3D Printing in Fabrication of Dosage Form
Rishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishabha Malviya
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorRishav Sharma
Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University
Search for more papers by this authorSummary
Complicated biological structures, such as tissues and organs, may be printed out of digital designs using the additive manufacturing process of 3D printing. As a result of the success of Spritam®, the first 3D medicinal product approved by the FDA, a large number of researchers have been interested in the topic, and work is currently underway to produce a wide range of individualized dose forms. The aim of this overview is to familiarize readers with 3D printing, its background, advantages, and obstacles, and the numerous manufacturing techniques utilized to create pharmaceutical goods. The benefits and relevance of 3D-printed, patient-specific dose forms are evaluated as well. The necessity of tailored dosing and the utilization of anatomical models, tissue and organ fabrication, and other 3D printing applications in the treatment of diseases like cancer, diabetes, cardiovascular problems, and neurodegenerative disorders are highlighted. There is a wide range of discussions regarding the potential disruptions in healthcare and manufacturing that 3D printing may cause as well as the regulatory issues that may arise as a result. This analysis of 3D printing technology has discussed its current and future manufacturing and medicinal applications, both of which hold great promise for improving the quality of life for humans.
References
- Prasad , L.K. and Smyth , H. , 3D printing technologies for drug delivery: A review . Drug Dev. Ind. Pharm. , 42 , 7 , 1019 – 31 , Jul. 2, 2016 .
- Pravin , S. and Sudhir , A. , Integration of 3D printing with dosage forms: A new perspective for modern healthcare . Biomed. Pharmacother. , 107 , 146 – 54 , Nov. 1, 2018 .
- Sandler , N. , Määttänen , A. , Ihalainen , P. , Kronberg , L. , Meierjohann , A. , Viitala , T. , Peltonen , J. , Inkjet printing of drug substances and use of porous substrates-towards individualized dosing . J. Pharm. Sci. , 100 , 8 , 3386 – 95 , Aug. 1, 2011 .
- Leong , T.G. , Randall , C.L. , Benson , B.R. , Bassik , N. , Stern , G.M. , Gracias , D.H. , Tetherless thermochemically actuated microgrippers . Proc. Natl. Acad. Sci. , 106 , 3 , 703 – 8 , Jan. 20, 2009 .
- Dodziuk , H. , Applications of 3D printing in healthcare . Kardiochir. Torakochirurgia Pol. , 13 , 3 , 283 – 93 , Sep. 30, 2016 .
-
Choi , J.
,
Kwon , O.C.
,
Jo , W.
,
Lee , H.J.
,
Moon , M.W.
,
4D printing technology: A review
.
3D Print. Addit. Manuf.
,
2
,
4
,
159
–
67
, Dec. 1,
2015
.
10.1089/3dp.2015.0039 Google Scholar
- Kizawa , H. , Nagao , E. , Shimamura , M. , Zhang , G. , Torii , H. , Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery . Biochem. Biophys. Rep. , 10 , 186 – 91 , Jul. 1, 2017 .
-
Munoz-Abraham , A.S.
,
Rodriguez-Davalos , M.I.
,
Bertacco , A.
,
Wengerter , B.
,
Geibel , J.P.
,
Mulligan , D.C.
,
3D printing of organs for transplantation: where are we and where are we heading?
Curr. Transplant. Rep.
,
3
,
93
–
9
, Mar.
2016
.
10.1007/s40472-016-0089-6 Google Scholar
- Ferris , C.J. , Gilmore , K.J. , Beirne , S. , McCallum , D. , Wallace , G.G. , Bio-ink for on-demand printing of living cells . Biomater. Sci. , 1 , 2 , 224 – 30 , 2013 .
-
Guo , N.
and
Leu , M.C.
,
Additive manufacturing: Technology, applications and research needs
.
Front. Mech. Eng.
,
8
,
215
–
43
, Sep.
2013
.
