Milking of Diatoms
A Realistic Approach to Serve the Biorefinery Concept
Mrinal Kashyap
Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
Search for more papers by this authorMrinal Kashyap
Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, India
Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
Search for more papers by this authorVandana Vinayak
School of Applied Sciences, Dr. Hari Singh Gour Vishwavidhyalaya (A Central University), Sagar, Madhya Pradesh, India
Search for more papers by this authorRichard Gordon
Gulf Specimen Marine Lab & Aquarium, Florida, USA
Search for more papers by this authorSummary
The algae-based biodiesel industry is moving forward with time, but the production cost is still a limiting step in the process. Diatoms are unicellular eukaryotic, photosynthetic microorganisms having a siliceous cell wall. They are known as the source of diafuel (fuel from diatoms), and their application in the sustainable energy field is the current hot topic. High-value compounds in these unicellular cells make them crucial for biorefinery. The robustness of the diatoms cell wall makes extracting the valuable compounds unprofitable. High-end instruments like ultrasonication, high-pressure pretreatment and chemical treatments are needed to extract beneficial compounds from the cells. Due to the production cost, economic pressure is a significant barrier to diafuel industrialization. Different approaches to milk diatoms for diafuel and other intracellular compounds are discussed in the current chapter. The new emerging tool for successful milking is nanotechnology. The interdisciplinary interaction of diatoms and nanoparticles can develop future tools for nano-biorefinery. The present chapter sheds light on the need for process development for milking diatoms and the potential of available processes in this direction.
References
- Hildebrand , M. , Davis , A. K. , Smith , S. R. , Traller , J. C. , & Abbriano , R. ( 2012 ). The place of diatoms in the biofuels industry . Biofuels , 3 ( 2 ), 221 – 240 . https://doi.org/10.4155/BFS.11.157
- Saranya , G. , & Ramachandra , T. V. ( 2020 ). Novel biocatalyst for optimal biodiesel production from diatoms . Renewable Energy , 153 , 919 – 934 . https://doi.org/10.1016/j.renene.2020.02.053
-
Yiitolu , M.
, &
Temoçin , Z.
(
2010
).
Immobilization of Candida rugosa lipase on glutaraldehyde-activated polyester fiber and its application for hydrolysis of some vegetable oils
.
Journal of Molecular Catalysis B: Enzymatic
,
66
(
1–2
),
130
–
135
.
https://doi.org/10.1016/j.molcatb.2010.04.007
10.1016/j.molcatb.2010.04.007 Google Scholar
- Tréguer , P. , Nelson , D. M. , Van Bennekom , A. J. , Demaster , D. J. , Leynaert , A. , & Quéguiner , B. ( 1995 ). The silica balance in the world ocean: A reestimate . Science , 268 ( 5209 ), 375 – 379 . https://doi.org/10.1126/science.268.5209.375
- Field , C. B. , Behrenfeld , M. J. , Randerson , J. T. , & Falkowski , P. ( 1998 ). Primary production of the biosphere: Integrating terrestrial and oceanic components . Science , 281 ( 5374 ), 237 – 240 . https://doi.org/10.1126/science.281.5374.237
- Gordon , R. , Losic , D. , Tiffany , M. A. , Nagy , S. S. , & Sterrenburg , F. A. S. ( 2009 ). The Glass Menagerie: diatoms for novel applications in nanotechnology . Trends in Biotechnology , 27 ( 2 ), 116 – 127 . https://doi.org/10.1016/j.tibtech.2008.11.003
-
Mann , D. G.
, &
Droop , S. J. M.
(
1996
).
Biodiversity, biogeography and conservation of diatoms BT - Biogeography of Freshwater Algae: Proceedings of the Workshop on Biogeography of Freshwater Algae, held during the Fifth International Phycological Congress, Qingdao, China, June 1994
(
J. Kristiansen
(ed.); pp.
19
–
32
).
