Design and Fabrication of Sonochemically Prepared Functionalized Nanomaterials for Fuel Cell Applications
Jayaraman Kalidass
Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
Search for more papers by this authorThirugnanasambandam Sivasankar
Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
Search for more papers by this authorJayaraman Kalidass
Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
Search for more papers by this authorThirugnanasambandam Sivasankar
Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
Search for more papers by this authorGopal Rawat
Chief Technology Officer
Bharatah Cryogenics Pvt. Ltd., Uttar Pradesh, India
Search for more papers by this authorGautam Patel
Dept. of Chemistry, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorKalim Deshmukh
New Technologies Research Centre, University of West Bohemia, Pilsen, Czech Republic
Search for more papers by this authorChaudhery Mustansar Hussain
Dept. of Chemistry & Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States
Search for more papers by this authorSummary
In todays’ fuel cell technology, achieving excellent electrochemical activity between fuel and oxidant, the design factors should be considered prior to increasing the performance of the fuel cell and to reduce the cost of fabrication techniques. Among various design and development processes, improved fabrication techniques and functionalization of synthesized nanomaterials are necessary to boost up the surface activity so that catalytic property of the electrodes would be intensified. The intensified catalytic property relatively increases the electrochemical redox reactions and that would lead to upgrade the overall conversion efficiency. In association with recent advancement in design and fabrication of functionalized nanomaterials, considering economic factors such as cost and time, ultrasonic irradiation method is found to be a promising technology with multiple beneficial features like rapid synthesis, energy efficiency, and ability to control the morphology, through its attractive bubble dynamics phenomenon. The formation, growth, and collapse of microbubbles based on the positive and negative pressure cycle would create the generation of radicals as a chemical effect and diversified physical effects including the formation of microturbulence, microjet, and agitation. The combined effect of hot spot and electrical theory leads to increase in the rate of mass transfer kinetics between molecules with better dispersibility toward high-performance fuel cell technology. In this chapter, the advantages of using ultrasound for the design and fabrication of fuel cell materials and its application as an electrocatalysts, electrodes, and membranes for advanced fuel cell technology have been elaborated based on recent studies.
References
- Sazali , N. , Wan Salleh , W.N. , Jamaludin , A.S. , Mhd Razali , M.N. , New Perspectives on Fuel Cell Technology: A Brief Review . Membranes , 10 , 99 , 2020 , https://doi.org/10.3390/membranes10050099 .
- Linden's Handbook of Batteries, Fourth Edition , Fourth Edition , McGraw-Hill Education , New York, United States , 2011 .
- Abdelkareem , M.A. , Elsaid , K. , Wilberforce , T. , Kamil , M. , Sayed , E.T. , Olabi , A. , Environmental aspects of fuel cells: A review . Sci. Total Environ. , 752 , 141803 , 2021 , https://doi.org/10.1016/j.scitotenv.2020.141803 .
- Zore , U.K. , Yedire , S.G. , Pandi , N. , Manickam , S. , Sonawane , S.H. , A review on recent advances in hydrogen energy, fuel cell, biofuel and fuel refining via ultrasound process intensification . Ultrason. Sonochem. , 73 , 105536 , 2021 , https://doi.org/10.1016/j.ultsonch.2021.105536 .
- Pustak , M. , Handbook of Fuel Cells Fundamentals Technology And Applications Vol 5 & 6 Advances , in: Electrocatalysis Materials, Diagnostics , n.d, https://www.meripustak.com/Handbook-Of-Fuel-Cells-Fundamentals-Technology-And-Applications-Vol-5-and-6-Advances-In-Electrocatalysis-Materials-Diagnostics-156235 (accessed April 29, 2023).
- Barclay , F.J. , Fuel Cells, Engines and Hydrogen: An Exergy Approach , John Wiley & Sons , New Jersey, United States , 2006 .
- Theerthagiri , J. , Madhavan , J. , Lee , S.J. , Choi , M.Y. , Ashokkumar , M. , Pollet , B.G. , Sonoelectrochemistry for energy and environmental applications . Ultrason. Sonochem. , 63 , 104960 , 2020 , https://doi.org/10.1016/j.ultsonch.2020.104960 .
- Pollet , B.G. , The use of ultrasound for the fabrication of fuel cell materials . Int. J. Hydrogen Energy , 35 , 11986 – 2004 , 2010 , https://doi.org/10.1016/j.ijhydene.2010.08.021 .
