Functionalized Nanomaterial–Based Photocatalytic Devices
Brij Mohan
Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
Search for more papers by this authorVirender
Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
Search for more papers by this authorNeeraj
Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
Search for more papers by this authorRitika Kadiyan
Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
Search for more papers by this authorKrishan Kumar
Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, India
Search for more papers by this authorArmando J. L. Pombeiro
Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
Search for more papers by this authorRakesh Kumar Gupta
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, P. R. China
Search for more papers by this authorBrij Mohan
Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
Search for more papers by this authorVirender
Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
Search for more papers by this authorNeeraj
Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
Search for more papers by this authorRitika Kadiyan
Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
Search for more papers by this authorKrishan Kumar
Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, Haryana, India
Search for more papers by this authorArmando J. L. Pombeiro
Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
Search for more papers by this authorRakesh Kumar Gupta
School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, P. R. China
Search for more papers by this authorGopal Rawat
Chief Technology Officer
Bharatah Cryogenics Pvt. Ltd., Uttar Pradesh, India
Search for more papers by this authorGautam Patel
Dept. of Chemistry, Parul University, Vadodara, Gujarat, India
Search for more papers by this authorKalim Deshmukh
New Technologies Research Centre, University of West Bohemia, Pilsen, Czech Republic
Search for more papers by this authorChaudhery Mustansar Hussain
Dept. of Chemistry & Environmental Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States
Search for more papers by this authorSummary
The increasing concentration of organic pollutants in water has threatened society. Therefore, there is an urgent need to design and develop new devices for their catalytic decomposition in intoxicant species. In this chapter, we have studied nanomaterial-based photocatalysts used for the catalytic degradation of organic wastes. The unique bandgap of nanomaterials and their electronic properties have provided a platform and active surface to degrade waste. In addition, strategies to improve photocatalytic properties, challenges, and future outlooks for photocatalytic devices are discussed to provide in-depth information on this research area.
References
- Wu , R. , et al ., Recent progress in synthesis, properties and potential applications of SiC nanomaterials . Prog. Mater Sci. , 72 , 1 – 60 , 2015 .
- Shipway , A.N. and Willner , I. , Nanoparticles as structural and functional units in surface-confined architectures . Chem. Commun. , 20 , 2035 – 2045 , 2001 .
- Gao , C. , Lyu , F. , Yin , Y. , Encapsulated metal nanoparticles for catalysis . Chem. Rev. , 121 , 2 , 834 – 881 , 2020 .
- Khalil , H.A. , et al ., Mechanical properties of oil palm biocomposites enhanced with micro to nanobiofillers , in: Biocomposites , pp. 401 – 435 , Elsevier , 2015 .
- Palit , S. and Hussain , C.M. , Functionalization of nanomaterials for industrial applications: recent and future perspectives , in: Handbook of functionalized nanomaterials for industrial applications , pp. 3 – 14 , Elsevier , 2020 .
- Rai , S. , et al ., Functionalized Nanomaterials: Basics, Properties and Applications , in: Functionalized Nanomaterials for Corrosion Mitigation: Synthesis, Characterization, and Applications , pp. 27 – 66 , ACS Publications , 2022 .
- Phang , S.J. , et al ., Recent advances in homojunction-based photocatalysis for sustainable environmental remediation and clean energy generation . Appl. Mater. Today , 20 , 100741 , 2020 .
- Yaghoubi , S. , et al ., Photocatalysts for solar energy conversion: Recent advances and environmental applications . Renew. Sustain. Energy Rev. , 200 , 114538 , 2024 .
- Lu , F. and Astruc , D. , Nanocatalysts and other nanomaterials for water remediation from organic pollutants . Coord. Chem. Rev. , 408 , 213180 , 2020 .
- Likodimos , V. , Dionysiou , D.D. , Falaras , P. , Clean water: water detoxification using innovative photocatalysts . Rev. Environ. Sci. Bio/Technol. , 9 , 87 – 94 , 2010 .
- Yang , J. , et al ., Nanomaterials for the removal of heavy metals from wastewater . Nanomaterials , 9 , 3 , 424 , 2019 .
- Kolluru , S.S. , et al ., Heavy metal removal from wastewater using nanomaterials-process and engineering aspects . Process Saf. Environ. Prot. , 150 , 323 – 355 , 2021 .
- Cai , Z. , et al ., An overview of nanomaterials applied for removing dyes from wastewater . Environ. Sci. Pollut. Res. , 24 , 15882 – 15904 , 2017 .
- Chen , Y. , et al ., Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels . Sustain. Energy Fuels , 1 , 9 , 1875 – 1898 , 2017 .
- David , E. and Niculescu , V.-C. , Volatile organic compounds (VOCs) as environmental pollutants: Occurrence and mitigation using nanomaterials . Int. J. Environ. Res. Public Health , 18 , 24 , 13147 , 2021 .
- Neto , V.d.O.S. , Freire , P.d.T.C. , do Nascimento , R.F. , Removal of pesticides and volatile organic pollutants with nanoparticles , in: Nanomaterials Applications for Environmental Matrices , pp. 405 – 426 , Elsevier , 2019 .