Springer Netherlands
.
https://doi.org/10.1007/978-94-017-0908-8_2
10.1007/978-94-017-0908-8_2 Google Scholar
- Street-Perrott , F. A. , & Barker , P. A. ( 2008 ). Biogenic silica: a neglected component of the coupled global continental biogeochemical cycles of carbon and silicon . Earth Surface Processes and Landforms , 33 ( 9 ), 1436 – 1457 . https://doi.org/https://doi.org/10.1002/esp.1712
- Werner , D. ( 1977 ). Introduction with a note on taxonomy. The Biology of Diatoms, Hrsg.: D. Werner . Blackwell Scientific Publications , Oxford .
- Round , F. E. , Crawford , R. M. , & Mann , D. G. ( 1990 ). Diatoms: biology and morphology of the genera . Cambridge university press .
-
Ahirwar , A.
,
Meignen , G.
,
Khan , M. J.
,
Khan , N.
,
Rai , A.
,
Schoefs , B.
,
Marchand , J.
,
Varjani , S.
, &
Vinayak , V.
(
2021
).
Nanotechnological approaches to disrupt the rigid cell walled microalgae grown in wastewater for value-added biocompounds: commercial applications, challenges, and breakthrough
.
Biomass Conversion and Biorefinery
,
0123456789
.
https://doi.org/10.1007/s13399-021-01965-1
10.1007/s13399?021?01965?1 Google Scholar
- Gautam , S. , Kashyap , M. , Gupta , S. , Kumar , V. , Schoefs , B. , Gordon , R. , Jeffryes , C. , Joshi , K. B. , & Vinayak , V. ( 2016 ). Metabolic engineering of TiO2 nanoparticles in Nitzschia palea to form diatom nanotubes: An ingredient for solar cells to produce electricity and biofuel . RSC Advances , 6 ( 99 ), 97276 – 97284 . https://doi.org/10.1039/c6ra18487a
- Gupta , S. , Kashyap , M. , Kumar , V. , Jain , P. , Vinayak , V. , & Joshi , K. B. ( 2018 ). Peptide mediated facile fabrication of silver nanoparticles over living diatom surface and its application . Journal of Molecular Liquids , 249 , 600 – 608 . https://doi.org/10.1016/j.molliq.2017.11.086
-
Ahirwar , A.
,
Khan , M. J.
,
Sirotiya , V.
,
Mourya , M.
,
Rai , A.
,
Schoefs , B.
,
Marchand , J.
,
Varjani , S.
, &
Vinayak , V.
(
2022
).
Pulsed Electric Field– Assisted Cell Permeabilization of Microalgae (
Haematococcus pluvialis
) for Milking of Value-Added Compounds
.
Bioenergy Research
,
0123456789
.
https://doi.org/10.1007/s12155-022-10414-4
10.1007/s12155?022?10414?4 Google Scholar
- Gordon , R. , Sterrenburg , F. A. S. , & Sandhage , K. H. ( 2005 ). A special issue on diatom nanotechnology . Journal of Nanoscience and Nanotechnology , 5 ( 1 ), 1 – 4 . https://doi.org/10.1166/jnn.2005.017
- Kröger , N. , & Poulsen , N. ( 2008 ). Diatoms - From cell wall biogenesis to nanotechnology . Annual Review of Genetics , 42 , 83 – 107 .
-
Bradbury , J.
(
2004
).
Nature's nanotechnologists: Unveiling the secrets of diatoms
.
PLoS Biology
,
2
(
10
).
