 278 – 89 , Oct. 1, 2012 .
- Yan , Y. Wang , X. , Pan , Y. , et al ., Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique . Biomaterials , 26 , 29 , 5864 – 5871 , 2005 . doi: 10.1016/j.biomaterials.2005.02.027 .
- Deegan , D.B. , Zimmerman , C. , Skardal , A. , Atala , A. , Shupe , T.D. , Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology . J. Mech. Behav. Biomed. Mater. , 55 , 87 – 103 , Mar. 1, 2016 .
- Itoh , M. , Nakayama , K. , Noguchi , R. , Kamohara , K. , Furukawa , K. , Uchihashi , K. , Toda , S. , Oyama , J.I. , Node , K. , Morita , S. , Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae . PloS One , 10 , 9 , e0136681 , Sep. 1, 2015 .
- Poldervaart , M.T. , Goversen , B. , De Ruijter , M. , Abbadessa , A. , Melchels , F.P. , Öner , F.C. , Dhert , W.J. , Vermonden , T. , Alblas , J. , 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity . PloS One , 12 , 6 , e0177628 , Jun. 6, 2017 .
- Mousavi , S.J. and HamdyDoweidar , M. , Role of mechanical cues in cell differentiation and proliferation: A 3D numerical model . PloS One , 10 , 5 , e0124529 , May 1, 2015 .
- Augst , A.D. , Kong , H.J. and Mooney , D.J. , Alginate hydrogels as biomaterials . Macromol. Biosci. , 6 , 623 – 33 , 2006 . https://doi.org/ 10.1002/mabi.200600069 .
- Claus , J. , Brietzke , A. , Lehnert , C. , Oschatz , S. , Grabow , N. , Kragl , U. , Swelling characteristics and biocompatibility of ionic liquid based hydrogels for biomedical applications . PloS One , 15 , 4 , e0231421 , Apr. 20, 2020 .
- Rouillard , A.D. , Berglund , C.M. , Lee , J.Y. , Polacheck , W.J. , Tsui , Y. , Bonassar , L.J. , Kirby , B.J. , Methods for photocrosslinking alginate hydrogel scaffolds with high cell viability . Tissue Eng. Part C Methods , 17 , 2 , 173 – 9 , Feb. 1, 2011 .
- Nakamura , M. , Nishiyama , Y. , Henmi , C. , Iwanaga , S. , Nakagawa , H. , Yamaguchi , K. , Akita , K. , Mochizuki , S. , Takiura , K. , Ink jet three-dimensional digital fabrication for biological tissue manufacturing: Analysis of alginate microgel beads produced by ink jet droplets for three dimensional tissue fabrication . J. Imaging Sci. Technol. , 52 , 6 , 060201 , Nov. 1, 2008 .
- Pataky , K. , Braschler , T. , Negro , A. , Renaud , P. , Lutolf , M.P. , Brugger , J. , Microdrop printing of hydrogel bioinks into 3D tissue-like geometries . Adv. Mater. , 24 , 3 , 391 – 6 , Jan. 17, 2012 .
- Gaetani , R. , Doevendans , P.A. , Metz , C.H. , Alblas , J. , Messina , E. , Giacomello , A. , Sluijter , J.P. , Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells . Biomaterials , 33 , 6 , 1782 – 90 , Feb. 1, 2012 .
- Xu , M. , Wang , X. , Yan , Y. , Yao , R. , Ge , Y. , An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix . Biomaterials , 31 , 14 , 3868 – 77 , May 1, 2010 .
- Xue , W. , Krishna , B.V. , Bandyopadhyay , A. , Bose , S. , Processing and biocompatibility evaluation of laser processed porous titanium . Actabiomaterialia , 3 , 6 , 1007 – 18 , Nov. 1, 2007 .
- Mengsteab , P.Y. , Freeman , J. , Barajaa , M.A. , Nair , L.S. , Laurencin , C.T. , Ligament regenerative engineering: Braiding scalable and tunable bioengineered ligaments using a bench-top braiding machine . Regen. Eng. Transl. Med. , 7 , 524 – 32 , Dec. 2021 .
- Khan , Y. , Yaszemski , M.J. , Mikos , A.G. , Laurencin , C.T. , Tissue engineering of bone: Material and matrix considerations . J. Bone Jt. Surg. , 90 , Supplement_1 , 36 – 42 , Feb. 1, 2008 .