- Anandan , S. , Grieser , F. , Ashokkumar , M. , Sonochemical Synthesis of Au–Ag Core–Shell Bimetallic Nanoparticles , ACS Publications , Washington D.C., United States , 2008 , https://doi.org/10.1021/jp806960r .
- Kalidass , J. , Anandan , S. , Sivasankar , T. , Sonoelectrochemical Nanoarchitectonics of Crystalline Mesoporous Magnetite @ Manganese Oxide Nanocomposite as an Alternate Anode Material for Energy-Storage Applications . Crystals , 13 , 557 , 2023 , https://doi.org/10.3390/cryst13040557 .
- Reddy , D.R. , Dinesh , G.K. , Anandan , S. , Sivasankar , T. , Sonophotocatalytic treatment of Naphthol Blue Black dye and real textile wastewater using synthesized Fe doped TiO 2 . Chem. Eng. Process. Process Intensif. , 99 , 10 – 8 , 2016 , https://doi.org/10.1016/j.cep.2015.10.019 .
- Balachandramohan , J. and Sivasankar , T. , Ultrasound assisted synthesis of guar gum-zero valent iron nanocomposites as a novel catalyst for the treatment of pollutants . Carbohydr. Polym. , 199 , 41 – 50 , 2018 , https://doi.org/10.1016/j.carbpol.2018.06.097 .
- Saffari , J. , Mir , N. , Ghanbari , D. , Sonochemical synthesis of Fe 3 O 4 / ZnO magnetic nanocomposites and their application in photo-catalytic degradation of various organic dyes . J. Mater. Sci.: Mater. Electron. , 26 , 9591 – 9599 , 2015 , https://doi.org/10.1007/s10854-015-3622-y .
- Gogate , P.R. and Pandit , A.B. , A review and assessment of hydrodynamic cavitation as a technology for the future . Ultrason. Sonochem. , 12 , 21 – 7 , 2005 , https://doi.org/10.1016/j.ultsonch.2004.03.007 .
- Ashokkumar , M. , The characterization of acoustic cavitation bubbles – An overview . Ultrason. Sonochem. , 18 , 864 – 72 , 2011 , https://doi.org/10.1016/j.ultsonch.2010.11.016 .
- Shah , Y.T. , Pandit , A.B. , Moholkar , V.S. , Factors Affecting Cavitation Behavior , in: Cavitation Reaction Engineering , Y.T. Shah , A.B. Pandit , V.S. Moholkar (Eds.), pp. 55 – 83 , Springer US , Boston, MA , 1999 , https://doi.org/10.1007/978-1-4615-4787-7_3 .
- S. Manickam and M. Ashokkumar (Eds.), Cavitation: A Novel Energy-Efficient Technique for the Generation of Nanomaterials , Jenny Stanford Publishing , New York , 2014 , https://doi.org/10.1201/b15669 .
- Chatel , G. and Colmenares , J.C. , Sonochemistry: from Basic Principles to Innovative Applications . Top. Curr. Chem. (Z) , 375 , 8 , 2017 , https://doi.org/10.1007/s41061-016-0096-1 .
- Gutierrez , M. , Henglein , A. , Dohrmann , J.K. , Hydrogen atom reactions in the sonolysis of aqueous solutions , ACS Publications , Washington D.C., United States , 2002 , https://doi.org/10.1021/j100311a026 .
- Nagata , Y. , Watananabe , Y. , Fujita , S. , Dohmaru , T. , Taniguchi , S. , Formation of colloidal silver in water by ultrasonic irradiation . J. Chem. Soc., Chem. Commun. , 21 , 1620 – 2 , 1992 , https://doi.org/10.1039/C39920001620 .
- Park , A.-H. , Shi , W. , Jung , J.-U. , Kwon , Y.-U. , Mechanism study of Single-Step synthesis of Fe(core)@Pt(shell) nanoparticles by sonochemistry . Ultrason. Sonochem. , 77 , 105679 , 2021 , https://doi.org/10.1016/j.ultsonch.2021.105679 .
- Shen , Q. , Min , Q. , Shi , J. , Jiang , L. , Hou , W. , Zhu , J.-J. , Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method . Ultrason. Sonochem. , 18 , 231 – 7 , 2011 , https://doi.org/10.1016/j.ultsonch.2010.05.011 .
- Zin , V. , Pollet , B.G. , Dabalà , M. , Sonoelectrochemical (20kHz) production of platinum nanoparticles from aqueous solutions . Electrochim. Acta , 54 , 7201 – 6 , 2009 , https://doi.org/10.1016/j.electacta.2009.07.001 .
