Optimizing Bioenergy from Diatoms through Biofilms
G. Saranya
Energy & Wetlands Research Group, Centre for Ecological Sciences (CES), Indian Institute of Science (IISc), Bangalore, India
Centre for Sustainable Technologies (ASTRA), Indian Institute of Science, Bangalore, Karnataka, India
Search for more papers by this authorT.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences (CES), Indian Institute of Science (IISc), Bangalore, India
Centre for Sustainable Technologies (ASTRA), Indian Institute of Science, Bangalore, Karnataka, India
Centre for Infrastructure, Sustainable Transportation and Urban Planning (CiSTUP), Indian Institute of Science, Bangalore, Karnataka, India
Search for more papers by this authorG. Saranya
Energy & Wetlands Research Group, Centre for Ecological Sciences (CES), Indian Institute of Science (IISc), Bangalore, India
Centre for Sustainable Technologies (ASTRA), Indian Institute of Science, Bangalore, Karnataka, India
Search for more papers by this authorT.V. Ramachandra
Energy & Wetlands Research Group, Centre for Ecological Sciences (CES), Indian Institute of Science (IISc), Bangalore, India
Centre for Sustainable Technologies (ASTRA), Indian Institute of Science, Bangalore, Karnataka, India
Centre for Infrastructure, Sustainable Transportation and Urban Planning (CiSTUP), Indian Institute of Science, Bangalore, Karnataka, India
Search for more papers by this authorVandana Vinayak
School of Applied Sciences, Dr. Hari Singh Gour Vishwavidhyalaya (A Central University), Sagar, Madhya Pradesh, India
Search for more papers by this authorRichard Gordon
Gulf Specimen Marine Lab & Aquarium, Florida, USA
Search for more papers by this authorSummary
The impetus for the exploration of environmentally friendly fuels during the past decade has increased with the concerns about escalating greenhouse gas (GHG) emissions due to the burning of fossil fuels and its associated climate change. In this regard, biofuel from algae, especially diatoms, is emerging as a viable liquid fuel alternative in transportation. Diatoms are metabolically versatile microorganisms with broad applicability as feedstock for aquaculture feed, biofuel, nutraceutical, and pharmaceutical/cosmetic industries. The economic feasibility of diatom biofuel depends on minimizing the capital and operational costs involved in upstream and downstream bioprocessing of diatoms. Exploiting the biofilmforming potential of benthic diatoms for growing them in attached forms is emerging as a prudent cultivation technology for sustainable diatom biomass production. This chapter discusses various design considerations and optimization techniques useful for diatom cultivation using biofilm. The key areas to improve the performance of such engineered biosystems include the design, construction, and field validations of cultivation technologies. Various factors influencing diatom productivity, such as species selection, algal-bacterial interaction, volumetric mass transfer coefficient, and the oxygen transfer rate, are presented in this chapter. The concluding part discusses the scope for the valorization of diatom biomass for bioenergy and value-added bioproducts.
References
-
Kang , S.
,
Heo , S.
and
Lee , J.H.
(
2019
)
Techno-economic Analysis of Microalgae-Based Lipid Production: Considering Influences of Microalgal Species
.
Industrial and Engineering Chemistry Research
,
58
, (
2
).
https://doi.org/10.1021/acs.iecr.8b03999
10.1021/acs.iecr.8b03999 Google Scholar
-
Berner , F.
,
Heimann , K.
and
Sheehan , M.
(
2015
)
Microalgal biofilms for biomass production
.
Journal of Applied Phycology
,
Springer Netherlands
.
27
, (
5
).
https://doi.org/10.1007/s10811-014-0489-x
10.1007/s10811-014-0489-x Google Scholar
-
Davis , R.
,
Aden , A.
and
Pienkos , P.T.
(
2011
)
Techno-economic analysis of autotrophic microalgae for fuel production
.
Applied Energy
,
Elsevier
.
88
, (
10
).
https://doi.org/10.1016/J.APENERGY.2011.04.018
10.1016/j.apenergy.2011.04.018 Google Scholar
- Fasaei , F. , Bitter , J.H. , Slegers , P.M. and van Boxtel , A.J.B. ( 2018 ) Techno-economic evaluation of microalgae harvesting and dewatering systems . Algal Research , Elsevier . 31 . https://doi.org/10.1016/J.ALGAL.2017.11.038
-
Adey , W.H.
