The Rise of Smart Materials
Recent Developments
Mariel Amparo Fernandez Aramayo
Polytechnic School, Chemical Engineering Department, University of São Paulo, São Paulo, Brazil
School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil
MackGraphe-Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, São Paulo, Brazil
Search for more papers by this authorMohd Rehan
School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil
MackGraphe-Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, São Paulo, Brazil
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorMariel Amparo Fernandez Aramayo
Polytechnic School, Chemical Engineering Department, University of São Paulo, São Paulo, Brazil
School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil
MackGraphe-Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, São Paulo, Brazil
Search for more papers by this authorMohd Rehan
School of Engineering, Mackenzie Presbyterian University, São Paulo, Brazil
MackGraphe-Mackenzie Institute for Research in Graphene and Nanotechnologies, Mackenzie Presbyterian University, São Paulo, Brazil
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorBijaya Bikram Samal
Advanced Technology Development Centre, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorCheruvu Siva Kumar
Dept. of Mechanical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorShailendra Kumar Varshney
Dept. of Electronics and Electrical Communication, Indian Institute of Technology, Kharagpur, West Bengal, India
Search for more papers by this authorSummary
Recently 4D printing has drawn wide attention from both academia and industry for the ability to create dynamic parts and structures using various smart materials with the ability to alter shape or qualities over time in reaction to environmental stimuli such as heat, moisture, light, or electrical current. This cutting-edge printing method harnesses the capabilities of smart materials offering immense potential for creating complex structures that can adapt, reconfigure, self-morph, self-heal, or self-assemble after printing. Recent developments in new kinds of smart materials and their composites such as shape memory polymers, magnetic shape memory alloys, hydrogels, electro-responsive polymers, liquid crystal elastomers, and smart inorganic polymers have fueled the development of 4D printing technology. The utilization of various smart materials in 4D printing is based on its specific applications and requirements. The incorporation of smart materials into 4D printing allows for the creation of objects that actively respond to stimuli, allowing for dynamic behavior, improved performance, and novel solutions to complicated challenges.
References
- Zhao , Q. , Qi , H.J. , Xie , T. , Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding . Prog. Polym. Sci. , 49–50 , 79 – 120 , 2015 . https://doi.org/ 10.1016/j.progpolymsci.2015.04.001 .
- Samal , B.B. , Jena , A. , Mishra , D. , Controlled Shape Changing Components by Using 4D Printing Technology , in: Proceedings of 10th International Conference on Precision, Meso, Micro and Nano Engineering (COPEN 10) , IIT Madras . IIT Matras, pp. 78 – 81 , 2017 , http://www.copen.ac.in/proceedings/copen10/copen/19.revised_manuscript_262.pdf .
-
Joharji , L.
,
Mishra , R.B.
,
Alam , F.
,
Tytov , S.
,
Al-Modaf , F.
,
El-Atab , N.
,
4D printing: A detailed review of materials, techniques, and applications
.
Microelectron. Eng.
,
265
,
1
–
21
,
2022
. https://doi.org/
10.1016/j.mee.2022.111874
.
10.1016/j.mee.2022.111874 Google Scholar
- Singholi , A.K.S. and Sharma , A. , Review: Recent advancement and research possibilities in 4D printing technology . Materwiss Werksttech , 51 , 1332 – 1340 , 2020 . https://doi.org/ 10.1002/mawe.202000008 .
-
Samal , B.B.
,
Jena , A.
,
Varshney , S.K.
,
Kumar , C.S.
,
4D printing of shape memory polymers: A comparative study of programming methodologies on various material properties
.
Smart Mater. Struct.
,
32
,
1
–
17
,
2023
. https://doi. org/
10.1088/1361-665X/acda6e
.
10.1088/1361-665X/acda6e Google Scholar
-
Sahafnejad-Mohammadi , I.
,
Karamimoghadam , M.
,
Zolfagharian , A.
,
Akrami , M.
,
Bodaghi , M.
,
4D printing technology in medical engineering: a narrative review
.
J. Braz. Soc. Mech. Sci. Eng.
,
44
,
1
–
26
,
2022
. https://doi. org/
10.1007/s40430-022-03514-x
.
10.1007/s40430-022-03514-x Google Scholar
- Bajpai , A. , Baigent , A. , Raghav , S. , Brádaigh , C. , Koutsos , V. , Radacsi , N. , 4D printing: Materials, technologies, and future applications in the biomedical field . Sustainability (Switzerland) , 12 , 1 – 32 , 2020 . https://doi.org/ 10.3390/su122410628 .