10.1007/s11465-013-0248-8 Google Scholar
- Goyanes , A. , Wang , J. , Buanz , A. , Martínez-Pacheco , R. , Telford , R. , Gaisford , S. , Basit , A.W. , 3D printing of medicines: Engineering novel oral devices with unique design and drug release characteristics . Mol. Pharm. , 12 , 11 , 4077 – 84 , Nov. 2, 2015 .
- Moulton , S.E. and Wallace , G.G. , 3-dimensional (3D) fabricated polymer based drug delivery systems . J. Control. Release , 193 , 27 – 34 , Nov. 10, 2014 .
- Pravin , S. and Sudhir , A. , Integration of 3D printing with dosage forms: A new perspective for modern healthcare . Biomed. Pharmacother. , 107 , 146 – 54 , 2018 .
- Basiliere , P. , Predicts 2016: 3D printing disrupts healthcare and manufacturing . Gartner . https://www.gartner.com/en/documents/3171223 (accessed on February 2023).
- Bell , D. , Fallat , J. , Sterley , G. , Alsuhibani , E. , The Future of Additive Manufacturing in the US Military , Air Command and Staff College, Air University Maxwell AFB United States , Mar. 17, 2017 .
-
Prince , J.D.
,
3D printing: An industrial revolution
.
J. Electron. Resour. Med. Libr.
,
11
,
1
,
39
–
45
, Jan 1,
2014
.
10.1080/15424065.2014.877247 Google Scholar
- Papaioannou , T.G. , Manolesou , D. , Dimakakos , E. , Tsoucalas , G. , Vavuranakis , M. , Tousoulis , D. , 3D bioprinting methods and techniques: applications on artificial blood vessel fabrication . Acta Cardiol. Sin. , 35 , 3 , 284 , May 2019 .
- Reis Silva , M. , Pereira , A.M. , Alves , N. , Mateus , G. , Mateus , A. , Malça , C. , Development of an additive manufacturing system for the deposition of thermoplastics impregnated with carbon fibers . J. Manuf. Mater. Process. , 3 , 2 , 35 , Apr. 27, 2019 .
- Katstra , W.E. , Palazzolo , R.D. , Rowe , C.W. , Giritlioglu , B. , Teung , P. , Cima , M.J. , Oral dosage forms fabricated by three dimensional printing™ . J. Control. Release , 66 , 1 , 1 – 9 , May 3, 2000 .
- Norman , J. , Madurawe , R.D. , Moore , C.M. , Khan , M.A. , Khairuzzaman , A. , A new chapter in pharmaceutical manufacturing: 3D-printed drug products . Adv. Drug Deliv. Rev. , 108 , 39 – 50 , Jan. 1, 2017 .
- Huang , W. , Zheng , Q. , Sun , W. , Xu , H. , Yang , X. , Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique . Int. J. Pharm. , 339 , 1-2 , 33 – 8 , Jul. 18, 2007 .
- Sadia , M. , Arafat , B. , Ahmed , W. , Forbes , R.T. , Alhnan , M.A. , Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets . J. Control. Release , 269 , 355 – 63 , Jan. 10, 2018 .
- Goole , J. and Amighi , K. , 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems . Int. J. Pharm. , 499 , 1-2 , 376 – 94 , Feb. 29, 2016 .
- Alhnan , M.A. , Okwuosa , T.C. , Sadia , M. , Wan , K.W. , Ahmed , W. , Arafat , B. , Emergence of 3D printed dosage forms: Opportunities and challenges . Pharm. Res. , 33 , 1817 – 32 , Aug 2016 .
- Redekop , W.K. and Mladsi , D. , The faces of personalized medicine: A framework for understanding its meaning and scope . Value Health , 16 , 6 , S4 – 9 , Sep. 1, 2013 .
- Kichko , K. , Marschall , P. , Flessa , S. , Personalized medicine in the US and Germany: Awareness, acceptance, use and preconditions for the wide implementation into the medical standard . J. Pers. Med. , 6 , 2 , 15 , May 2, 2016 .
- Ji , S. and Guvendiren , M. , Recent advances in bioink design for 3D bioprinting of tissues and organs . Front. Bioeng. Biotechnol. , 5 , 23 , Apr. 5, 2017 .