- Deshmukh , S.P. , et al ., Silver nanoparticles as an effective disinfectant: A review . Mater. Sci. Eng. C , 97 , 954 – 965 , 2019 .
- Qiu , X. , et al ., Applications of nanomaterials in asymmetric photocatalysis: recent progress, challenges, and opportunities . Adv. Mater. , 33 , 6 , 2001731 , 2021 .
- Wang , F. , Li , Q. , Xu , D. , Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion . Adv. Energy Mater. , 7 , 23 , 1700529 , 2017 .
- Rafeeq , H. , et al ., Functionalized nanoparticles and their environmental remediation potential: a review . J. Nanostruct. Chem. , 12 , 6 , 1007 – 1031 , 2022 .
- Sarma , G.V.S.S. , et al ., Basic principles, fundamentals, and mechanisms of chalcogenide-based nanomaterials in photocatalytic reactions , in: Chalcogenide-Based Nanomaterials as Photocatalysts , pp. 77 – 103 , Elsevier , 2021 .
- Shukla , S.K. , Joshi , G.M. , Hussain , C.M. , Functionalized nanomaterials based devices for environmental applications , Elsevier , 2021 .
- Wang , W. , et al ., Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges . Environ. Sci.: Nano , 4 , 4 , 782 – 799 , 2017 .
- Stanley , R. , et al ., Excellent Photocatalytic degradation of Methylene Blue, and Methyl Orange dyes by Ag-ZnO nanocomposite under natural sunlight irradiation . Optik , 231 , 166518 , 2021 .
- Maiti , S. , et al ., Engineering electrocatalyst nanosurfaces to enrich the activity by inducing lattice strain . Energy Environ. Sci. , 14 , 7 , 3717 – 3756 , 2021 .
- Saleh , H.M. and Hassan , A.I. , Synthesis and characterization of nanomaterials for application in cost-effective electrochemical devices . Sustainability , 15 , 14 , 10891 , 2023 .
- Mishra , S.R. , Gadore , V. , Ahmaruzzaman , M. , From Light to Chemicals: Breaking Ground in Photocatalytic H2O2 Production for a Sustainable Future . Mater. Today Sustain. , 100819 , 2024 .
- Zhang , F. , et al ., Recent advances and applications of semiconductor photocatalytic technology . Appl. Sci. , 9 , 12 , 2489 , 2019 .
- Fu , Y.s. , Li , J. , Li , J. , Metal/semiconductor nanocomposites for photocatalysis: fundamentals, structures, applications and properties . Nanomaterials , 9 , 3 , 359 , 2019 .
- Dhiman , P. , et al ., ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review . Environ. Chem. Lett. , 1 – 35 , 2022 .
- Mohamed , K. , et al ., Recent advances in ZnO-based nanostructures for the photocatalytic degradation of hazardous, non-biodegradable medicines . Crystals , 13 , 2 , 329 , 2023 .
- Rodríguez , P.A.O. , et al ., A simple synthesis way to obtain iron-doped TiO2 nanoparticles as photocatalytic surfaces . Chem. Phys. Lett. , 732 , 136643 , 2019 .
- Aadnan , I. , et al ., Structural, optical and photocatalytic properties of Mn Doped ZnO nanoparticles used as photocatalysts for Azo-dye degradation under visible light . Catalysts , 12 , 11 , 1382 , 2022 .
- Yan , H. , et al ., Band structure design of semiconductors for enhanced photocatalytic activity: The case of TiO2 . Prog. Nat. Sci.: Mater. Int. , 23 , 4 , 402 – 407 , 2013 .
- Liu , H. , Wang , C. , Wang , G. , Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective . Chemistry–An Asian J. , 15 , 20 , 3239 – 3253 , 2020 .
- Gao , S. , et al ., Effect of transition metals doping on electronic structure and optical properties of β-Ga2O3 . Mater. Res. Express , 8 , 2 , 025904 , 2021 .
- Sadetskaya , A.V. , et al ., Correlative experimental and theoretical characterization of transition metal doped hydroxyapatite nanoparticles fabricated by hydrothermal method . Mater. Charact. , 173 , 110911 , 2021 .
- Irshad , A. , et al ., Sol-gel assisted Ag doped NiAl2O4 nanomaterials and their nanocomposites with g-C3N4 nanosheets for the removal of organic effluents . J. Alloys Compd. , 902 , 163805 , 2022 .
- Xu , M. , et al ., Designed synthesis of microstructure and defect-controlled Cu-doped ZnO–Ag nanoparticles: exploring high-efficiency sunlight-driven photocatalysts . J. Phys. D: Appl. Phys. , 53 , 2 , 025106 , 2019 .
- Sivaraman , C. , et al ., Current developments in the effective removal of environmental pollutants through photocatalytic degradation using nanomaterials . Catalysts , 12 , 5 , 544 , 2022 .
- Lu , Y. , et al ., Application of biochar-based photocatalysts for adsorption-(photo) degradation/reduction of environmental contaminants: mechanism, challenges and perspective . Biochar , 4 , 1 , 45 , 2022 .
