Customized Implants and Prosthetics with 3D Printing
Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorSummary
Due to a lack of effective tools, doctors must frequently rely on intuition, experience, and imaging studies to design surgical procedures. Clinicians need to learn about 3D printing and its applications as the technology becomes more commonplace in healthcare settings. Here, researchers go over the basics of 3D printing and its workflow. In this chapter, the investigator takes a look at the benefits and drawbacks of using 3D printing for preoperative planning as well as for creating customized implants and prosthetics.
References
- Lietman , S.A. and Joyce , M.J. , Bone sarcomas: Overview of management, with a focus on surgical treatment considerations . Clev. Clin. J. Med. , 77 , S8 – 12 , Mar. 1, 2010 .
- Schuh , R. , Panotopoulos , J. , Puchner , S.E. , Willegger , M. , Hobusch , G.M. , Windhager , R. , Funovics , P.T. , Vascularised or non-vascularised autologous fibular grafting for the reconstruction of a diaphyseal bone defect after resection of a musculoskeletal tumor . Bone Joint J. , 96 , 9 , 1258 – 63 , Sep. 1, 2014 .
- Fan , H. , Guo , Z. , Wang , Z. , Li , J. , Li , X. , Surgical technique: Unicondylarosteoallograft prosthesis composite in tumor limb salvage surgery . Clin. Orthop. Relat. Res. , 470 , 3577 – 86 , Dec. 2012 .
- Pala , E. , Henderson , E.R. , Calabrò , T. , Angelini , A. , Abati , C.N. , Trovarelli , G. , Ruggieri , P. , Survival of current production tumor endoprostheses: Complications, functional results, and comparative statistical analysis . J. Surg. Oncol. , 108 , 6 , 403 – 8 , Nov. 2013 .
- Schubert , C. , Van Langeveld , M.C. , Donoso , L.A. , Innovations in 3D printing: A 3D overview from optics to organs . Br. J. Ophthalmol. , 98 , 2 , 159 – 61 , Feb. 1, 2014 .
- Klein , G.T. , Lu , Y. , Wang , M.Y. , 3D printing and neurosurgery–ready for prime time? World Neurosurg. , 80 , 3-4 , 233 – 5 , Jul. 16, 2013 .
- Banks , J. , Adding value in additive manufacturing: Researchers in the United Kingdom and Europe look to 3D printing for customization . IEEE Pulse , 4 , 6 , 22 – 6 , Nov. 6, 2013 .
- Mertz , L. , Dream it, design it, print it in 3-D: What can 3-D printing do for you? IEEE Pulse , 4 , 6 , 15 – 21 , 2013 .
- Ursan , I.D. , Chiu , L. , Pierce , A. , Three-dimensional drug printing: A structured review . J. Am. Pharm. Assoc. , 53 , 2 , 136 – 44 , Mar. 1, 2013 .
- Gross , B.C. , Erkal , J.L. , Lockwood , S.Y. , Chen , C. , Spence , D.M. , Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences . Anal. Chem. , 86 , 3240 – 3253 , 2014 .
- Bartlett , S. , Printing organs on demand . Lancet Respir. Med. , 1 , 9 , 684 , Nov. 1, 2013 .
- Desarda , R.V. , The Third Dimension: 3D Printing in Medical Science . Int. J. Comput. Biol. Bioinf. , 6 , 1 , 12 – 5 , Sep. 18, 2020 .
- Lipson , H. and Kurman , M. , Fabricated: The New World of 3D Printing , John Wiley & Sons , New Jersey, U.S.A ., Jan. 22, 2013 .
- Cui , X. , Boland , T. , DD'Lima , D. , Lotz , M.K. , Thermal inkjet printing in tissue engineering and regenerative medicine . Recent Pat. Drug Deliv. Formul. , 6 , 2 , 149 – 55 , Aug. 1, 2012 .
-
Hoy , M.B.
,
3D printing: Making things at the library
.
Med. Ref. Serv. Q.
,
32
,
1
,
93
–
9
, Jan. 1,
2013
.
10.1080/02763869.2013.749139 Google Scholar
-
Coakley , M.
and
Hurt , D.E.
,
3D printing in the laboratory: Maximize time and funds with customized and open-source labware
.
SLAS Technol.
,
21
,
4
,
489
–
95
, Aug. 1,
2016
.