- Fisher , O.Z. , Khademhosseini , A. , Langer , R. , Peppas , N.A. , Bioinspired materials for controlling stem cell fate . Acc. Chem. Res. , 43 , 3 , 419 – 28 , Mar. 16, 2010 .
- Chimene , D. , Lennox , K.K. , Kaunas , R.R. , Gaharwar , A.K. , Advanced bioinks for 3D printing: A materials science perspective . Ann. Biomed. Eng. , 44 , 2090 – 102 , Jun. 2016 .
- Fedorovich , N.E. , Alblas , J. , de Wijn , J.R. , Hennink , W.E. , Verbout , A.J. , Dhert , W.J. , Hydrogels as extracellular matrices for skeletal tissue engineering: State-of-the-art and novel application in organ printing . Tissue Eng. , 13 , 8 , 1905 – 25 , Aug. 1, 2007 .
-
Ali , A.
,
Ahmad , U.
,
Akhtar , J.
,
3D printing in pharmaceutical sector: An overview
, in:
Pharmaceutical Formulation Design-Recent Practices
, Jan. 3,
2020
.
10.5772/intechopen.90738 Google Scholar
- Camardella , L.T. , de Vasconcellos Vilella , O. , Breuning , H. , Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases . Am. J. Orthod. Dentofac. Orthop. , 151 , 6 , 1178 – 87 , Jun. 1, 2017 .
- Wang , K. , Ho , C.C. , Zhang , C. , Wang , B. , A review on the 3D printing of functional structures for medical phantoms and regenerated tissue and organ applications . Engineering , 3 , 5 , 653 – 62 , Oct. 1, 2017 .
- Kizawa , H. , Nagao , E. , Shimamura , M. , Zhang , G. , Torii , H. , Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery . Biochem. Biophys. Rep. , 10 , 186 – 91 , Jul. 1, 2017 .
- Zhong , C. , Xie , H.Y. , Zhou , L. , Xu , X. , Zheng , S.S. , Human hepatocytes loaded in 3D bioprinting generate mini-liver . HBPD Int. , 15 , 5 , 512 – 8 , Oct. 15, 2016 .
- Khaled , S.A. , Burley , J.C. , Alexander , M.R. , Roberts , C.J. , Desktop 3D printing of controlled release pharmaceutical bilayer tablets . Int. J. Pharm. , 461 , 1-2 , 105 – 11 , Jan. 30, 2014 .
- Pardeike , J. , Strohmeier , D.M. , Schrödl , N. , Voura , C. , Gruber , M. , Khinast , J.G. , Zimmer , A. , Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines . Int. J. Pharm. , 420 , 1 , 93 – 100 , Nov. 25, 2011 .
- Buanz , A.B. , Saunders , M.H. , Basit , A.W. , Gaisford , S. , Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing . Pharm. Res. , 28 , 2386 – 92 , Oct. 2011 .
- Cheow , W.S. , Kiew , T.Y. , Hadinoto , K. , Combining inkjet printing and amorphous nanonization to prepare personalized dosage forms of poorly-soluble drugs . Eur. J. Pharm. Biopharm. , 96 , 314 – 21 , Oct. 1, 2015 .
- Sadia , M. , Sośnicka , A. , Arafat , B. , Isreb , A. , Ahmed , W. , Kelarakis , A. , Alhnan , M.A. , Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets . Int. J. Pharm. , 513 , 1-2 , 659 – 68 , Nov. 20, 2016 .
- Adami , R. , Liparoti , S. , Reverchon , E. , A new supercritical assisted atomization configuration, for the micronization of thermolabile compounds . Chem. Eng. J. , 173 , 1 , 55 – 61 , Sep. 1, 2011 .
-
Ferreira , C.N.
,
Squiassi , H.B.
,
Santana , C.F.
,
Cost of wastage in logistic management: thermolabile drugs in the treatment of rheumatoid arthritis in Brazil
.
Value Health
,
19
,
3
,
A240
, May 1,
2016
.