- Lei , H. , Tang , Y.-J. , Wei , J.-J. , Li , J. , Li , X.-B. , Shi , H.-L. , Synthesis of tungsten nanoparticles by sonoelectrochemistry . Ultrason. Sonochem. , 14 , 81 – 3 , 2007 , https://doi.org/10.1016/j.ultsonch.2006.01.008 .
- Haas , I. , Shanmugam , S. , Gedanken , A. , Pulsed Sonoelectrochemical Synthesis of Size-Controlled Copper Nanoparticles Stabilized by Poly(N-vinylpyrrolidone) . J. Phys. Chem. B , 110 , 16947 – 52 , 2006 , https://doi.org/10.1021/jp064216k .
- Qiu , X.-F. , Xu , J.-Z. , Zhu , J.-M. , Zhu , J.-J. , Xu , S. , Chen , H.-Y. , Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method . J. Mater. Res. , 18 , 1399 – 404 , 2003 , https://doi.org/10.1557/JMR.2003.0192 .
- Zhu , J. , Liu , S. , Palchik , O. , Koltypin , Y. , Gedanken , A. , Shape-Controlled Synthesis of Silver Nanoparticles by Pulse Sonoelectrochemical Methods . Langmuir , 16 , 6396 – 9 , 2000 , https://doi.org/10.1021/la991507u .
- Delplancke , J. , Delwiche , J. , Hubin-franskin , M. , Piquer , C. , Rebbouh , L. , Grandjean , F. , Morphologic, magnetic, and Mossbauer spectral properties of Fe75Co25 nanoparticles prepared by ultrasound-assisted electrochemistry , vol. 281 , pp. 27 – 35 , 2004 , https://doi.org/10.1016/j.jmmm.2004.03.047 .
- Okitsu , K. , Bandow , H. , Maeda , Y. , Nagata , Y. , Sonochemical Preparation of Ultrafine Palladium Particles . Chem. Mater. , 8 , 315 – 7 , 1996 , https://doi.org/10.1021/cm950285s .
- Okitsu , K. , Mizukoshi , Y. , Bandow , H. , Maeda , Y. , Yamamoto , T. , Nagata , Y. , Formation of noble metal particles by ultrasonic irradiation . Ultrason. Sonochem. , 3 , S249 – 51 , 1996 , https://doi.org/10.1016/S1350-4177(96)00033-8 .
- Yeung , S.A. , Hobson , R. , Biggs , S. , Grieser , F. , Formation of gold sols using ultrasound . J. Chem. Soc., Chem. Commun. , 4 , 378 – 9 , 1993 , https://doi.org/10.1039/C39930000378 .
- Caruso , R.A. , Ashokkumar , M. , Grieser , F. , Sonochemical Formation of Gold Sols . Langmuir , 18 , 7831 – 6 , 2002 , https://doi.org/10.1021/la020276f .
- Fujimoto , T. , Terauchi , S. , Umehara , H. , Kojima , I. , Henderson , W. , Sonochemical Preparation of Single-Dispersion Metal Nanoparticles from Metal Salts . Chem. Mater. , 13 , 1057 – 60 , 2001 , https://doi.org/10.1021/cm000910f .
- Radziuk , D. , Möhwald , H. , Shchukin , D. , Ultrasonic Activation of Platinum Catalysts . J. Phys. Chem. C , 112 , 19257 – 62 , 2008 , https://doi.org/10.1021/jp806508t .
- Wu , C. , Mosher , B.P. , Zeng , T. , Rapid Synthesis of Gold and Platinum Nanoparticles Using Metal Displacement Reduction with Sonomechanical Assistance . Chem. Mater. , 18 , 2925 – 8 , 2006 , https://doi.org/10.1021/cm052400x .
- Okitsu , K. , Ashokkumar , M. , Grieser , F. , Sonochemical Synthesis of Gold Nanoparticles: Effects of Ultrasound Frequency . J. Phys. Chem. B , 109 , 20673 – 5 , 2005 , https://doi.org/10.1021/jp0549374 .
- He , Y. , Vinodgopal , K. , Ashokkumar , M. , Grieser , F. , Sonochemical synthesis of ruthenium nanoparticles . Res. Chem. Intermed. , 32 , 709 – 15 , 2006 , https://doi.org/10.1163/156856706778606507 .