10.1177/2211068216649578 Google Scholar
- Ozbolat , I.T. and Yu , Y. , Bioprinting toward organ fabrication: Challenges and future trends . IEEE Trans. Biomed. Eng. , 60 , 3 , 691 – 9 , Jan. 30, 2013 .
- Bertassoni , L.E. , Cecconi , M. , Manoharan , V. , Nikkhah , M. , Hjortnaes , J. , Cristino , A.L. , Barabaschi , G. , Demarchi , D. , Dokmeci , M.R. , Yang , Y. , Khademhosseini , A. , Hydrogel bioprintedmicrochannel networks for vascularization of tissue engineering constructs . Lab. Chip , 14 , 13 , 2202 – 11 , 2014 .
- Yaldo , A. , Seal , B.S. , Lage , M.J. , The cost of absenteeism and short-term disability associated with colorectal cancer . J. Occup. Environ. Med. , 56 , 8 , 848 – 51 , Aug. 1, 2014 .
- Khaled , S.A. , Burley , J.C. , Alexander , M.R. , Roberts , C.J. , Desktop 3D printing of controlled release pharmaceutical bilayer tablets . Int. J. Pharm. , 461 , 1-2 , 105 – 11 , Jan. 30, 2014 .
- Sparrow , N. , FDA tackles opportunities, challenges of 3D-printed medical devices . Plastics today: Med. , 2014 . https://www.plasticstoday.com/fda-tackles-opportunities-challenges-3d-printed-medical-devices (accessed on February 2023).
- Rezwan , K. , Chen , Q.Z. , Blaker , J.J. , Boccaccini , A.R. , Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering . Biomaterials , 27 , 18 , 3413 – 31 , Jun. 1, 2006 .
- Godbey , W.T. and Atala , A. , In vitro systems for tissue engineering . Ann. N. Y. Acad. Sci. , 961 , 1 , 10 – 26 , Jun. 2002 .
- Rhee , S. , Puetzer , J.L. , Mason , B.N. , Reinhart-King , C.A. , Bonassar , L.J. , 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering . ACS Biomater. Sci. Eng. , 2 , 10 , 1800 – 5 , Oct. 10, 2016 .
- Laronda , M.M. , Rutz , A.L. , Xiao , S. , Whelan , K.A. , Duncan , F.E. , Roth , E.W. , Woodruff , T.K. , Shah , R.N. , A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice . Nat. Commun. , 8 , 1 , 15261 , May 16, 2017 .
- Markstedt , K. , Mantas , A. , Tournier , I. , Martínez Ávila , H. , Hagg , D. , Gatenholm , P. , 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications . Biomacromolecules , 16 , 5 , 1489 – 96 , May 11, 2015 .
- Nguyen , D. , Hägg , D.A. , Forsman , A. , Ekholm , J. , Nimkingratana , P. , Brantsing , C. , Kalogeropoulos , T. , Zaunz , S. , Concaro , S. , Brittberg , M. , Lindahl , A. , Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink . Sci. Rep. , 7 , 1 , 1 – 10 , Apr. 6, 2017 .
- Tan , Z. , Parisi , C. , Di Silvio , L. , Dini , D. , Forte , A.E. , Cryogenic 3D printing of super soft hydrogels . Sci. Rep. , 7 , 1 , 16293 , Nov. 24, 2017 .
- Lee , J.S. , Hong , J.M. , Jung , J.W. , Shim , J.H. , Oh , J.H. , Cho , D.W. , 3D printing of composite tissue with complex shape applied to ear regeneration . Biofabrication , 6 , 2 , 024103 , Jan. 24, 2014 .
- Phillippi , J.A. , Miller , E. , Weiss , L. , Huard , J. , Waggoner , A. , Campbell , P. , Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations . Stem Cells , 26 , 1 , 127 – 34 , Jan. 2008 .
- Duan , B. , Hockaday , L.A. , Kang , K.H. , Butcher , J.T. , 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels . J. Biomed. Mater. Res. A , 101 , 5 , 1255 – 64 , May 2013 .
- Fedorovich , N.E. , Alblas , J. , de Wijn , J.R. , Hennink , W.E. , Verbout , A.J. , Dhert , W.J. , Hydrogels as extracellular matrices for skeletal tissue engineering: State-of-the-art and novel application in organ printing . Tissue Eng. , 13 , 8 , 1905 – 25 , Aug. 1, 2007 .