- Gupta , J. , Hassan , P. , Barick , K. , Defects in nanomaterials for visible light photocatalysis , in: Nanostructured Materials for Visible Light Photocatalysis , pp. 319 – 350 , Elsevier , 2022 .
- Saravanan , R. , Gracia , F. , Stephen , A. , Basic principles, mechanism, and challenges of photocatalysis . Nanocomposites visible light-induced photocatalysis , 19 – 40 , 2017 .
- Regmi , C. , et al ., Understanding mechanism of photocatalytic microbial decontamination of environmental wastewater . Front. Chem. , 6 , 33 , 2018 .
- Umar , M. and Aziz , H.A. , Photocatalytic degradation of organic pollutants in water . Org. pollutants-monitoring Risk Treat , 8 , 196 – 197 , 2013 .
- Koe , W.S. , et al ., An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane . Environ. Sci. Pollut. Res. , 27 , 3 , 2522 – 2565 , 2020 .
- Hu , X. , et al ., Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2 . Chem. Eng. J. , 380 , 122366 , 2020 .
- Yan , W. , Yan , L. , Jing , C. , Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms . Appl. Catal., B , 244 , 475 – 485 , 2019 .
- Sun , X. , et al ., Surface modification of TiO2 with polydopamine and its effect on photocatalytic degradation mechanism . Colloids Surf., A , 570 , 199 – 209 , 2019 .
- Ansari , S.A. , et al ., Gold nanoparticles-sensitized wide and narrow band gap TiO 2 for visible light applications: a comparative study . New J. Chem. , 39 , 6 , 4708 – 4715 , 2015 .
- Abdul Nasir , J. , et al ., Photocatalytic Z-Scheme Overall Water Splitting: Recent Advances in Theory and Experiments . Adv. Mater. , 33 , 52 , 2105195 , 2021 .
- Luan , J. , et al ., Research on photocatalytic degradation pathway and degradation mechanisms of organics . Curr. Org. Chem. , 14 , 7 , 645 – 682 , 2010 .
- Mohamed , H.H. and Bahnemann , D.W. , The role of electron transfer in photocatalysis: Fact and fictions . Appl. Catal., B , 128 , 91 – 104 , 2012 .
- Jing , L. , et al ., Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: highly efficient visible light photocatalytic and antibacterial activity . Appl. Catal., B , 199 , 11 – 22 , 2016 .
- Ye , M. , et al ., Magnetically recoverable core–shell nanocomposites with enhanced photocatalytic activity . Chemistry–A Eur. J. , 16 , 21 , 6243 – 6250 , 2010 .
- Wang , R. , et al ., Preparation and photocatalytic activity of magnetic Fe3O4/SiO2/TiO2 composites . Adv. Mater. Sci. Eng. , 2012 , 2012 .
- Van Dao , D. , et al ., Ionic liquid-supported synthesis of CeO2 nanoparticles and its enhanced ethanol gas sensing properties . Mater. Chem. Phys. , 231 , 1 – 8 , 2019 .
- Elahi , B. , et al ., Preparation of cerium oxide nanoparticles in Salvia Macrosiphon Boiss seeds extract and investigation of their photo-catalytic activities . Ceram. Int. , 45 , 4 , 4790 – 4797 , 2019 .
- Channei , D. , et al ., Photocatalytic degradation of methyl orange by CeO2 and Fe–doped CeO2 films under visible light irradiation . Sci. Rep. , 4 , 1 , 5757 , 2014 .
- Folawewo , A.D. and Bala , M.D. , Nanocomposite Zinc oxide-based photocatalysts: recent developments in Their use for the treatment of dye-polluted wastewater . Water , 14 , 23 , 3899 , 2022 .
- Rodwihok , C. , et al ., Improved photocatalytic activity of surface charge functionalized ZnO nanoparticles using aniline . J. Mater. Sci. Technol. , 76 , 1 – 10 , 2021 .
- Sasi , S. , et al ., Flexible Nano-TiO2 Sheets Exhibiting Excellent Photocatalytic and Photovoltaic Properties by Controlled Silane Functionalization─ Exploring the New Prospects of Wastewater Treatment and Flexible DSSCs . ACS Omega , 7 , 29 , 25094 – 25109 , 2022 .
- Baeissa , E. , Photocatalytic degradation of methylene blue dye under visible light irradiation using In/ZnO nanocomposite . Front. Nanosci. Nanotechnol. , 2 , 5 , 1 – 5 , 2016 .
- Nisa , M.U. , et al ., Boosted electron-transfer/separation of SnO2/CdSe/Bi2S3 heterostructure for excellent photocatalytic degradation of organic dye pollutants under visible light . Surf. Interfaces , 31 , 102012 , 2022 .
- Isai , K.A. and Shrivastava , V.S. , Photocatalytic degradation of methylene blue using ZnO and 2% Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: a comparative study . SN Appl. Sci. , 1 , 1 – 11 , 2019 .