,
Kangas , P.C.
and
Mulbry , W.
(
2011
)
Algal Turf Scrubbing: Cleaning Surface Waters with Solar Energy while Producing a Biofuel
.
BioScience
,
61
, (
6
).
https://doi.org/10.1525/bio.2011.61.6.5
10.1525/bio.2011.61.6.5 Google Scholar
-
Ramachandra , T. V.
,
Mahapatra , D.M.
,
Bhat , S.P.
and
Joshi , N. V.
(
2015
)
Biofuel Production Along with Remediation of Sewage Water Through Algae
.
Algae and Environmental Sustainability
,
Springer India
,
New Delhi
. p.
33
–
51
.
https://doi.org/10.1007/978-81-322-2641-3_4
10.1007/978-81-322-2641-3_4 Google Scholar
- Irwin , N.B. , Irwin , E.G. , Martin , J.F. and Aracena , P. ( 2018 ) Constructed wetlands for water quality improvements: Benefit transfer analysis from Ohio . Journal of Environmental Management , Academic Press . 206 . https://doi.org/10.1016/J.JENVMAN.2017.10.050
-
Ramachandra , T. V.
,
Sudarshan , P.B.
,
Mahesh , M.K.
and
Vinay , S.
(
2018
)
Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore
.
Journal of Environmental Management
,
Academic Press
.
206
.
https://doi.org/10.1016/j.jenvman.2017.10.014
10.1016/j.jenvman.2017.10.014 Google Scholar
-
Craggs , R.J.
,
Adey , W.H.
,
Jenson , K.R.
,
St. John , M.S.
,
Green , F.B.
and
Oswald , W.J.
(
1996
)
Phosphorus removal from wastewater using an algal turf scrubber
.
Water Science and Technology
,
International Association on Water Quality
.
33
, (
7
).
https://doi.org/10.1016/0273-1223(96)00354-X
10.2166/wst.1996.0138 Google Scholar
- Adey , W.H. , Laughinghouse , H.D. , Miller , J.B. , Hayek , L.A.C. , Thompson , J.G. , Bertman , S. et al . ( 2013 ) Algal turf scrubber (ATS) floways on the Great Wicomico River, Chesapeake Bay: Productivity, algal community structure, substrate and chemistry . Journal of Phycology , 49 , ( 3 ). https://doi.org/10.1111/jpy.12056
- Mantzorou , A. and Ververidis , F. ( 2019 ) Microalgal biofilms: A further step over current microalgal cultivation techniques . Science of The Total Environment , Elsevier . 651 . https://doi.org/10.1016/J.SCITOTENV.2018.09.355
- Costerton , J.W. , Geesey , G.G. and Cheng , K.-J. ( 1978 ) How Bacteria Stick . Scientific American , 238 , ( 1 ). https://doi.org/10.1038/scientificamerican0178-86
-
Mantzorou , A.
,
Navakoudis , E.
,
Paschalidis , K.
and
Ververidis , F.
(
2018
)
Microalgae: a potential tool for remediating aquatic environments from toxic metals
.
International Journal of Environmental Science and Technology
,
Springer Berlin Heidelberg
.
15
, (
8
).
https://doi.org/10.1007/s13762-018-1783-y
10.1007/s13762-018-1783-y Google Scholar
- Gerbersdorf , S.U. , Westrich , B. and Paterson , D.M. ( 2009 ) Microbial Extracellular Polymeric Substances (EPS) in Fresh Water Sediments . Microbial Ecology , Springer-Verlag . 58 , ( 2 ). https://doi.org/10.1007/s00248-009-9498-8
- Christenson , L. and Sims , R. ( 2011 ) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts . Biotechnology Advances , Elsevier . 29 , ( 6 ). https://doi.org/10.1016/j.biotechadv.2011.05.015
-
Hoagland , K.D.
,
Rosowski , J.R.
,
Gretz , M.R.
and
Roemer , S.C.
(
1993
)
Diatom Extracellular Polymeric Substances: Function, Fine Structure, Chemistry, and Physiology
.
Journal of Phycology
,
John Wiley & Sons, Ltd
(10.1111).