10.1016/j.jval.2016.03.1120 Google Scholar
- Kruth , J.P. , Mercelis , P. , Van Vaerenbergh , J. , Froyen , L. , Rombouts , M. , Binding mechanisms in selective laser sintering and selective laser melting . Rapid Prototyp. J. , 11 , 26 – 36 , Feb. 1, 2005 .
- Tayel , S.A. , Soliman , I.I. , Louis , D. , Formulation of ketotifen fumarate fast-melt granulation sublingual tablet . AAPS PharmSciTech , 11 , 679 – 85 , Jun. 2010 .
- Wang , J. , Goyanes , A. , Gaisford , S. , Basit , A.W. , Stereolithographic (SLA) 3D printing of oral modified-release dosage forms . Int. J. Pharm. , 503 , 1-2 , 207 – 12 , Apr. 30, 2016 .
- Gu , Q. , Hao , J. , Lu , Y. , Wang , L. , Wallace , G.G. , Zhou , Q. , Three-dimensional bio-printing . Sci. China Life Sci. , 58 , 411 – 9 , May 2015 .
- García-Domínguez , A. , Claver , J. , Sebastián , M.A. , Study for the selection of design software for 3D printing topological optimization . Proc. Manuf. , 13 , 903 – 9 , Jan. 1, 2017 .
-
Edgar , J.
and
Tint , S.
,
Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing
.
Johnson Matthey Technol. Rev.
,
59
,
3
,
193
–
8
, Jul. 1,
2015
.
10.1595/205651315X688406 Google Scholar
- Palo , M. , Holländer , J. , Suominen , J. , Yliruusi , J. , Sandler , N. , 3D printed drug delivery devices: Perspectives and technical challenges . Expert Rev. Med. Devices , 14 , 9 , 685 – 96 , Sep. 2, 2017 .
- Nyol , S. and Gupta , M.M. , Immediate drug release dosage form: A review . J. Drug Deliv. Ther. , 3 , 2 , 155 – 161 , Mar. 15, 2013 .
- Goyanes , A. , Hatton , G.B. , Merchant , H.A. , Basit , A.W. , Gastrointestinal release behaviour of modified-release drug products: Dynamic dissolution testing of mesalazine formulations . Int. J. Pharm. , 484 , 1-2 , 103 – 8 , Apr. 30, 2015 .
- Okwuosa , T.C. , Stefaniak , D. , Arafat , B. , Isreb , A. , Wan , K.W. , Alhnan , M.A. , A lower temperature FDM 3D printing for the manufacture of patient-specific immediate release tablets . Pharm. Res. , 33 , 2704 – 12 , Nov. 2016 .
- He , W. , Huang , S. , Zhou , C. , Cao , L. , Yao , J. , Zhou , J. , Wang , G. , Yin , L. , Bilayer matrix tablets for prolonged actions of metformin hydrochloride and repaglinide . AAPS PharmSciTech , 16 , 344 – 53 , Apr. 2015 .
-
Varghese , R.
,
Sood , P.
,
Salvi , S.
,
Karsiya , J.
,
Kumar , D.
,
3D printing in the pharmaceutical sector: Advances and evidences
.
Sens. Int.
,
25
,
100177
, Apr.
2022
.
10.1016/j.sintl.2022.100177 Google Scholar
- Maroni , A. , Zema , L. , Del Curto , M.D. , Loreti , G. , Gazzaniga , A. , Oral pulsatile delivery: Rationale and chronopharmaceutical formulations . Int. J. Pharm. , 398 , 1-2 , 1 – 8 , Oct. 15, 2010 .
- Maroni , A. , Melocchi , A. , Parietti , F. , Foppoli , A. , Zema , L. , Gazzaniga , A. , 3D printed multi-compartment capsular devices for two-pulse oral drug delivery . J. Control. Release , 268 , 10 – 8 , Dec. 28, 2017 .
- Parhi , R. and Jena , G.K. , An updated review on application of 3D printing in fabricating pharmaceutical dosage forms . Drug Deliv. Transl. Res. , 12 , 1 – 35 , Oct. 6, 2021 .