-
Alshebly , Y.S.
,
Nafea , M.
,
Mohamed Ali , M.S.
,
Almurib , H.A.F.
,
Review on recent advances in 4D printing of shape memory polymers
.
Eur. Polym. J.
,
159
,
1
–
20
,
2021
. https://doi.org/
10.1016/j.eurpolymj.2021.110708
.
10.1016/j.eurpolymj.2021.110708 Google Scholar
-
Cataldi , P.
,
Liu , M.
,
Bissett , M.
,
Kinloch , I.A.
,
A Review on Printing of Responsive Smart and 4D Structures Using 2D Materials
.
Adv. Mater. Technol.
,
7
,
1
–
21
,
2022
. https://doi.org/
10.1002/admt.202200025
.
10.1002/admt.202200025 Google Scholar
-
Javaid , M.
and
Haleem , A.
,
4D printing applications in medical field: A brief review
.
Clin. Epidemiol. Glob. Health
,
7
,
317
–
321
,
2019
. https://doi. org/
10.1016/j.cegh.2018.09.007
.
10.1016/j.cegh.2018.09.007 Google Scholar
-
Javaid , M.
and
Haleem , A.
,
Exploring smart material applications for covid-19 pandemic using 4d printing technology
.
J. Ind. Integr. Manage.
,
5
,
481
–
494
,
2020
. https://doi.org/
10.1142/S2424862220500219
.
10.1142/S2424862220500219 Google Scholar
-
Maraveas , C.
,
Bayer , I.S.
,
Bartzanas , T.
,
4D printing: Perspectives for the production of sustainable plastics for agriculture
.
Biotechnol. Adv.
,
54
,
1
–
23
,
2022
. https://doi.org/
10.1016/j.biotechadv.2021.107785
.
10.1016/j.biotechadv.2021.107785 Google Scholar
-
Mondal , K.
and
Tripathy , P.K.
,
Preparation of smart materials by additive manufacturing technologies: A review
.
Materials
,
14
,
1
–
24
,
2021
. https://doi.org/
10.3390/ma14216442
.
10.3390/ma14216442 Google Scholar
-
Palmero , E.M.
and
Bollero , A.
,
3D and 4D Printing of Functional and Smart Composite Materials
, in:
Encyclopedia of Materials: Composites
, pp.
402
–
419
,
Elsevier
,
Amsterdam, Netherlands
,
2021
, https://doi.org/
10.1016/B978-0-12-819724-0.00008-2
.
10.1016/B978-0-12-819724-0.00008-2 Google Scholar
- Farid , M.I. , Wu , W. , Liu , X. , Wang , P. , Additive manufacturing landscape and materials perspective in 4D printing . Int. J. Adv. Manuf. Technol. , 115 , 2973 – 2988 , 2021 . https://doi.org/ 10.1007/s00170-021-07233-w/Published .
-
Subeshan , B.
,
Baddam , Y.
,
Asmatulu , E.
,
Current progress of 4D-printing technology
.
Prog. Addit. Manuf.
,
6
,
495
–
516
,
2021
. https://doi.org/
10.1007/s40964-021-00182-6
.
10.1007/s40964-021-00182-6 Google Scholar
-
Georgantzinos , S.K.
,
Giannopoulos , G.I.
,
Bakalis , P.A.
,
Additive manufacturing for effective smart structures: The idea of 6d printing
.
J. Compos. Sci.
,
5
,
1
–
11
,
2021
. https://doi.org/
10.3390/jcs5050119
.
10.3390/jcs5050119 Google Scholar
- Zhang , Z. , Demir , K.G. , Gu , G.X. , Developments in 4D-printing: a review on current smart materials, technologies, and applications . Int. J. Smart Nano Mater. , 10 , 205 – 224 , 2019 . https://doi.org/ 10.1080/19475411.2019.1591541 .
-
Haleem , A.
,
Javaid , M.
,
Singh , R.P.
,
Suman , R.
,
Significant roles of 4D printing using smart materials in the field of manufacturing
.
Adv. Ind. Eng. Polym. Res.
,
4
,
301
–
311
,
2021
. https://doi.org/
10.1016/j.aiepr.2021.05.001
.
10.1016/j.aiepr.2021.05.001 Google Scholar
-
Subash , A.
and
Kandasubramanian , B.
