Diatom
Source of Biofuel and Active Green Anode Material for Advanced Energy Storage Application
Vivek Dalvi
Carbon Fix Solutions Pvt Ltd, Mumbai, Maharashtra, India
Applied Microbiology Laboratory, Center for Rural Development & Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
Search for more papers by this authorSumit Dhali
Applied Microbiology Laboratory, Center for Rural Development & Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
Search for more papers by this authorAnushree Malik
Applied Microbiology Laboratory, Center for Rural Development & Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
Search for more papers by this authorVivek Dalvi
Carbon Fix Solutions Pvt Ltd, Mumbai, Maharashtra, India
Applied Microbiology Laboratory, Center for Rural Development & Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
Search for more papers by this authorSumit Dhali
Applied Microbiology Laboratory, Center for Rural Development & Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
Search for more papers by this authorAnushree Malik
Applied Microbiology Laboratory, Center for Rural Development & Technology, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
Search for more papers by this authorVandana Vinayak
School of Applied Sciences, Dr. Hari Singh Gour Vishwavidhyalaya (A Central University), Sagar, Madhya Pradesh, India
Search for more papers by this authorRichard Gordon
Gulf Specimen Marine Lab & Aquarium, Florida, USA
Search for more papers by this authorSummary
Diatoms are single-celled microalgae with silica shells or frustules that can form colonies. More than 100,000 species of diatoms have been discovered to date, with cell sizes ranging from 2 to 200 μm with geometries including circular, triangular, square, or elliptical. They contain both organic and inorganic components and these fractions are evaluated for energy application. The organic fraction is utilized to make biofuels for less polluting transportation. The diatom extracted bio-oil contains both saturated and unsaturated fatty acids, which holds potential to improve biofuel quality and quantity. One of the outstanding complexities of the diatom is the multilayered frustule structure. The frustule consists of amorphous hydrated mesoporous silica with an organized microstructure that is much beyond the reach of synthetic design and fabrication technologies. Research on functional materials used in sophisticated energy storage devices, such as batteries and supercapacitors, can benefit from diatoms’ delicate and repeatable nanoscale siliceous structure. This chapter presents the state-of-the-art on diatoms for their utility as biofuel and advanced energy storage systems.
References
- Li , J. , Sang , H. , Guo , H. , Popko , J. T. , He , L. , White , J. C. , Parkash Dhankher , O. , Jung , G. , & Xing , B. ( 2017 ). Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa . Nanotechnology , 28 ( 15 ), 155101 . https://doi.org/10.1088/1361-6528/aa61f3
- Reid , A. , Buchanan , F. , Julius , M. , & Walsh , P. J. ( 2021 ). A review on diatom biosilicification and their adaptive ability to uptake other metals into their frustules for potential application in bone repair . Journal of Materials Chemistry B , 9 ( 34 ), 6728 – 6737 .
- Saxena , A. , Kumar Singh , P. , Bhatnagar , A. , & Tiwari , A. ( 2022 ). Growth of marine diatoms on aquaculture wastewater supplemented with nanosilica . Bioresource Technology , 344 , 126210 . https://doi.org/10.1016/j.biortech.2021.126210
- Terracciano , M. , De Stefano , L. , & Rea , I. ( 2018 ). Diatoms green nanotechnology for biosilica-based drug delivery systems . Pharmaceutics , 10 ( 4 ), 242 .
- Sharma , N. , Simon , D. P. , Diaz-Garza , A. M. , Fantino , E. , Messaabi , A. , Meddeb-Mouelhi , F. , … & Desgagné-Penix , I. ( 2021 ). Diatoms biotechnology: Various industrial applications for a greener tomorrow . Frontiers in Marine Science , 8 , 636613 .
- Selvaraj , V. , Thomas , N. , Anthuvan , A. J. , Nagamony , P. , & Chinnuswamy , V. ( 2018 ). Amine-functionalized diatom frustules: a platform for specific and sensitive detection of nitroaromatic explosive derivative . Environmental Science and Pollution Research , 25 ( 21 ), 20540 – 20549 .
- Ramachandra , T. V. , Mahapatra , D. M. , & Gordon , R. ( 2009 ). Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels . Industrial & Engineering Chemistry Research , 48 ( 19 ), 8769 – 8788 .