- Khaled , S.A. , Burley , J.C. , Alexander , M.R. , Yang , J. , Roberts , C.J. , 3D printing of tablets containing multiple drugs with defined release profiles . Int. J. Pharm. , 494 , 2 , 643 – 50 , Oct. 30, 2015 .
- Khaled , S.A. , Burley , J.C. , Alexander , M.R. , Yang , J. , Roberts , C.J. , 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles . J. Control. Release , 217 , 308 – 14 , Nov. 10, 2015 .
- Khaled , S.A. , Burley , J.C. , Alexander , M.R. , Yang , J. , Roberts , C.J. , 3D printing of five-in-one dose combination polypill with defined immediate and sustained release profiles . J. Control. Release , 217 , 308 – 14 , Nov. 10, 2015 .
- Içten , E. , Purohit , H.S. , Wallace , C. , Giridhar , A. , Taylor , L.S. , Nagy , Z.K. , Reklaitis , G.V. , Dropwise additive manufacturing of pharmaceutical products for amorphous and self emulsifying drug delivery systems . Int. J. Pharm. , 524 , 1-2 , 424 – 32 , May 30, 2017 .
- Wu , P. and Grainger , D.W. , Drug/device combinations for local drug therapies and infection prophylaxis . Biomaterials , 27 , 11 , 2450 – 67 , Apr. 1, 2006 .
- Fu , Y. and Kao , W.J. , Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems . Expert Opin. Drug Deliv. , 7 , 4 , 429 – 44 , Apr. 1, 2010 .
- Genina , N. , Holländer , J. , Jukarainen , H. , Mäkilä , E. , Salonen , J. , Sandler , N. , Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices . Eur. J. Pharm. Sci. , 90 , 53 – 63 , Jul. 30, 2016 .
- Water , J.J. , Bohr , A. , Boetker , J. , Aho , J. , Sandler , N. , Nielsen , H.M. , Rantanen , J. , Three-dimensional printing of drug-eluting implants: Preparation of an antimicrobial polylactide feedstock material . J. Pharm. Sci. , 104 , 3 , 1099 – 107 , Mar. 1, 2015 .
- Wu , W. , Zheng , Q. , Guo , X. , Sun , J. , Liu , Y. , A programmed release multidrug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy . Biomed. Mater. , 4 , 6 , 065005 , Nov. 9, 2009 .
- Gbureck , U. , Vorndran , E. , Müller , F.A. , Barralet , J.E. , Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices . J. Control. Release , 122 , 2 , 173 – 80 , Sep. 26, 2007 .
- Stal , M. , Differences in Fatigue, Depression, and Hemoglobin as a Function of MPN Diagnosis Types (Polycythemia Vera, Essential Thrombocythemia, and Myelofibrosis) , Doctoral Dissertation, Northcentral University , 2018 .
- Ventola , C.L. , Cancer immunotherapy, part 3: challenges and future trends . PT , 42 , 8 , 514 , Aug. 2017 .
- Ginsburg , G.S. and Phillips , K.A. , Precision medicine: From science to value . Health Aff. , 37 , 5 , 694 – 701 , May 1, 2018 .
- Ceylan , S. and Bolgen , N. , A review on three dimensional scaffolds for tumor engineering . Biomater. Biomech. Bioeng. , 3 , 3 , 141 – 55 , Sep. 1, 2016 .
- Wüst , S. , Müller , R. , Hofmann , S. , Controlled positioning of cells in biomaterials—approaches towards 3D tissue printing . J. Funct. Biomater. , 2 , 3 , 119 – 54 , Aug. 4, 2011 .
- Kang , H.W. , Lee , S.J. , Ko , I.K. , Kengla , C. , Yoo , J.J. , Atala , A. , A 3D bioprinting system to produce human-scale tissue constructs with structural integrity . Nat. Biotechnol. , 34 , 3 , 312 – 9 , Mar. 2016 .
-
Samavedi , S.
and
Joy , N.
,
3D printing for the development of in vitro cancer models
.
Curr. Opin. Biomed. Eng.
,
2
,
35
–
42
, Jun. 1,
2017
.