,
4D printing of shape memory polymers
.
Eur. Polym. J.
,
134
,
1
–
17
,
2020
. https://doi.org/
10.1016/j.eurpolymj.2020.109771
.
10.1016/j.eurpolymj.2020.109771 Google Scholar
-
Yang , H.
,
Leow , W.R.
,
Wang , T.
,
Wang , J.
,
Yu , J.
,
He , K.
,
Qi , D.
,
Wan , C.
,
Chen , X.
,
3D Printed Photoresponsive Devices Based on Shape Memory Composites
.
Adv. Mater.
,
29
,
1
–
7
,
2017
. https://doi.org/
10.1002/adma.201701627
.
10.1002/adma.201701627 Google Scholar
-
Kim , H.
,
Torres , F.
,
Wu , Y.
,
Villagran , D.
,
Lin , Y.
,
Tseng , T.-L.
,
Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application
.
Smart Mater. Struct.
,
26
,
1
–
10
,
2017
. https://doi. org/
10.1088/1361-665x/aa738e
.
10.1088/1361-665X/aa738e Google Scholar
- Bodkhe , S. , Turcot , G. , Gosselin , F.P. , Therriault , D. , One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures . ACS Appl. Mater. Interfaces , 9 , 20833 – 20842 , 2017 . DOI: 10.1021/acsami.7b04095 .
- Peterson , G.I. , Larsen , M.B. , Ganter , M.A. , Storti , D.W. , Boydston , A.J. , 3D-printed mechanochromic materials . ACS Appl. Mater. Interfaces , 7 , 577 – 583 , 2015 . https://doi.org/ 10.1021/am506745m .
- Hristoforou , E. and Ktena , A. , Magnetostriction and magnetostrictive materials for sensing applications . J. Magn. Magn. Mater. , 316 , 372 – 378 , 2007 . https://doi.org/ 10.1016/j.jmmm.2007.03.025 .
- Han , D. , Lu , Z. , Chester , S.A. , Lee , H. , Micro 3D Printing of a Temperature-Responsive Hydrogel Using Projection Micro-Stereolithography . Sci. Rep. , 8 , 1 – 10 , 2018 . https://doi.org/ 10.1038/s41598-018-20385-2 .
- Taylor , M.J. , Tomlins , P. , Sahota , T.S. , Thermoresponsive gels . Gels , 3 , 1 – 31 , 2017 . https://doi.org/ 10.3390/gels3010004 .
- Kuksenok , O. and Balazs , A.C. , Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers . Mater. Horiz. , 3 , 53 – 62 , 2016 . https://doi.org/ 10.1039/c5mh00212e .
- Rognoli , V. and Ferraro , V. , ICS Materials Interactiveconnected, and smart materials , FrancoAngeli , Milano, Italy , 2021 .
- Nkomo , N.Z. , A Review of 4D Printing Technology and Future Trends , in: Eleventh South African Conference on Computational and Applied Mechanics , pp. 1 – 11 , 2018 .
-
Sossou , G.
,
Demoly , F.
,
Montavon , G.
,
Gomes , S.
,
Design for 4D printing: Rapidly exploring the design space around smart materials
, in:
Procedia CIRP
, pp.
120
–
125
,
Elsevier B.V.
,
Nantes, France
,
2018
, https://doi.org/
10.1016/j.procir.2018.02.032
.
10.1016/j.procir.2018.02.032 Google Scholar
- Ahmed , E.M. , Hydrogel: Preparation, characterization, and applications: A review . J. Adv. Res. , 6 , 105 – 121 , 2015 . https://doi.org/ 10.1016/j.jare.2013.07.006 .
-
Champeau , M.
,
Heinze , D.A.
,
Viana , T.N.
,
de Souza , E.R.
,
Chinellato , A.C.
,
Titotto , S.
,
4D Printing of Hydrogels: A Review
.
Adv. Funct. Mater.
,
30
,
1
–
22
,
2020
. https://doi.org/
10.1002/adfm.201910606
.
10.1002/adfm.201910606 Google Scholar
- Wang , Z. and Cai , S. , Recent progress in dynamic covalent chemistries for liquid crystal elastomers . J. Mater. Chem. B , 8 , 6610 – 6623 , 2020 . https://doi. org/ 10.1039/d0tb00754d .