29
, (
5
).
https://doi.org/10.1111/j.0022-3646.1993.00537.x
10.1111/j.0022-3646.1993.00537.x Google Scholar
- Galié , S. , García-Gutiérrez , C. , Miguélez , E.M. , Villar , C.J. and Lombó , F. ( 2018 ) Biofilms in the Food Industry: Health Aspects and Control Methods . Frontiers in Microbiology , Frontiers Media SA . 9 . https://doi.org/10.3389/fmicb.2018.00898
-
Katarzyna , L.
,
Sai , G.
and
Singh , O.A.
(
2015
)
Non-enclosure methods for non-suspended microalgae cultivation: literature review and research needs
.
Renewable and Sustainable Energy Reviews
,
Pergamon
.
42
.
https://doi.org/10.1016/J.RSER.2014.11.029
10.1016/j.rser.2014.11.029 Google Scholar
-
Shen , Y.
,
Xu , X.
,
Zhao , Y.
and
Lin , X.
(
2014
)
Influence of algae species, substrata and culture conditions on attached microalgal culture
.
Bioprocess and Biosystems Engineering
,
Springer Berlin Heidelberg
.
37
, (
3
).
https://doi.org/10.1007/s00449-013-1011-6
10.1007/s00449-013-1011-6 Google Scholar
-
Zippel , B.
and
Neu , T.R.
(
2005
)
Growth and structure of phototrophic biofilms under controlled light conditions
.
Water Science and Technology
,
IWA Publishing
.
52
, (
7
).
https://doi.org/10.2166/wst.2005.0202
10.2166/wst.2005.0202 Google Scholar
- Schnurr , P.J. , Espie , G.S. and Allen , D.G. ( 2013 ) Algae biofilm growth and the potential to stimulate lipid accumulation through nutrient starvation . Bioresource Technology ,. https://doi.org/10.1016/j.biortech.2013.03.036
- Palma , H. , Killoran , E. , Sheehan , M. , Berner , F. and Heimann , K. ( 2017 ) Assessment of microalga biofilms for simultaneous remediation and biofuel generation in mine tailings water . Bioresource Technology , Elsevier . 234 . https://doi.org/10.1016/J.BIORTECH.2017.03.063
-
Ogbonna , J.C.
and
Tanaka , H.
(
1998
)
Cyclic autotrophic/heterotrophic cultivation of photosynthetic cells: A method of achieving continuous cell growth under light/dark cycles
.
Bioresource Technology
,
Elsevier Sci Ltd
.
65
, (
1
–
2
).
https://doi.org/10.1016/S0960-8524(98)00018-2
10.1016/S0960-8524(98)00018-2 Google Scholar
-
Avendaño-Herrera , R.E.
and
Riquelme , C.E.
(
2007
)
Production of a diatom-bacteria biofilm in a photobioreactor for aquaculture applications
.
Aquacultural Engineering
,
Elsevier
.
36
, (
2
).
https://doi.org/10.1016/j.aquaeng.2006.08.001
10.1016/j.aquaeng.2006.08.001 Google Scholar
- Mack , W.N. , Mack , J.P. and Ackerson , A.O. ( 1975 ) Microbial film development in a trickling filter . Microbial Ecology , Springer-Verlag . 2 , ( 3 ). https://doi.org/10.1007/BF02010441
-
Barranguet , C.
,
van Beusekom , S.
,
Veuger , B.
,
Neu , T.
,
Manders , E.
,
Sinke , J.
et al
. (
2004
)
Studying undisturbed autotrophic biofilms: still a technical challenge
.
Aquatic Microbial Ecology
,
Inter-Research
.
34
, (
1
).
https://doi.org/10.3354/ame034001
10.3354/ame034001 Google Scholar
- Gross , M. , Henry , W. , Michael , C. and Wen , Z. ( 2013 ) Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest . Bioresource Technology , Elsevier . 150 . https://doi.org/10.1016/J.BIORTECH.2013.10.016
- Podola , B. , Li , T. and Melkonian , M. ( 2017 ) Porous Substrate Bioreactors: A Paradigm Shift in Microalgal Biotechnology? Trends in Biotechnology , Elsevier . 35 , ( 2 ). https://doi.org/10.1016/j.tibtech.2016.06.004
- Zippel , B. , Rijstenbil , J. and Neu , T.R. ( 2007 ) A flow-lane incubator for studying freshwater and marine phototrophic biofilms . Journal of Microbiological Methods , Elsevier . 70 , ( 2 ). https://doi.org/10.1016/J.MIMET.2007.05.013
- Boelee , N.C. , Temmink , H. , Janssen , M. , Buisman , C.J.N. and Wijffels , R.H. ( 2011 ) Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms . Water Research , 45 , ( 18 ). https://doi.org/10.1016/j.watres.2011.08.044
- Ozkan , A. , Kinney , K. , Katz , L. and Berberoglu , H. ( 2012 ) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor . Bioresource Technology , Elsevier . 114 . https://doi.org/10.1016/J.BIORTECH.2012.03.055
-
Shen , Y.