- Hujjatul Islam , M. , Paul , M.T.Y. , Burheim , O.S. , Pollet , B.G. , Recent developments in the sonoelectrochemical synthesis of nanomaterials . Ultrason. Sonochem. , 59 , 104711 , 2019 , https://doi.org/10.1016/j.ultsonch.2019.104711 .
- Kalidass , J. , Reji , M. , Sivasankar , T. , Synthesis of Fe 3 O 4 nanoparticles with enhanced properties via sonoelectrochemical approach: A comparative study with electrochemical and hydrothermal method . Chem. Eng. Process. Process Intensif. , 197 , 109690 , 2024 , https://doi.org/10.1016/j.cep.2024.109690 .
- Kalidass , J. , Sivasankar , T. , Sambandam , A. , Time-Efficient Fabrication of Stable Core–Shell Spinel Ferrites on a Self-Assembled Nanoarchitectonic Graphene Matrix as a New-Gen Anode for Li-Ion Batteries . Ind. Eng. Chem. Res. , 63 , 3313 – 23 , 2024 , https://doi.org/10.1021/acs.iecr.3c04223 .
- Pollet , B. and Phull , S. , Sonoelectrochemistry - Theory, Principles and Applications , vol. 4 , CRC Press , Florida, United States , 2001 .
- Kalidass , J. and Sivasankar , T. , Facile one-pot rapid sonoelectrochemical synthesis of mesoporous magnetite nanospheres: A Chimie Douce approach . Mater. Chem. Phys. , 127620 , 2023 , https://doi.org/10.1016/j.matchemphys.2023.127620 .
- Jiang , L.-P. , Wang , A.-N. , Zhao , Y. , Zhang , J.-R. , Zhu , J.-J. , A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique . Inorg. Chem. Commun. , 7 , 506 – 9 , 2004 , https://doi.org/10.1016/j.inoche.2004.02.003 .
- Vu , L.V. , Long , N.N. , Doanh , S.C. , Trung , B.Q. , Preparation of silver nanoparticles by pulse sonoelectrochemical method and studying their characteristics . J. Phys. Conf. Ser. , 187 , 012077 , 2009 , https://doi.org/10.1088/1742-6596/187/1/012077 .
- Tang , S. , Meng , X. , Lu , H. , Zhu , S. , PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes . Mater. Chem. Phys. , 116 , 464 – 8 , 2009 , https://doi.org/10.1016/j.matchemphys.2009.04.004 .
- Sáez , V. and Mason , T.J. , Sonoelectrochemical Synthesis of Nanoparticles . Molecules , 14 , 4284 – 99 , 2009 , https://doi.org/10.3390/molecules14104284 .
- Cabrera , L. , Gutiérrez , S. , Herrasti , P. , Reyman , D. , Sonoelectrochemical synthesis of magnetite . Physics Procedia , 3 , 89 – 94 , 2010 , https://doi.org/10.1016/j.phpro.2010.01.013 .
- Kalidass , J. and Sivasankar , T. , Mesoporous core/shell MnFe2O4 nanocomposite derived from facile sonoelectrochemical process: An eco-friendly method for rapid synthesis and versatile industrial applications . J. Taiwan Inst. Chem. Eng. , 144 , 104766 , 2023 , https://doi.org/10.1016/j.jtice.2023.104766 .
- Aryafar , A. , Ekrami-Kakhki , M.-S. , Naeimi , A. , Enhanced electrocatalytic activity of Pt-SnO 2 nanoparticles supported on natural bentonite-functionalized reduced graphene oxide-extracted chitosan from shrimp wastes for methanol electro-oxidation . Sci. Rep. , 13 , 3597 , 2023 .
- Avid , A. , Ochoa , J.L. , Huang , Y. , Liu , Y. , Atanassov , P. , Zenyuk , I.V. , Revealing the role of ionic liquids in promoting fuel cell catalysts reactivity and durability . Nat. Commun. , 13 , 6349 , 2022 , https://doi.org/10.1038/s41467-022-33895-5 .
- Kaewsai , D. , Yeamdee , S. , Supajaroon , S. , Hunsom , M. , ORR activity and stability of PtCr/C catalysts in a low temperature/pressure PEM fuel cell: Effect of heat treatment temperature . Int. J. Hydrogen Energy , 43 , 5133 – 44 , 2018 , https://doi.org/10.1016/j.ijhydene.2018.01.101 .