- Ula , S.W. , Traugutt , N.A. , Volpe , R.H. , Patel , R.R. , Yu , K. , Yakacki , C.M. , Liquid crystal elastomers: An introduction and review of emerging technologies . Liq. Cryst. Rev. , 6 , 78 – 107 , 2018 . https://doi.org/ 10.1080/21680396.2018.1530155 .
- Huang , W.M. , Ding , Z. , Wang , C.C. , Wei , J. , Zhao , Y. , Purnawali , H. , Shape memory materials . Mater. Today , 13 , 54 – 61 , 2010 . https://doi.org/ 10.1016/S1369-7021(10)70128-0 .
- Momeni , F. , Mehdi Hassani , S.M. , Liu , N.X. , Ni , J. , A review of 4D printing . Mater. Des. , 122 , 42 – 79 , 2017 . https://doi.org/ 10.1016/j.matdes.2017.02.068 .
- Lee , A.Y. , An , J. , Chua , C.K. , Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials . Engineering , 3 , 663 – 674 , 2017 . https://doi.org/ 10.1016/J.ENG.2017.05.014 .
- Hager , M.D. , Bode , S. , Weber , C. , Schubert , U.S. , Shape memory polymers: Past, present and future developments . Prog. Polym. Sci. , 49–50 , 3 – 33 , 2015 . https://doi.org/ 10.1016/j.progpolymsci.2015.04.002 .
- Zhou , J. and Sheiko , S.S. , Reversible shape-shifting in polymeric materials . J. Polym. Sci. B Polym. Phys. , 54 , 1365 – 1380 , 2016 . https://doi.org/ 10.1002/polb.24014 .
- Xie , T. , Recent advances in polymer shape memory . Polym. (Guildf) , 52 , 4985 – 5000 , 2011 . https://doi.org/ 10.1016/j.polymer.2011.08.003 .
-
Wu , X.
,
Huang , W.M.
,
Zhao , Y.
,
Ding , Z.
,
Tang , C.
,
Zhang , J.
,
Mechanisms of the shape memory effect in polymeric materials
.
Polym. (Basel)
,
5
,
1169
–
1202
,
2013
. https://doi.org/
10.3390/polym5041169
.
10.3390/polym5041169 Google Scholar
-
Tcharkhtchi , A.
,
Abdallah-Elhirtsi , S.
,
Ebrahimi , K.
,
Fitoussi , J.
,
Shirinbayan , M.
,
Farzaneh , S.
,
Some new concepts of shape memory effect of polymers
.
Polym. (Basel)
,
6
,
1144
–
1163
,
2014
. https://doi.org/
10.3390/polym6041144
.
10.3390/polym6041144 Google Scholar
-
Samal , B.B.
,
Jena , A.
,
Varshney , S.K.
,
Kumar , C.S.
,
4D printing: An experimental case study on processing of shape memory polymer by FDM/FFF for nature inspired structures
, in:
Advances in Additive Manufacturing Artificial Intelligence, Nature-Inspired, and Biomanufacturing
, pp.
361
–
377
,
Elsevier
,
Amsterdam, Netherlands
,
2023
, https://doi.org/
10.1016/b978-0-323-91834-3.00019-3
.
10.1016/B978-0-323-91834-3.00019-3 Google Scholar
- Samal , B.B. , Jena , A. , Varshney , S.K. , Kumar , C.S. , FDM 4D printing: A low-cost approach of shape programming and assessing the shape memory properties using angle measurement methods in hot water actuation testing apparatus . Mater. Today Proc. , 101 , 7 – 14 , 2024 . https://doi.org/ 10.1016/j.matpr.2023.02.038 .
-
Zarek , M.
,
Mansour , N.
,
Shapira , S.
,
Cohn , D.
,
4D Printing of Shape Memory-Based Personalized Endoluminal Medical Devices
.
Macromol. Rapid Commun.
,
38
,
1
–
6
,
2017
. https://doi.org/
10.1002/marc.201600628
.
10.1002/marc.201600628 Google Scholar
-
Fornell , J.
,
Magnetic Shape Memory Composites
, in:
Encyclopedia of Materials: Composites
, pp.
487
–
495
,
Elsevier
,
Amsterdam, Netherlands
,
2021
, https://doi.org/
10.1016/B978-0-12-803581-8.11867-3
.
10.1016/B978-0-12-803581-8.11867-3 Google Scholar
-
Biswas , M.C.
,
Chakraborty , S.
,
Bhattacharjee , A.
,
Mohammed , Z.