,
Chen , C.
,
Chen , W.
and
Xu , X.
(
2014
)
Attached culture of
Nannochloropsis oculata
for lipid production
.
Bioprocess and Biosystems Engineering
,
37
, (
9
).
https://doi.org/10.1007/s00449-014-1147-z
10.1007/s00449-014-1147-z Google Scholar
- Johnson , M.B. and Wen , Z. ( 2010 ) Development of an attached microalgal growth system for biofuel production . Applied Microbiology and Biotechnology , Springer-Verlag . 85 , ( 3 ). https://doi.org/10.1007/s00253-009-2133-2
- Christenson , L.B. and Sims , R.C. ( 2012 ) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products . Biotechnology and Bioengineering , Wiley-Blackwell . 109 , ( 7 ). https://doi.org/10.1002/bit.24451
- Orandi , S. , Lewis , D.M. and Moheimani , N.R. ( 2012 ) Biofilm establishment and heavy metal removal capacity of an indigenous mining algalmicrobial consortium in a photo-rotating biological contactor . Journal of Industrial Microbiology & Biotechnology , 39 , ( 9 ). https://doi.org/10.1007/s10295-012-1142-9
- Blanken , W. , Janssen , M. , Cuaresma , M. , Libor , Z. , Bhaiji , T. and Wijffels , R.H. ( 2014 ) Biofilm growth of Chlorella sorokiniana in a rotating biological contactor based photobioreactor . Biotechnology and Bioengineering , John Wiley & Sons, Ltd . 111 , ( 12 ). https://doi.org/10.1002/bit.25301
-
Nowack , E.C.M.
,
Podola , B.
and
Melkonian , M.
(
2005
)
The 96-Well Twin-Layer System: A Novel Approach in the Cultivation of Microalgae
.
Protist
,
Urban & Fischer
.
156
, (
2
).
https://doi.org/10.1016/J.PROTIS.2005.04.003
10.1016/j.protis.2005.04.003 Google Scholar
-
Murphy , T.E.
and
Berberoglu , H.
(
2014
)
Flux balancing of light and nutrients in a biofilm photobioreactor for maximizing photosynthetic productivity
.
Biotechnology Progress
,
American Chemical Society (ACS)
.
30
, (
2
).
https://doi.org/10.1002/btpr.1881
10.1002/btpr.1881 Google Scholar
-
Naumann , T.
,
Çebi , Z.
,
Podola , B.
and
Melkonian , M.
(
2013
)
Growing microalgae as aquaculture feeds on twin-layers: A novel solid-state photobioreactor
.
Journal of Applied Phycology
,
Springer Netherlands
.
25
, (
5
).
https://doi.org/10.1007/s10811-012-9962-6
10.1007/s10811?012?9962?6 Google Scholar
-
Ji , C.
,
Wang , J.
,
Zhang , W.
,
Liu , J.
,
Wang , H.
,
Gao , L.
et al
. (
2014
)
An applicable nitrogen supply strategy for attached cultivation of
Aucutodesmus obliquus
.
Journal of Applied Phycology
,
26
, (
1
).
https://doi.org/10.1007/s10811-013-0115-3
10.1007/s10811-013-0115-3 Google Scholar
-
Liu , T.
,
Wang , J.
,
Hu , Q.
,
Cheng , P.
,
Ji , B.
,
Liu , J.
et al
. (
2013
)
Attached cultivation technology of microalgae for efficient biomass feedstock production
.
Bioresource Technology
,
Elsevier
.
127
.
https://doi.org/10.1016/J.BIORTECH.2012.09.100
10.1016/j.biortech.2012.09.100 Google Scholar
-
Cheng , P.