- Leukers , B. , Gülkan , H. , Irsen , S.H. , Milz , S. , Tille , C. , Schieker , M. , Seitz , H. , Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing . J. Mater. Sci. Mater. Med. , 16 , 12 , 1121 – 4 , 2005 .
- Du , Y. , Lo , E. , Vidula , M.K. , Khabiry , M. , Khademhosseini , A. , Method of bottom-up directed assembly of cell-laden microgels . Cell. Mol. Bioeng. , 1 , 157 – 62 , Sep. 2008 .
- Du , Y. , Ghodousi , M. , Lo , E. , Vidula , M.K. , Emiroglu , O. , Khademhosseini , A. , Surface-directed assembly of cell-laden microgels . Biotechnol. Bioeng. , 105 , 3 , 655 – 62 , Feb. 15, 2010 .
- Zamanian , B. , Masaeli , M. , Nichol , J.W. , Khabiry , M. , Hancock , M.J. , Bae , H. , Khademhosseini , A. , Interface-directed self-assembly of cell-laden microgels . Small , 6 , 8 , 937 – 44 , Apr. 23, 2010 .
- Gbureck , U. , Hölzel , T. , Doillon , C.J. , Müller , F.A. , Barralet , J.E. , Direct printing of bioceramic implants with spatially localized angiogenic factors . Adv. Mater. , 19 , 6 , 795 – 800 , Mar. 19, 2007 .
- Barralet , J. , Gbureck , U. , Habibovic , P. , Vorndran , E. , Gerard , C. , Doillon , C.J. , Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release . Tissue Eng. Part A , 15 , 7 , 1601 – 9 , Jul. 1, 2009 .
- Becker , S.T. , Douglas , T. , Acil , Y. , Seitz , H. , Sivananthan , S. , Wiltfang , J. , Warnke , P.H. , Biocompatibility of individually designed scaffolds with human periosteum for use in tissue engineering . J. Mater. Sci. Mater. Med. , 21 , 1255 – 62 , Apr. 2010 .
- Guang-xi , Z.H. , Shi-feng , L.I. , Xin , Y.A. , Ming-jun , S.H. , Yao-jia , R.E. , Research progress on preparation of biological implant materials by additive manufacturing . Powder Metall. Technol. , 37 , 4 , 312 – 8 , Aug. 27, 2019 .
- Tamimi , F. , Torres , J. , Gbureck , U. , Lopez-Cabarcos , E. , Bassett , D.C. , Alkhraisat , M.H. , Barralet , J.E. , Craniofacial vertical bone augmentation: a comparison between 3D printed monolithic monetite blocks and autologous onlay grafts in the rabbit . Biomaterials , 30 , 31 , 6318 – 26 , 2009 .
- L'heureux , N. , Pâquet , S. , Labbé , R. , Germain , L. , Auger , F.A. , A completely biological tissue-engineered human blood vessel . FASEB J. , 12 , 1 , 47 – 56 , Jan. 1998 .
- L'Heureux , N. , Dusserre , N. , Konig , G. , Victor , B. , Keire , P. , Wight , T.N. , Chronos , N.A. , Kyles , A.E. , Gregory , C.R. , Hoyt , G. , Robbins , R.C. , Human tissue-engineered blood vessels for adult arterial revascularization . Nat. Med. , 12 , 3 , 361 – 5 , Mar. 1, 2006 .
- L'heureux , N. , Dusserre , N. , Marini , A. , Garrido , S. , De La Fuente , L. , McAllister , T. , Technology insight: The evolution of tissue-engineered vascular grafts—from research to clinical practice . Nat. Clin. Pract. Cardiovasc. Med. , 4 , 7 , 389 – 95 , Jul. 2007 .
- Norotte , C. , Marga , F.S. , Niklason , L.E. , Forgacs , G. , Scaffold-free vascular tissue engineering using bioprinting . Biomaterials , 30 , 30 , 5910 – 7 , Oct. 1, 2009 .
- Mironov , V. , Kasyanov , V. , Markwald , R.R. , Organ printing: From bioprinter to organ biofabrication line . Curr. Opin. Biotechnol. , 22 , 5 , 667 – 73 , Oct. 1, 2011 .