- Richthammer , P. , Börmel , M. , Brunner , E. , & Van Pée , K. H. ( 2011 ). Biomineralization in Diatoms: The Role of Silacidins . ChemBioChem , 12 ( 9 ), 1362 – 1366 . https://doi.org/10.1002/cbic.201000775
- Sardo , A. , Orefice , I. , Balzano , S. , Barra , L. , & Romano , G. ( 2021 ). Mini-Review: Potential of Diatom-Derived Silica for Biomedical Applications . Applied Sciences , 11 ( 10 ), 4533 . https://doi.org/10.3390/app11104533
- Van Eynde , E. , Lenaerts , B. , Tytgat , T. , Verbruggen , S. W. , Hauchecorne , B. , Blust , R. , & Lenaerts , S. ( 2014 ). Effect of pretreatment and temperature on the properties of Pinnularia biosilica frustules . RSC Advances , 4 ( 99 ), 56200 – 56206 . https://doi.org/10.1039/c4ra09305d
- Jain , R. , Nigam , H. , Mathur , M. , Malik , A. , & Arora , U. K. ( 2021 ). Towards green thermal power plants with blowdown water reuse and simultaneous biogenic nanostructures recovery from waste . Resources, Conservation and Recycling , 168 , 105283 .
- Saad , E. M. , Pickering , R. A. , Shoji , K. , Hossain , M. I. , Glover , T. G. , Krause , J. W. , & Tang , Y. ( 2020 ). Effect of cleaning methods on the dissolution of diatom frustules . Marine Chemistry , 224 (June 2019), 103826 . https://doi.org/10.1016/j.marchem.2020.103826
- Jeffryes , C. , Campbell , J. , Li , H. , Jiao , J. , & Rorrer , G. ( 2011 ). The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices . Energy and Environmental Science , 4 ( 10 ), 3930 – 3941 . https://doi.org/10.1039/c0ee00306a
- Wang , X.-W. , Huang , L. , Ji , P.-Y. , Chen , C.-P. , Li , X.-S. , Gao , Y.-H. , & Liang , J.-R. ( 2019 ). Using a mixture of wastewater and seawater as the growth medium for wastewater treatment and lipid production by the marine diatom Phaeodactylum tricornutum . Bioresource Technology , 289 , 121681 . https://doi.org/10.1016/j.biortech.2019.121681
- Norberg , A.N. , Wagner , N.P. , Kaland , H. , Vullum-Bruer , F. , Svensson , A.M. , 2019 . Silica from diatom frustules as anode material for Li-ion batteries . RSC Adv. 9 , 41228 – 41239 . https://doi.org/10.1039/C9RA07271C
- Bandara , T.M.W.J. , Furlani , M. , Albinsson , I. , Wulff , A. , Mellander , B.-E. , 2020 . Diatom frustules enhancing the efficiency of gel polymer electrolyte-based dye-sensitized solar cells with multilayer photoelectrodes . Nanoscale Adv. 2 , 199 – 209 . https://doi.org/10.1039/C9NA00679F
- Marella , T. K. , Saxena , A. , & Tiwari , A. ( 2020 ). Diatom mediated heavy metal remediation: A review . Bioresource Technology , 305 , 123068 .
- Marella , T. K. , Datta , A. , Patil , M. D. , Dixit , S. , & Tiwari , A. ( 2019 ). Biodiesel production through algal cultivation in urban wastewater using algal floway . Bioresource Technology , 280 , 222 – 228 .
- Tang , C. C. , Tian , Y. , Liang , H. , Zuo , W. , Wang , Z. W. , Zhang , J. , & He , Z. W. ( 2018 ). Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor . Bioresource Technology , 250 (September 2017), 185 – 190 . https://doi.org/10.1016/j.biortech.2017.11.028
- Almeyda , M. D. , Scodelaro Bilbao , P. G. , Popovich , C. A. , Constenla , D. , & Leonardi , P. I. ( 2020 ). Enhancement of polyunsaturated fatty acid production under low-temperature stress in Cylindrotheca closterium . Journal of Applied Phycology , 32 ( 2 ), 989 – 1001 .
- Fu , W. , Wichuk , K. , & Brynjólfsson , S. ( 2015 ). Developing diatoms for value-added products: Challenges and opportunities . New Biotechnology , 32 ( 6 ), 547 – 551 . https://doi.org/10.1016/j.nbt.2015.03.016
-
Fimbres-Olivarría , D.