,
Ji , B.
,
Gao , L.
,
Zhang , W.
,
Wang , J.
and
Liu , T.
(
2013
)
The growth, lipid and hydrocarbon production of
Botryococcus braunii
with attached cultivation
.
Bioresource Technology
,
Elsevier
.
138
.
https://doi.org/10.1016/J.BIORTECH.2013.03.150
10.1016/j.biortech.2013.03.150 Google Scholar
- Boelee , N.C. , Janssen , M. , Temmink , H. , Shrestha , R. , Buisman , C.J.N. and Wijffels , R.H. ( 2014 ) Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing . Applied Biochemistry and Biotechnology , Springer US . 172 , ( 1 ). https://doi.org/10.1007/s12010-013-0478-6
-
Abe , K.
,
Matsumura , I.
,
Imamaki , A.
and
Hirano , M.
(
2003
)
Removal of inorganic nitrogen sources from water by the algal biofilm of the aerial microalga
Trentepohlia aurea
.
World Journal of Microbiology and Biotechnology
,
Kluwer Academic Publishers
.
19
, (
3
).
https://doi.org/10.1023/A:1023657310004
10.1023/A:1023657310004 Google Scholar
- Christenson , L.B. and Sims , R.C. ( 2012 ) Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products . Biotechnology and Bioengineering , John Wiley & Sons, Ltd . 109 , ( 7 ). https://doi.org/10.1002/bit.24451
- Johnson , M. Ben . ( 2009 ) Microalgal Biodiesel Production through a Novel Attached Culture System and Conversion Parameters . Virginia Tech .
-
Sekar , R.
,
Venugopalan , V.P.
,
Satpathy , K.K.
,
Nair , K.V.K.
and
Rao , V.N.R.
(
2004
)
Laboratory studies on adhesion of microalgae to hard substrates
.
Asian Pacific Phycology in the 21st Century: Prospects and Challenges
,
Springer Netherlands
,
Dordrecht
. p.
109
–
16
.
https://doi.org/10.1007/978-94-007-0944-7_14
10.1007/978-94-007-0944-7_14 Google Scholar
- Gross , M.A. ( 2015 ) Development and optimization of biofilm based algal cultivation [Internet] .
-
Zhuang , L.-L.
,
Yu , D.
,
Zhang , J.
,
Liu , F.
,
Wu , Y.-H.
,
Zhang , T.-Y.
et al
. (
2018
)
The characteristics and influencing factors of the attached microalgae cultivation: A review
.
Renewable and Sustainable Energy Reviews
,
Pergamon
.
94
.
https://doi.org/10.1016/J.RSER.2018.06.006
10.1016/j.rser.2018.06.006 Google Scholar
-
Gao , F.
,
Yang , Z.-H.
,
Li , C.
,
Zeng , G.-M.
,
Ma , D.-H.
and
Zhou , L.
(
2015
)
A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent
.
Bioresource Technology
,
Elsevier
.
179
.
https://doi.org/10.1016/J.BIORTECH.2014.11.108
10.1016/j.biortech.2014.11.108 Google Scholar
-
Wang , J.-H.
,
Zhuang , L.-L.
,
Xu , X.-Q.
,
Deantes-Espinosa , V.M.
,
Wang , X.-X.
and
Hu , H.-Y.
(
2018
)
Microalgal attachment and attached systems for biomass production and wastewater treatment
.
Renewable and Sustainable Energy Reviews
,
Pergamon
.
92
.
https://doi.org/10.1016/J.RSER.2018.04.081
10.1016/j.rser.2018.04.081 Google Scholar
-
Schnurr , P.J.
and
Allen , D.G.
(
2015
)
Factors affecting algae biofilm growth and lipid production: A review
.
Renewable and Sustainable Energy Reviews
,
Pergamon
.
52
.
https://doi.org/10.1016/J.RSER.2015.07.090
10.1016/j.rser.2015.07.090 Google Scholar
-
Cao , J.
,
Yuan , W.
,
Pei , Z.J.
,
Davis , T.
,
Cui , Y.
and
Beltran , M.
(
2009
)
A Preliminary Study of the Effect of Surface Texture on Algae Cell Attachment for a Mechanical-Biological Energy Manufacturing System
.