- Hsieh , F.Y. , Lin , H.H. , Hsu , S.H. , 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair . Biomaterials , 71 , 48 – 57 , Dec. 1, 2015 .
-
Suntornnond , R.
,
An , J.
,
Chua , C.K.
,
Roles of support materials in 3D bioprinting-present and future
.
Int. J. Bioprint.
,
3
,
1
,
83
–
86
,
2017
.
10.18063/IJB.2017.01.006 Google Scholar
-
Ntintakis , I.
,
Stavroulakis , G.E.
,
Plakia , N.
,
Topology optimization by the use of 3D printing technology in the product design process
.
HighTech Innov. J.
,
1
,
4
,
161
–
71
, Dec. 1,
2020
.
10.28991/HIJ-2020-01-04-03 Google Scholar
-
Kim , S.
,
Shin , Y.
,
Park , J.
,
Lee , S.W.
,
An , K.
,
Exploring the potential of 3D printing technology in landscape design process
.
Land
,
10
,
3
,
259
, Mar. 4,
2021
.
10.3390/land10030259 Google Scholar
- Berman , B. , 3-D printing: The new industrial revolution . Bus. Horiz. , 55 , 2 , 155 – 62 , Mar. 1, 2012 .
-
Tawk , C.
and
Alici , G.
,
Finite element modeling in the design process of 3D printed pneumatic soft actuators and sensors
.
Robotics
,
9
,
3
,
52
, Jul. 7,
2020
.
10.3390/robotics9030052 Google Scholar
- Renson , L. , Poilvache , P. , Van den Wyngaert , H. , Improved alignment and operating room efficiency with patient-specific instrumentation for TKA . Knee , 21 , 6 , 1216 – 20 , Dec. 1, 2014 .
- Gregg , A. , Perfect knee implants, courtesy of a 3D printer . Washington Post , 2015 . http://www.washingtonpost.com/business/capitalbusiness/surgeons-turn-to-printed-implants/2014/12/23/0d5c353e-8486-11e4-9534-f79a23c40e6c_story.html (accessed on February 2023).
- Demange , M.K. , Von Keudell , A. , Probst , C. , Yoshioka , H. , Gomoll , A.H. , Patient-specific implants for lateral unicompartmental knee arthroplasty . Int. Orthop. , 39 , 1519 – 26 , Aug. 2015 .
- Stuyts , B. , Peersman , G. , Thienpont , E. , Van den Eeden , E. , Van der Bracht , H. , Custom-made lateral femoral hemiarthroplasty for traumatic bone loss: A case report . Knee , 22 , 5 , 435 – 9 , Oct. 1, 2015 .
- Lin , C.Y. , Wirtz , T. , LaMarca , F. , Hollister , S.J. , Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process . J. Biomed. Mater. Res. A , 83 , 2 , 272 – 79 , 2007 .
-
de Beer , N.
and
van der Merwe , A.
,
Patient-specific intervertebral disc implants using rapid manufacturing technology
.
Rapid Prototyp. J.
,
19
,
2
,
126
–
39
, Mar. 1,
2013
.
10.1108/13552541311302987 Google Scholar
- Yan , Q. , Dong , H. , Su , J. , Han , J. , Song , B. , Wei , Q. , Shi , Y. , A review of 3D printing technology for medical applications . Engineering , 4 , 5 , 729 – 42 , Oct. 1, 2018 .
- Ventola , C.L. , Medical applications for 3D printing: Current and projected uses . PT , 39 , 10 , 704 , Oct. 2014 .
- Nadagouda , M.N. , Rastogi , V. , Ginn , M. , A review on 3D printing techniques for medical applications . Curr. Opin. Chem. Eng. , 28 , 152 – 7 , Jun. 1, 2020 .
- Yan , Q. , Dong , H. , Su , J. , Han , J. , Song , B. , Wei , Q. , Shi , Y. A review of 3D printing technology for medical applications , Engineering , 4 , 5 , 729 – 42 , 2018 .
- Schubert , C. , Van Langeveld , M.C. , Donoso , L.A. , Innovations in 3D printing: A 3D overview from optics to organs . Br. J. Ophthalmol. , 98 , 2 , 159 – 61 , Feb. 1, 2014 .