,
López-Elías , J. A.
,
Martínez-Córdova , L. R.
,
Carvajal-Millán , E.
,
Enríquez-Ocaña , F.
,
Valdéz-Holguín , E.
, &
Miranda-Baeza , A.
(
2015
).
Growth and biochemical composition of
Navicula
sp. cultivated at two light intensities and three wavelengths
.
The Israeli Journal of Aquaculture-Bamidgeh.
DOI:
10.46989/001c.20715
10.46989/001c.20715 Google Scholar
- Dhali , S. , Jain , R. , Malik , A. , Sharma , S. , & Raliya , R. ( 2022 ). Cultivation of Navicula sp. on rice straw hydrolysate for the production of biogenic silica . Bioresource Technology , 360 , 127577 .
- Tan , X. , Lam , M. , Uemura , Y. , Lim , J. , Wong , C. , & Lee , K. ( 2018 ). Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing . Chinese Journal of Chemical Engineering , 26 ( 1 ), 17 – 30 . https://doi.org/10.1016/j.cjche.2017.08.010
- Harini , A.B. , Rajkumar , R. , Takriff , M.S. , 2020 . Enhanced Production of Lipid as Biofuel Feedstock from the Marine Diatom Nitzschia sp. by Optimizing Cultural Conditions 20 . BioRes .
-
González-González , L.M.
,
Astals , S.
,
Pratt , S.
,
Jensen , P.D.
,
Schenk , P.M.
,
2021
.
Osmotic shock pre-treatment of
Chaetoceros muelleri
wet biomass enhanced solvent-free lipid extraction and biogas production
.
Algal Res.
54
,
102177
.
https://doi.org/10.1016/j.algal.2020.102177
10.1016/j.algal.2020.102177 Google Scholar
-
Kalwani , M.
,
Devi , A.
,
Patil , K.
,
Kumari , A.
,
Dalvi , V.
,
Malik , A.
, … &
Pabbi , S.
(
2022
).
Microalgae-mediated wastewater treatment and enrichment of wastewater-cultivated biomass for biofuel production
. In
Expanding Horizon of Cyanobacterial Biology
(pp.
259
–
281
).
Academic Press
.
10.1016/B978-0-323-91202-0.00014-2 Google Scholar
-
Dalvi , V.
,
Patil , K.
,
Nigam , H.
,
Jain , R.
,
Pabbi , S.
,
Malik , A.
(
2021
).
Environmental Resilience and Circular Agronomy Using Cyanobacteria Grown in Wastewater and Supplemented with Industrial Flue Gas Mitigation
. In:
R.P. Rastogi
(eds)
Ecophysiology and Biochemistry of Cyanobacteria
.
Springer
,
Singapore
.
https://doi.org/10.1007/978-981-16-4873-1_14
10.1007/978-981-16-4873-1_14 Google Scholar
-
Dalvi , V.
,
Chawla , P.
, &
Malik , A.
(
2021
).
Year-long performance assessment of an on-site pilot scale (100 L) photobioreactor on nutrient recovery and pathogen removal from urban wastewater using native microalgal consortium
.
Algal Research
,
55
,
102228
.
https://doi.org/10.1016/j.algal.2021.102228
10.1016/j.algal.2021.102228 Google Scholar
- Dhanker , R. , Kumar , R. , Tiwari , A. , & Kumar , V. ( 2022 ). Diatoms as a biotechnological resource for the sustainable biofuel production: a state-of-the-art review . Biotechnology and Genetic Engineering Reviews , 38 ( 1 ), 111 – 131 .
- Guiry , M. ( 2012 ). How many species of algae are there? Journal of Phycology , 48 ( 5 ), 1057 – 1063 . https://doi.org/10.1111/j.1529-8817.2012.01222.x
- Armand , M. , & Tarascon , J. M. ( 2008 ). Building better batteries . Nature , 451 ( 7179 ), 652 – 657 .
- Choi , J. W. , & Aurbach , D. ( 2016 ). Promise and reality of post-lithiumion batteries with high energy densities . Nature Reviews Materials , 1 ( 4 ), 1 – 16 .
- Tarascon , J. M. , & Armand , M. ( 2001 ). Issues and challenges facing rechargeable lithium batteries . Nature , 414 ( 6861 ), 359 – 367 .