,
4D Printing of Shape Memory Materials for Textiles: Mechanism, Mathematical Modeling, and Challenges
.
Adv. Funct. Mater.
,
31
,
1
–
25
,
2021
. https://doi.org/
10.1002/adfm.202100257
.
10.1002/adfm.202100257 Google Scholar
- Kim , S. , Hawkes , E. , Cho , K. , Jolda , M. , Foley , J. , Wood , R. , Micro artificial muscle fiber using NiTi spring for soft robotics , in: IEEE/RSJ International Conference on Intelligent Robots and Systems , IEEE , pp. 1 – 7 , 2009 .
- Liu , Y. , Du , H. , Liu , L. , Leng , J. , Shape memory polymers and their composites in aerospace applications: A review . Smart Mater. Struct. , 23 , 1 – 22 , 2014 . https://doi.org/ 10.1088/0964-1726/23/2/023001 .
-
Sokolowski , W.M.
and
Tan , S.C.
,
Advanced self-deployable structures for space applications
.
J. Spacecr. Rockets
,
44
,
750
–
754
,
2007
. https://doi.org/
10.2514/1.22854
.
10.2514/1.22854 Google Scholar
- Jena , A. , Samal , B.B. , Kumar , C.S. , Varshney , S.K. , Analysis of electrothermo-mechanical behavior of thin film Ni50-Ti50and Ni40-Ti50-Cu10 shape memory alloys for application in thermal actuators . Mater. Today Proc. , 47 , 4578 – 4583 , 2021 . https://doi.org/ 10.1016/j.matpr.2021.05.448 .
-
Leng , J.S.
,
Lan , X.
,
Liu , Y.J.
,
Du , S.Y.
,
Huang , W.M.
,
Liu , N.
,
Phee , S.J.
,
Yuan , Q.
,
Electrical conductivity of thermoresponsive shape-memory polymer with embedded micron sized Ni powder chains
.
Appl. Phys. Lett.
,
92
,
1
–
4
,
2008
. https://doi.org/
10.1063/1.2829388
.
10.1063/1.2829388 Google Scholar
- Grinberg , D. , Siddique , S. , Le , M.Q. , Liang , R. , Capsal , J.F. , Cottinet , P.J. , 4D Printing based piezoelectric composite for medical applications . J. Polym. Sci. B Polym. Phys. , 57 , 109 – 115 , 2019 . https://doi.org/ 10.1002/polb.24763 .
- Zhang , F.H. , Zhang , Z.C. , Luo , C.J. , Lin , I.T. , Liu , Y. , Leng , J. , Smoukov , S.K. , Remote, fast actuation of programmable multiple shape memory composites by magnetic fields . J. Mater. Chem. C Mater. , 3 , 11290 – 11293 , 2015 . https://doi.org/ 10.1039/c5tc02464a .
-
Zarek , M.
,
Layani , M.
,
Eliazar , S.
,
Mansour , N.
,
Cooperstein , I.
,
Shukrun , E.
,
Szlar , A.
,
Cohn , D.
,
Magdassi , S.
,
4D printing shape memory polymers for dynamic jewellery and fashionwear
.
Virtual Phys. Prototyp.
,
11
,
4
,
263
–
270
,
2016
. https://doi.org/
10.1080/17452759.2016.1244085
.
10.1080/17452759.2016.1244085 Google Scholar
-
H. Tian
and
J. Zhang
(Eds.),
Photochromic Materials: Preparation, Properties and Applications
,
Wiley-VCH
,
Weinheim, Germany
,
2016
, https://doi.org/
10.1002/9783527683734
.
10.1002/9783527683734 Google Scholar
- Gu , C. , Jia , A.B. , Zhang , Y.M. , Zhang , S.X.A. , Emerging Electrochromic Materials and Devices for Future Displays . Chem. Rev. , 122 , 14679 – 14721 , 2022 . https://doi.org/ 10.1021/acs.chemrev.1c01055 .
- Filipcsei , G. , Csetneki , I. , Szilágyi , A. , Zrínyi , M. , Magnetic field-responsive smart polymer composites . Adv. Polym. Sci. , 206 , 137 – 189 , 2007 . https://doi.org/ 10.1007/12_2006_104 .
-
Kumar , J.S.
,
Paul , P.S.
,
Raghunathan , G.
,
Alex , D.G.
,
A review of challenges and solutions in the preparation and use of magnetorheological fluids
.
Int. J. Mech. Mater. Eng.