10.1016/j.cobme.2017.06.003 Google Scholar
- Lamichhane , S. , Bashyal , S. , Keum , T. , Noh , G. , Seo , J.E. , Bastola , R. , Choi , J. , Sohn , D.H. , Lee , S. , Complex formulations, simple techniques: Can 3D printing technology be the Midas touch in pharmaceutical industry? Asian J. Pharm. Sci. , 14 , 5 , 465 – 79 , Sep. 1, 2019 .
- Andreadis , I.I. , Gioumouxouzis , C.I. , Eleftheriadis , G.K. , Fatouros , D.G. , The advent of a new era in digital healthcare: A role for 3d printing technologies in drug manufacturing? Pharmaceutics , 14 , 3 , 609 , Mar. 10, 2022 .
- Chandekar , A. , Mishra , D.K. , Sharma , S. , Saraogi , G.K. , Gupta , U. , Gupta , G. , 3D printing technology: A new milestone in the development of pharmaceuticals . Curr. Pharm. Des. , 25 , 9 , 937 – 45 , Mar. 1, 2019 .
- Marchioli , G. , van Gurp , L. , Van Krieken , P.P. , Stamatialis , D. , Engelse , M. , Van Blitterswijk , C.A. , Karperien , M.B. , de Koning , E. , Alblas , J. , Moroni , L. , van Apeldoorn , A.A. , Fabrication of three-dimensional bioplotted hydrogel scaffolds for islets of Langerhans transplantation . Biofabrication , 7 , 2 , 025009 , May 28, 2015 .
- Sabek , O.M. , Farina , M. , Fraga , D.W. , Afshar , S. , Ballerini , A. , Filgueira , C.S. , Thekkedath , U.R. , Grattoni , A. , Gaber , A.O. , Three-dimensional printed polymeric system to encapsulate human mesenchymal stem cells differentiated into islet-like insulin-producing aggregates for diabetes treatment . J. Tissue Eng. , 7 , 2041731416638198, Apr. 21, 2016 .
- Scheen , A.J. , Precision medicine: The future in diabetes care? Diabetes Res. Clin. Pract. , 117 , 12 – 21 , Jul. 1, 2016 .
- Monib , U. and Riaz , M.A. , Risk factors associated to cardiovascular diseases in Kyrgyzstan . J. Asian Med. Stud. Assoc. , 7 , 2 , 42 – 9 , Jun. 1, 2019 .
- Franco , M. , Cooper , R.S. , Bilal , U. , Fuster , V. , Challenges and opportunities for cardiovascular disease prevention . Am. J. Med. , 124 , 2 , 95 – 102 , Feb. 1, 2011 .
- Valverde , I. , Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions . Rev. Esp. Cardiol. (English Edition) , 70 , 4 , 282 – 91 , Apr. 1, 2017 .
- Vukicevic , M. , Mosadegh , B. , Min , J.K. , Little , S.H. , Cardiac 3D printing and its future directions . JACC: Cardiovasc. Imaging , 10 , 2 , 171 – 84 , Feb. 2017 .
- Giannopoulos , A.A. , Mitsouras , D. , Yoo , S.J. , Liu , P.P. , Chatzizisis , Y.S. , Rybicki , F.J. , Applications of 3D printing in cardiovascular diseases . Nat. Rev. Cardiol. , 13 , 12 , 701 – 18 , Dec. 2016 .
- Valverde , I. , Gomez , G. , Coserria , J.F. , Suarez-Mejias , C. , Uribe , S. , Sotelo , J. , Velasco , M.N. , Santos De Soto , J. , Hosseinpour , A.R. , Gomez-Cia , T. , 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia . Catheter. Cardiovasc. Interv. , 85 , 6 , 1006 – 12 , May 2015 .
- Wang , J.Z. , Li , Z.Y. , Zhang , J.P. , Guo , X.H. , Could personalized bio-3D printing rescue the cardiovascular system? Int. J. Cardiol. , 223 , 561 – 3 , Nov. 15, 2016 .