https://doi.org/10.1371/JOURNAL.PBIO.0020306
10.1371/journal.pbio.0020306 Google Scholar
- Rabiee , N. , Khatami , M. , Jamalipour Soufi , G. , Fatahi , Y. , Iravani , S. , & Varma , R. S. ( 2021 ). Diatoms with invaluable applications in nanotechnology, biotechnology, and biomedicine: Recent advances . ACS Biomaterials Science and Engineering , 7 ( 7 ), 3053 – 3068 . https://doi.org/10.1021/acsbiomaterials.1c00475
- Borase , H. P. , Patil , C. D. , & Suryawanshi , R. K. ( 2017 ). Mechanistic approach for fabrication of gold nanoparticles by Nitzschia diatom and their antibacterial activity . Bioprocess and Biosystems Engineering , 40 ( 10 ), 1437 – 1446 . https://doi.org/10.1007/s00449-017-1801-3
- Feurtet-Mazel , A. , Mornet , S. , Charron , L. , Mesmer-Dudons , N. , Maury-Brachet , R. , & Baudrimont , M. ( 2016 ). Biosynthesis of gold nanoparticles by the living freshwater diatom Eolimna minima , a species developed in river biofilms . Environmental Science and Pollution Research , 23 ( 5 ), 4334 – 4339 . https://doi.org/10.1007/s11356-015-4139-x
- Jena , J. , Pradhan , N. , Dash , B. P. , Panda , P. K. , & Mishra , B. K. ( 2015 ). Pigment mediated biogenic synthesis of silver nanoparticles using diatom Amphora sp. and its antimicrobial activity . Journal of Saudi Chemical Society , 19 ( 6 ), 661 – 666 . https://doi.org/10.1016/j.jscs.2014.06.005
- Graham , J. M. , Graham , L. E. , Zulkifly , S. B. , Pfleger , B. F. , Hoover , S. W. , & Yoshitani , J. ( 2012 ). Freshwater diatoms as a source of lipids for biofuels . Journal of Industrial Microbiology and Biotechnology , 39 ( 3 ), 419 – 428 . https://doi.org/10.1007/s10295-011-1041-5
- Levitan , O. , Dinamarca , J. , Hochman , G. , & Falkowski , P. G. ( 2014 ). Diatoms: A fossil fuel of the future . Trends in Biotechnology , 32 ( 3 ), 117 – 124 . https://doi.org/10.1016/j.tibtech.2014.01.004
- Ramachandra , T. V. , Mahapatra , D. M. , Karthick , B. , & Gordon , R. ( 2009 ). Milking diatoms for sustainable energy: Biochemical engineering versus gasoline-secreting diatom solar panels . Industrial and Engineering Chemistry Research , 48 ( 19 ), 8769 – 8788 . https://doi.org/10.1021/ie900044j
- Vinayak , V. , Manoylov , K. M. , Gateau , H. , Blanckaert , V. , Hérault , J. , Pencréac'H , G. , Marchand , J. , Gordon , R. , & Schoefs , B. ( 2015 ). Diatom milking? A review and new approaches . Marine Drugs , 13 ( 5 ), 2629 – 2665 . https://doi.org/10.3390/md13052629
- Hamm , C. E. , Merkel , R. , Springer , O. , Jurkojc , P. , Maier , C. , Prechtel , K. , & Smetacek , V. ( 2003 ). Architecture and material properties of diatom shells provide effective mechanical protection . Nature , 421 ( 6925 ), 841 – 843 . https://doi.org/10.1038/nature01416
- Khan , M. J. , Bawra , N. , Verma , A. , Kumar , V. , Pugazhendhi , A. , Joshi , K. B. , & Vinayak , V. ( 2021a ). Cultivation of diatom Pinnularia saprophila for lipid production: A comparison of methods for harvesting the lipid from the cells . Bioresource Technology , 319 (August 2020 ), 124129 . https://doi.org/10.1016/j.biortech.2020.124129
- Li , W. , Gamlath , C. J. , Pathak , R. , Martin , G. J. O. , & Ashokkumar , M. ( 2019 ). Ultrasound–The Physical and Chemical Effects Integral to Food Processing, Ref. Modul . Food Sci.