,
14
,
13
,
2019
. https://doi.org/
10.1186/s40712-019-0109-2
.
10.1186/s40712-019-0109-2 Google Scholar
- Aramayo , M.A.F. and Aoki , I.V. , Synthesis of Innovative Epoxy Resin and Polyamine Hardener Microcapsules and their Age Monitoring by Confocal Raman Imaging . J. Appl. Polym. Sci. , e55342 , 141 , 19 , 2024 . https://doi.org/ 10.1002/app.55342 .
- Qi , M. , Yang , R. , Wang , Z. , Liu , Y. , Zhang , Q. , He , B. , Li , K. , Yang , Q. , Wei , L. , Pan , C. , Chen , M. , Bioinspired Self-healing Soft Electronics . Adv. Funct. Mater. , 33 , 2214479 , 2023 . https://doi.org/ 10.1002/adfm.202214479 .
-
Akram , M.
,
Adetunji , C.O.
,
Ahamed , I.
,
Sohail , A.
,
Ghaffar , I.
,
Michael , O.S.
,
Anwar , H.
,
Muhibi , M.A.
,
Adetunji , J.B.
,
Laila , U.
,
Olaniyan , M.
,
Self-Healing Polymers
, in:
Self-Healing Smart Materials and Allied Applicaitons
, pp.
511
–
530
,
Scrivener Publishing LLC
,
River Street, Hoboken, USA & Beverly, MA, USA
,
2021
, https://doi.org/
10.1002/9781119710219.ch21
.
10.1002/9781119710219.ch21 Google Scholar
- Buwalda , S.J. , Vermonden , T. , Hennink , W.E. , Hydrogels for Therapeutic Delivery: Current Developments and Future Directions . Biomacromolecules , 18 , 316 – 330 , 2017 . https://doi.org/ 10.1021/acs.biomac.6b01604 .
- Gupta , P. , Vermani , K. , Garg , S. , Hydrogels: from controlled release to pH-responsive drug delivery . Res. Focus , 7 , 569 – 579 , 2002 . https://doi.org/ 10.1016/S1359-6446(02)02255-9 .
- Koetting , M.C. , Peters , J.T. , Steichen , S.D. , Peppas , N.A. , Stimulus-responsive hydrogels: Theory, modern advances, and applications . Mater. Sci. Eng. R Rep. , 93 , 1 – 49 , 2015 . https://doi.org/ 10.1016/j.mser.2015.04.001 .
- Buwalda , S.J. , Boere , K.W.M. , Dijkstra , P.J. , Feijen , J. , Vermonden , T. , Hennink , W.E. , Hydrogels in a historical perspective: From simple networks to smart materials . J. Controlled Release , 190 , 254 – 273 , 2014 . https://doi.org/ 10.1016/j.jconrel.2014.03.052 .
- Bobnar , M. , Derets , N. , Umerova , S. , Domenici , V. , Novak , N. , Lavrič , M. , Cordoyiannis , G. , Zalar , B. , Rešetič , A. , Polymer-dispersed liquid crystal elastomers as moldable shape-programmable material . Nat. Commun. , 14 , 1 – 11 , 2023 . https://doi.org/ 10.1038/s41467-023-36426-y .
-
Zhang , J.
,
Guo , Y.
,
Hu , W.
,
Sitti , M.
,
Wirelessly Actuated Thermo- and Magneto-Responsive Soft Bimorph Materials with Programmable Shape-Morphing
.
Adv. Mater.
,
33
,
1
–
10
,
2021
. https://doi.org/
10.1002/adma.202100336
.
10.1002/adma.202100336 Google Scholar
-
Ohm , C.
,
Brehmer , M.
,
Zentel , R.
,
Applications of Liquid Crystalline Elastomers
, in:
Liquid Crystal Elastomers: Materials and Applications. Advances in Polymer Science
, pp.
49
–
94
,
Springer-Verlag
,
Berlin Heidelberg
,
2012
, https://doi.org/
10.1007/12_2011_164
.
10.1007/12_2011_164 Google Scholar
- Ambulo , C.P. , Burroughs , J.J. , Boothby , J.M. , Kim , H. , Shankar , M.R. , Ware , T.H. , Four-dimensional Printing of Liquid Crystal Elastomers . ACS Appl. Mater. Interfaces , 9 , 37332 – 37339 , 2017 . https://doi.org/ 10.1021/acsami.7b11851 .