- Malhotra , R.K. , Neurodegenerative disorders and sleep. Sleep Med. Clin. , 13 , 1 , 63 – 70 , Mar. 1, 2018 .
- Lozano , R. , Stevens , L. , Thompson , B.C. , Gilmore , K.J. , Gorkin III , R. , Stewart , E.M. , in het Panhuis , M. , Romero-Ortega , M. , Wallace , G.G. , 3D printing of layered brain-like structures using peptide modified gellan gum substrates . Biomaterials , 67 , 264 – 73 , Oct. 1, 2015 .
- Ploch , C.C. , Mansi , C.S. , Jayamohan , J. , Kuhl , E. , Using 3D printing to create personalized brain models for neurosurgical training and preoperative planning . World Neurosurg. , 90 , 668 – 74 , Jun. 1, 2016 .
- Ormabera , B.J. , Valle , R.D. , Fernández , J.Z. , Ortega , M.L. , Inurritegui , X.U. , Solís , S.T. , Impresión 3D en neurocirugía: Modelo específico para pacientes con craneosinostosis . Neurocirugia , 28 , 6 , 260 – 5 , Nov. 1, 2017 .
- Owens , C.M. , Marga , F. , Forgacs , G. , Heesch , C.M. , Biofabrication and testing of a fully cellular nerve graft . Biofabrication , 5 , 4 , 045007 , Nov. 6, 2013 .
- Hsieh , F.Y. , Lin , H.H. , Hsu , S.H. , 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair . Biomaterials , 71 , 48 – 57 , Dec. 1, 2015 .
- Ackland , D.C. , Robinson , D. , Redhead , M. , Lee , P.V. , Moskaljuk , A. , Dimitroulis , G. , A personalized 3D-printed prosthetic joint replacement for the human temporomandibular joint: From implant design to implantation . J. Mech. Behav. Biomed. Mater. , 69 , 404 – 11 , May 1, 2017 .
- Cevenini , L. , Calabretta , M.M. , Tarantino , G. , Michelini , E. , Roda , A. , Smartphone-interfaced 3D printed toxicity biosensor integrating bioluminescent “sentinel cells” . Sens. Actuators B Chem. , 225 , 249 – 57 , Mar. 31, 2016 .
- van Grunsven , L.A. , 3D in vitro models of liver fibrosis . Adv. Drug Deliv. Rev. , 121 , 133 – 46 , Nov. 1, 2017 .
- Xu , N. , Wei , F. , Liu , X. , Jiang , L. , Cai , H. , Li , Z. , Yu , M. , Wu , F. , Liu , Z. , Reconstruction of the upper cervical spine using a personalized 3D-printed vertebral body in an adolescent with Ewing sarcoma . Spine , 41 , 1 , E50 – 4 , Jan. 1, 2016 .
- Pravin , S. and Sudhir , A. , Integration of 3D printing with dosage forms: A new perspective for modern healthcare . Biomed. Pharmacother. , 107 , 146 – 54 , Nov. 1, 2018 .
- Saleem , N. , Ismail , M.K. , Tombazzi , C.R. , Soin , S. , Dhruva , S.S. , Endoscopic transmission of carbapenem-resistant Enterobacteriaceae: Implications for US Food and Drug Administration approval and postmarket surveillance of endoscopic devices . Gastrointest. Endosc. , 93 , 1 , 231 – 8 , Jan. 1, 2021 .
-
Durfee , W.K.
and
Iaizzo , P.A.
,
Medical applications of 3D printing
, in:
Engineering in Medicine
, pp.
527
–
543
,
Academic Press
,
USA
, Jan 1,
2019
.
10.1016/B978-0-12-813068-1.00021-X Google Scholar
- Andreadis , I.I. , Gioumouxouzis , C.I. , Eleftheriadis , G.K. , Fatouros , D.G. , The advent of a new era in digital healthcare: A role for 3D printing technologies in drug manufacturing? Pharmaceutics , 14 , 3 , 609 , Mar. 10, 2022 .
- Fda.gov , [online] Available at: Recently-Approved Devices (2017 ) (Accessed 2 February 2022).