- Kim , Y. , Karuppannan , M. , Sung , Y.-E. , Lim , T. , Kwon , O.J. , Direct formation of Pt catalyst on gas diffusion layer using sonochemical deposition method for the application in polymer electrolyte membrane fuel cell . Int. J. Hydrogen Energy , 43 , 10431 – 9 , 2018 , https://doi.org/10.1016/j.ijhydene.2018.04.088 .
- Liu , Y. , Chen , N. , Wang , F. , Cai , Y. , Zhu , H. , Pt–Co deposited on polyaniline-modified carbon for the electro-reduction of oxygen: the interaction between Pt–Co nanoparticles and polyaniline . New J. Chem. , 41 , 6585 – 92 , 2017 , https://doi.org/10.1039/C7NJ00145B .
- Yang , Y. , Luo , L.-M. , Du , J.-J. , Li , S.-S. , Zhang , R.-H. , Dai , Z.-X. , et al ., Facile one-pot hydrothermal synthesis and electrochemical properties of carbon nanospheres supported Pt nanocatalysts . Int. J. Hydrogen Energy , 41 , 12062 – 8 , 2016 , https://doi.org/10.1016/j.ijhydene.2016.05.134 .
- Hu , S. , Tian , M. , Ribeiro , E.L. , Duscher , G. , Mukherjee , D. , Tandem laser ablation synthesis in solution-galvanic replacement reaction (LASiS-GRR) for the production of Pt Co nanoalloys as oxygen reduction electrocatalysts . J. Power Sources , 306 , 413 – 23 , 2016 , https://doi.org/10.1016/j.jpowsour.2015.11.078 .
- Min , M. and Kim , H. , Performance and stability studies of PtCr/C alloy catalysts for oxygen reduction reaction in low temperature fuel cells . Int. J. Hydrogen Energy , 41 , 17557 – 66 , 2016 , https://doi.org/10.1016/j.ijhydene.2016.07.175 .
- Alegre , C. , Gálvez , M.E. , Moliner , R. , Lázaro , M.J. , Influence of the Synthesis Method for Pt Catalysts Supported on Highly Mesoporous Carbon Xerogel and Vulcan Carbon Black on the Electro-Oxidation of Methanol . Catalysts , 5 , 392 – 405 , 2015 , https://doi.org/10.3390/catal5010392 .
- Fu , S. , Yang , G. , Zhou , Y. , Pan , H.-B. , Wai , C.M. , Du , D. , et al ., Ultrasonic enhanced synthesis of multi-walled carbon nanotube supported Pt–Co bimetallic nanoparticles as catalysts for the oxygen reduction reaction . RSC Adv. , 5 , 32685 – 9 , 2015 , https://doi.org/10.1039/C5RA02549D .
- Lee , E. , Jang , J.-H. , MdA , M. , Kwon , Y.-U. , One-step sonochemical syntheses of Ni@Pt core– shell nanoparticles with controlled shape and shell thickness for fuel cell electrocatalyst . Ultrason. Sonochem. , 21 , 317 – 23 , 2014 , https://doi.org/10.1016/j.ultsonch.2013.05.006 .
- Hyun , K. , Lee , J.H. , Yoon , C.W. , Kwon , Y. , The Effect of Platinum Based Bimetallic Electrocatalysts on Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cells . Int. J. Electrochem. Sci. , 8 , 11752 – 11767 , 2013 .
- Ariga , K. , Foreword to the focus issue: advancements of functional materials with nanoarchitectonics as post-nanotechnology concept in materials science . Sci. Technol. Adv. Mater. , 24 , 2205327 , 2023 , https://doi.org/10.1080/14686996.2023.2205327 .
- Ariga , K. , Correction: Nanoarchitectonics, Method for Everything in Materials Science . J. Inorg. Organomet. Polym. Mater. , 32 , 3248 – 3248 , 2022 , https://doi.org/10.1007/s10904-022-02486-8 .
- Alenazey , F. , Alyousef , Y. , AlOtaibi , B. , Almutairi , G. , Minakshi , M. , Cheng , C.K. , et al ., Degradation Behaviors of Solid Oxide Fuel Cell Stacks in Steady-State and Cycling Conditions . Energy Fuels , 34 , 14864 – 73 , 2020 , https://doi.org/10.1021/acs.energyfuels.0c02920 .
- Sivasankar , T. , Paunikar , A.W. , Moholkar , V.S. , Mechanistic approach to enhancement of the yield of a sonochemical reaction . AlChE J. , 53 , 1132 – 43 , 2007 , https://doi.org/10.1002/aic.11170 .