- Whittingham , M. S. ( 2004 ). Lithium batteries and cathode materials . Chemical Reviews , 104 ( 10 ), 4271 – 4302 .
- Lee , K. T. , Jung , Y. S. , & Oh , S. M. ( 2003 ). Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries . Journal of the American Chemical Society , 125 ( 19 ), 5652 – 5653 .
- Park , C. M. , Choi , W. , Hwa , Y. , Kim , J. H. , Jeong , G. , & Sohn , H. J. ( 2010 ). Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries . Journal of Materials Chemistry , 20 ( 23 ), 4854 – 4860 .
- Si , Q. , Hanai , K. , Ichikawa , T. , Phillipps , M. B. , Hirano , A. , Imanishi , N. , … & Takeda , Y. ( 2011 ). Improvement of cyclic behavior of a ball-milled SiO and carbon nanofiber composite anode for lithium-ion batteries . Journal of Power Sources , 196 ( 22 ), 9774 – 9779 .
- Lee , J. I. , & Park , S. ( 2013 ). High-performance porous silicon monoxide anodes synthesized via metal-assisted chemical etching . Nano Energy , 2 ( 1 ), 146 – 152 .
-
Lee , J. I.
,
Lee , K. T.
,
Cho , J.
,
Kim , J.
,
Choi , N. S.
, &
Park , S.
(
2012
).
Chemical-assisted thermal disproportionation of porous silicon monoxide into silicon-based multicomponent systems
.
Angewandte Chemie
,
124
(
11
),
2821
–
2825
.
10.1002/ange.201108915 Google Scholar
- Vu , A. , Qian , Y. , & Stein , A. ( 2012 ). Porous electrode materials for lithium-ion batteries–how to prepare them and what makes them special . Advanced Energy Materials , 2 ( 9 ), 1056 – 1085 .
- Nowak , A. P. , Sprynskyy , M. , Wojtczak , I. , Trzciński , K. , Wysocka , J. , Szkoda , M. , Buszewski , B. , & Lisowska-Oleksiak , A. ( 2020 ). Diatoms Biomass as a Joint Source of Biosilica and Carbon for Lithium-Ion Battery Anodes . Materials ( Basel, Switzerland ), 13 ( 7 ), 1673 . https://doi.org/10.3390/ma13071673
- Wang , Z. , Zhao , J. , Liu , S. , Cui , F. , Luo , J. , Wang , Y. , … & Yang , X. ( 2021 ). Cultured diatoms suitable for the advanced anode of lithium ion batteries . ACS Sustainable Chemistry & Engineering , 9 ( 2 ), 844 – 852 .
- Norberg , A. N. , Wagner , N. P. , Kaland , H. , Vullum-Bruer , F. , & Svensson , A. M. ( 2019 ). Silica from diatom frustules as anode material for Li-ion batteries . RSC advances , 9 ( 70 ), 41228 – 41239 . https://doi.org/10.1039/c9ra07271c
- He , Q. , Xu , C. , Luo , J. , Wu , W. , & Shi , J. ( 2014 ). A novel mesoporous carbon@ silicon–silica nanostructure for high-performance Li-ion battery anodes . Chemical Communications , 50 ( 90 ), 13944 – 13947 .
- Nowak , A. P. , Lisowska-Oleksiak , A. , Wicikowska , B. , & Gazda , M. ( 2017 ). Biosilica from sea water diatoms algae—electrochemical impedance spectroscopy study . Journal of Solid State Electrochemistry , 21 ( 8 ), 2251 – 2258 .
-
Nowak , A. P.
,
Sprynskyy , M.
,
Brzozowska , W.
, &
Lisowska-Oleksiak , A.
(
2019
).
Electrochemical behavior of a composite material containing 3D-structured diatom biosilica
.
Algal Research
,
41
,
101538
.
10.1016/j.algal.2019.101538 Google Scholar
- Wang , W. , Gutu , T. , Gale , D. K. , Jiao , J. , Rorrer , G. L. , & Chang , C. H. ( 2009 ). Self-assembly of nanostructured diatom microshells into patterned arrays assisted by polyelectrolyte multilayer deposition and inkjet printing . Journal of the American Chemical Society , 131 ( 12 ), 4178 – 4179 .