Journal of Manufacturing Science and Engineering
,
American Society of Mechanical Engineers Digital Collection
.
131
, (
6
).
https://doi.org/10.1115/1.4000562
10.1115/1.4000562 Google Scholar
- Johnson , M.B. and Wen , Z. ( 2010 ) Development of an attached microalgal growth system for biofuel production . Applied Microbiology and Biotechnology , 85 , ( 3 ). https://doi.org/10.1007/s00253-009-2133-2
- Guillard and Ryther . ( 2005 ) f/2 Medium for growing diatoms : 2L Recipe . Techniques , https://evolution.unibas.ch/people/dita/lab/methods_pdfs/f2_adjusted.pdf .
-
Madhu , N. V.
,
Jyothibabu , R.
,
Balachandran , K.K.
,
Honey , U.K.
,
Martin , G.D.
,
Vijay , J.G.
et al
. (
2007
)
Monsoonal impact on planktonic standing stock and abundance in a tropical estuary (Cochin backwaters - India)
.
Estuarine, Coastal and Shelf Science
,
Academic Press
.
73
, (
1
–
2
).
https://doi.org/10.1016/j.ecss.2006.12.009
10.1016/j.ecss.2006.12.009 Google Scholar
- Martin , G.D. , Vijay , J.G. , Laluraj , C.M. , Madhu , N.V. , Joseph , T. , Nair , M. et al . ( 2008 ) Fresh water influence on nutrient stoichiometry in a tropical estuary, Southwest coast of India . Corvinus University of Budapest.
- Strickland , J.D.H. and Parsons , T.R. ( 1972 ) A practical handbook of seawater analysis. Bulletin 167 . Fisheries Research Board of Canada Bulletin , Fisheries research board of Canada . 167 .
- Besemer , K. , Singer , G. , Limberger , R. , Chlup , A.K. , Hochedlinger , G. , Hödl , I. et al . ( 2007 ) Biophysical controls on community succession in stream biofilms . Applied and Environmental Microbiology , American Society for Microbiology (ASM) . 73 , ( 15 ). https://doi.org/10.1128/AEM.00588-07
-
Unnithan , V. V.
,
Unc , A.
and
Smith , G.B.
(
2014
)
Mini-review: A priori considerations for bacteria-algae interactions in algal biofuel systems receiving municipal wastewaters
.
Algal Research
,
Elsevier B.V
.
4
, (
1
).
https://doi.org/10.1016/j.algal.2013.11.009
10.1016/j.algal.2013.11.009 Google Scholar
-
Fisher , Wilcox
and
Graham
. (
1998
)
Molecular characterization of epiphytic bacterial communities on charophycean green algae
.
Applied and Environmental Microbiology
,
American Society for Microbiology (ASM)
.
64
, (
11
).
10.1128/AEM.64.11.4384-4389.1998 Google Scholar
- Comte , J. , Jacquet , S. , Viboud , S. , Fontvieille , D. , Millery , A. , Paolini , G. et al . ( 2006 ) Microbial community structure and dynamics in the largest natural French lake (Lake Bourget) . Microbial Ecology , Springer . 52 , ( 1 ). https://doi.org/10.1007/s00248-004-0230-4
-
Kim , I.G.
,
Lee , M.H.
,
Jung , S.Y.
,
Song , J.J.
,
Oh , T.K.
and
Yoon , J.H.
(
2005
)
Exiguobacterium aestuarii
sp. nov. and
Exiguobacterium marinum
sp. nov., isolated from a tidal flat of the Yellow Sea in Korea
.
International Journal of Systematic and Evolutionary Microbiology
,
55
, (
2
).
https://doi.org/10.1099/ijs.0.63308-0
10.1099/ijs.0.63308-0 Google Scholar
-
Stackebrandt , E.
,
Frühling , A.
,
Schumann , P.
,
Hippe , H.
and
Sträubler , B.
(
2002
)
Exiguobacterium undae sp. nov. and Exiguobacterium antarcticum sp. nov
.
International Journal of Systematic and Evolutionary Microbiology
,
Microbiology Society
.