- Bartnikowski , M. , Klein , T.J. , Melchels , F.P. , Woodruff , M.A. , Effects of scaffold architecture on mechanical characteristics and osteoblast response to static and perfusion bioreactor cultures . Biotechnol. Bioeng. , 111 , 7 , 1440 – 51 , Jul. 2014 .
- Ghaedi , M. , Mendez , J.J. , Bove , P.F. , Sivarapatna , A. , Raredon , M.S. , Niklason , L.E. , Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor . Biomaterials , 35 , 2 , 699 – 710 , Jan. 1, 2014 .
- Spitters , T.W. , Leijten , J.C. , Deus , F.D. , Costa , I.B. , van Apeldoorn , A.A. , van Blitterswijk , C.A. , Karperien , M. , A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering . Tissue Eng. Part C Methods , 19 , 10 , 774 – 83 , Oct. 1, 2013 .
- Xu , W. , Wang , X. , Yan , Y. , Zhang , R. , A polyurethane-gelatin hybrid construct for manufacturing implantable bioartificial livers . J. Bioact. Compat. Polym. , 23 , 5 , 409 – 22 , Sep. 2008 .
- Kim , T.Y. , Kofron , C.M. , King , M.E. , Markes , A.R. , Okundaye , A.O. , Qu , Z. , Mende , U. , Choi , B.R. , Directed fusion of cardiac spheroids into larger heterocellularmicrotissues enables investigation of cardiac action potential propagation via cardiac fibroblasts . PloS One , 13 , 5 , e0196714 , May 1, 2018 .
- Mayer , N. , Lopa , S. , Talò , G. , Lovati , A.B. , Pasdeloup , M. , Riboldi , S.A. , Moretti , M. , Mallein-Gerin , F. , Interstitial perfusion culture with specific soluble factors inhibits type I collagen production from human osteoarthritic chondrocytes in clinical-grade collagen sponges . PloS One , 11 , 9 , e0161479 , Sep. 1, 2016 .
- Martin , I. , Wendt , D. , Heberer , M. , The role of bioreactors in tissue engineering . Trends Biotechnol. , 22 , 2 , 80 – 6 , Feb. 1, 2004 .
- Lu , J. , Zhang , X. , Li , J. , Yu , L. , Chen , E. , Zhu , D. , Zhang , Y. , Li , L. , A new fluidized bed bioreactor based on diversion-type microcapsule suspension for bioartificial liver systems . PloS One , 11 , 2 , e0147376 , Feb. 3, 2016 .
- Rath , S. , Salinas , M. , Villegas , A.G. , Ramaswamy , S. , Differentiation and distribution of marrow stem cells in flex-flow environments demonstrate support of the valvular phenotype . PloS One , 10 , 11 , e0141802 , Nov. 4, 2015 .
- Du , Y. , Lo , E. , Vidula , M.K. , Khabiry , M. , Khademhosseini , A. , Method of bottom-up directed assembly of cell-laden microgels . Cell. Mol. Bioeng. , 1 , 157 – 62 , Sep. 2008 .
- Du , Y. , Ghodousi , M. , Lo , E. , Vidula , M.K. , Emiroglu , O. , Khademhosseini , A. , Surface-directed assembly of cell-laden microgels . Biotechnol. Bioeng. , 105 , 3 , 655 – 62 , Feb. 15, 2010 .
- Zamanian , B. , Masaeli , M. , Nichol , J.W. , Khabiry , M. , Hancock , M.J. , Bae , H. , Khademhosseini , A. , Interface-directed self-assembly of cell-laden microgels . Small , 6 , 8 , 937 – 44 , Apr. 23, 2010 .
- Rolland , J.P. , Maynor , B.W. , Euliss , L.E. , Exner , A.E. , Denison , G.M. , DeSimone , J.M. , Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials . J. Am. Chem. Soc , 127 , 28 , 10096 – 100 , Jul. 20, 2005 .
- Sun , L. , Su , T. , Xu , J. , Hao , D. , Liao , W. , Zhao , Y. , Ren , W. , Deng , C. , Lü , H. , Aerobic oxidative desulfurization coupling of Co polyanion catalysts and p-TsOH-based deep eutectic solvents through a biomimetic approach . Green Chem. , 21 , 10 , 2629 – 34 , 2019 .