52
, (
4
).
https://doi.org/10.1099/00207713-52-4-1171
10.1099/00207713?52?4?1171 Google Scholar
- Dias , C. , Borges , A. , Saavedra , M.J. and Simões , M. ( 2018 ) Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals . Journal of Global Antimicrobial Resistance , Elsevier Ltd . 12 . https://doi.org/10.1016/j.jgar.2017.09.010
- Chung , K. and Okabe , S. ( 2009 ) Characterization of electrochemical activity of a strain ISO2-3 phylogenetically related to Aeromonas sp. isolated from a glucose-fed microbial fuel cell . Biotechnology and Bioengineering , John Wiley & Sons, Ltd . 104 , ( 5 ). https://doi.org/10.1002/bit.22453
-
Gilbert , P.
,
Maira-Litran , T.
,
McBain , A.J.
,
Rickard , A.H.
and
Whyte , F.W.
(
2002
)
The physiology and collective recalcitrance of microbial biofilm communities
. Advances in Microbial Physiology.
Academic Press
. p.
203
–
56
.
https://doi.org/10.1016/S0065-2911(02)46005-5
10.1016/S0065?2911(02)46005?5 Google Scholar
- Fiorentini , C. , Barbieri , E. , Falzano , L. , Matarrese , P. , Baffone , W. , Pianetti , A. et al . ( 1998 ) Occurrence, diversity and pathogenicity of mesophilic Aeromonas in estuarine waters of the Italian coast of the Adriatic Sea . Journal of Applied Microbiology , John Wiley & Sons, Ltd . 85 , ( 3 ). https://doi.org/10.1046/j.1365-2672.1998.853517.x
-
Skwor , T.
,
Shinko , J.
,
Augustyniak , A.
,
Gee , C.
and
Andraso , G.
(
2014
)
Aeromonas hydrophila and Aeromonas veronii predominate among potentially pathogenic ciprofloxacin- and tetracycline-resistant Aeromonas isolates from Lake Erie
.
Applied and Environmental Microbiology, American Society for Microbiology
.
80
, (
3
).
https://doi.org/10.1128/AEM.03645-13
10.1128/AEM.03645-13 Google Scholar
- Roostaei , J. , Zhang , Y. , Gopalakrishnan , K. and Ochocki , A.J. ( 2018 ) Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-efficiency of Biofuel Feedstock Production . Scientific Reports , Nature Publishing Group . 8 , ( 1 ). https://doi.org/10.1038/s41598-018-31016-1
- Gross , M. and Wen , Z. ( 2014 ) Yearlong evaluation of performance and durability of a pilot-scale Revolving Algal Biofilm (RAB) cultivation system . Bioresource Technology , Elsevier . 171 . https://doi.org/10.1016/J.BIORTECH.2014.08.052
- Orr , D. , Lewis , A. and Adey , W.H. ( 2010 ) Algal Turf Scrubber (ATS) Algae to Energy Project .
-
Park , J.-Y.
,
Park , M.S.
and
Lee , Y.-C.
(
2015
)
Advances in direct transesterification of algal oils from wet biomass
.
Bioresource Technology
,
Elsevier
.
184
.
https://doi.org/10.1016/J.BIORTECH.2014.10.089
10.1016/j.biortech.2014.10.089 Google Scholar
- Dianursanti , Religia , P. and Wijanarko , A. ( 2015 ) Utilization of n-Hexane as Co-solvent to Increase Biodiesel Yield on Direct Transesterification Reaction from Marine Microalgae . Procedia Environmental Sciences , Elsevier B.V . 23 , (Ictcred 2014). https://doi.org/10.1016/j.proenv.2015.01.059
-
Ayetor , G.K.
,
Sunnu , A.
and
Parbey , J.
(
2015
)
Effect of biodiesel production parameters on viscosity and yield of methyl esters:
Jatropha curcas
,
Elaeis guineensis
and
Cocos nucifera
.
Alexandria Engineering Journal
,
Elsevier B.V
.
54
, (
4
).
https://doi.org/10.1016/j.aej.2015.09.011
10.1016/j.aej.2015.09.011 Google Scholar
-
Zhang , Y.
,
Li , Y.
,
Zhang , X.
and
Tan , T.
(
2015
)
Biodiesel production by direct transesterification of microalgal biomass with co-solvent
.
Bioresource Technology
,
Elsevier Ltd
.
196
.
https://doi.org/10.1016/j.biortech.2015.07.052
10.1016/j.biortech.2015.07.052 Google Scholar
- Johnson , M.B. and Wen , Z. ( 2009 ) Production of Biodiesel Fuel from the Microalga Schizochytrium limacinum by Direct Transesterification of Algal Biomass . Energy & Fuels , 23 , ( 10 ). https://doi.org/10.1021/ef900704h
- Keera , S.T. , El Sabagh , S.M. and Taman , A.R. ( 2011 ) Transesterification of vegetable oil to biodiesel fuel using alkaline catalyst . Fuel , Elsevier . 90 , ( 1 ). https://doi.org/10.1016/J.FUEL.2010.07.046
-
Atadashi , I.M.
,
Aroua , M.K.
and
Aziz , A.A.
(
2010
)
High quality biodiesel and its diesel engine application: A review
.
Renewable and Sustainable Energy Reviews
,.
https://doi.org/10.1016/j.rser.2010.03.020
10.1016/j.rser.2010.03.020 Google Scholar
-
Knothe , G.
(
2009
)
Improving biodiesel fuel properties by modifying fatty ester composition
. Energy and Environmental Science. p.
759
–
66
.
https://doi.org/10.1039/b903941d
10.1039/b903941d Google Scholar
-
Sharma , Y.C.
,
Singh , B.
and
Upadhyay , S.N.
(
2008
)
Advancements in development and characterization of biodiesel: A review
.
Fuel
,
Elsevier
.
87
, (
12
).
https://doi.org/10.1016/J.FUEL.2008.01.014
10.1016/j.fuel.2008.01.014 Google Scholar
-
Demirbas , A.
(
2009
)
Progress and recent trends in biodiesel fuels
.
Energy Conversion and Management
,
Pergamon
.
50
, (
1
).
https://doi.org/10.1016/j.enconman.2008.09.001
10.1016/j.enconman.2008.09.001 Google Scholar
-
Knothe , G.
(
2011
)
A technical evaluation of biodiesel from vegetable oils vs. algae. Will algae-derived biodiesel perform?
https://doi.org/10.1039/c0gc00946f
10.1039/c0gc00946f Google Scholar
- Xu , H. , Miao , X. and Wu , Q. ( 2006 ) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters . Journal of Biotechnology , Elsevier . 126 , ( 4 ). https://doi.org/10.1016/J.JBIOTEC.2006.05.002
-
Francisco , É.C.
,
Neves , D.B.
,
Jacob-Lopes , E.
and
Franco , T.T.
(
2010
)
Microalgae as feedstock for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel quality
.
Journal of Chemical Technology & Biotechnology
,
85
, (
3
).
https://doi.org/10.1002/jctb.2338
10.1002/jctb.2338 Google Scholar
-
Islam , M.A.
,
Magnusson , M.
,
Brown , R.J.
,
Ayoko , G.A.
,
Nabi , M.N.
and
Heimann , K.
(
2013
)
Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles
.
Energies
,
6
, (
11
).
https://doi.org/10.3390/en6115676
10.3390/en6115676 Google Scholar
-
Ramírez-Verduzco , L.F.
,
Rodríguez-Rodríguez , J.E.
and
Jaramillo-Jacob , A.D.R.
(
2012
)
Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition
.
Fuel
,
Elsevier
.
91
, (
1
).
https://doi.org/10.1016/j.fuel.2011.06.070
10.1016/j.fuel.2011.06.070 Google Scholar
-
Rodrigues , A.
,
Bordado , J.C.
and
Dos Santos , R.G.
(
2017
)
Upgrading the glycerol from biodiesel production as a source of energy carriers and chemicals - A technological review for three chemical pathways
.
Energies
,
10
, (
11
).
https://doi.org/10.3390/en10111817
10.3390/en10111817 Google Scholar
- Harun , R. , Davidson , M. , Doyle , M. , Gopiraj , R. , Danquah , M. and Forde , G. ( 2011 ) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility . Biomass and Bioenergy , Pergamon . 35 , ( 1 ). https://doi.org/10.1016/j.biombioe.2010.10.007
-
Ramachandra , T. V.
and
Shruthi , B. V.
(
2007
)
Spatial mapping of renewable energy potential
. Renewable and Sustainable Energy Reviews.
Pergamon
. p.
1460
–
80
.
https://doi.org/10.1016/j.rser.2005.12.002
10.1016/j.rser.2005.12.002 Google Scholar