- Yatipanthalawa , B. S. , Ashokkumar , M. , Scales , P. J. , & Martin , G. J. O. ( 2022 ). Ultrasound-Assisted Extracellular Polymeric Substance Removal from the Diatom Navicula sp.: A Route to Functional Polysaccharides and More Efficient Algal Biorefineries . ACS Sustainable Chemistry and Engineering , 10 ( 5 ), 1795 – 1804 . https://doi.org/10.1021/acssuschemeng.1c06290
- Yatipanthalawa , B. , Li , W. , Hill , D. R. A. , Trifunovic , Z. , Ashokkumar , M. , Scales , P. J. , & Martin , G. J. O. ( 2021 ). Interplay between interfacial behaviour, cell structure and shear enables biphasic lipid extraction from whole diatom cells ( Navicula sp.) . Journal of Colloid and Interface Science , 589 , 65 – 76 . https://doi.org/10.1016/j.jcis.2020.12.056
- Neto , A. M. P. , Sotana de Souza , R. A. , Leon-Nino , A. D. , da Costa , J. D. ar. A. , Tiburcio , R. S. , Nunes , T. A. , Sellare de Mello , T. C. , Kanemoto , F. T. , Saldanha-Corrêa , F. M. P. , & Gianesella , S. M. F. ( 2013 ). Improvement in microalgae lipid extraction using a sonication-assisted method . Renewable Energy , 55 , 525 – 531 . https://doi.org/10.1016/j.renene.2013.01.019
- Passos , F. , Carretero , J. , & Ferrer , I. ( 2015 ). Comparing pretreatment methods for improving microalgae anaerobic digestion: Thermal, hydrothermal, microwave and ultrasound . Chemical Engineering Journal , 279 , 667 – 672 . https://doi.org/10.1016/j.cej.2015.05.065
- Halim , R. , Danquah , M. K. , & Webley , P. A. ( 2012 ). Extraction of oil from microalgae for biodiesel production: A review . Biotechnology Advances , 30 ( 3 ), 709 – 732 . https://doi.org/10.1016/J.BIOTECHADV.2012.01.001
- Pernet , F. , & Tremblay , R. ( 2003 ). Effect of Ultrasonication and Grinding on the Determination of Lipid Class Content of Microalgae Harvested on Filters . Lipids , 38 ( 11 ), 1191 – 1195 . https://doi.org/10.1007/s11745-003-1178-6
-
Nogueira , D. A.
,
Da Silveira , J. M.
,
Vidal , É. M.
,
Ribeiro , N. T.
, &
Veiga Burkert , C. A.
(
2018
).
Cell Disruption of
Chaetoceros calcitrans
by Microwave and Ultrasound in Lipid Extraction
.
International Journal of Chemical Engineering
,
2018
.
https://doi.org/10.1155/2018/9508723
10.1155/2018/9508723 Google Scholar
- Cravotto , G. , Boffa , L. , Mantegna , S. , Perego , P. , Avogadro , M. , & Cintas , P. ( 2008 ). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves . Ultrasonics Sonochemistry , 15 ( 5 ), 898 – 902 . https://doi.org/10.1016/J.ULTSONCH.2007.10.009
- Lee , J. , Yoo , C. , Jun , S. , Ahn , C. , & Oh , H. ( 2010 ). Bioresource Technology Comparison of several methods for effective lipid extraction from microalgae . Bioresource Technology , 101 ( 1 ), S75 – S77 . https://doi.org/10.1016/j.biortech.2009.03.058
- Ma , Y. A. , Cheng , Y. M. , Huang , J. W. , Jen , J. F. , Huang , Y. S. , & Yu , C. C. ( 2014 ). Effects of ultrasonic and microwave pretreatments on lipid extraction of microalgae . Bioprocess and Biosystems Engineering , 37 ( 8 ), 1543 – 1549 . https://doi.org/10.1007/s00449-014-1126-4
-
Balduyck , L.
,
Bruneel , C.
,
Goiris , K.
,
Dejonghe , C.
, &
Foubert , I.
(
2018
).
Influence of High Pressure Homogenization on Free Fatty Acid Formation in
Nannochloropsis
sp
.
European Journal of Lipid Science and Technology
,
120
(
4
),
1
–
6
.
https://doi.org/10.1002/ejlt.201700436
10.1002/ejlt.201700436 Google Scholar
-
Balduyck , L.
,
Stock , T.
,
Bijttebier , S.
,
Bruneel , C.
,
Jacobs , G.
,
Voorspoels , S.
,
Muylaert , K.
, &
Foubert , I.
(
2017
).
Integrity of the microalgal cell plays a major role in the lipolytic stability during wet storage
.
Algal Research
,
25
(August
2016
),
516
–
524
.
https://doi.org/10.1016/j.algal.2017.06.013
10.1016/j.algal.2017.06.013 Google Scholar
-
Spiden , E. M.
,
Scales , P. J.
,
Yap , B. H. J.
,
Kentish , S. E.
,
Hill , D. R. A.
, &
Martin , G. J. O.
(
2015
).
The effects of acidic and thermal pretreatment on the mechanical rupture of two industrially relevant microalgae:
Chlorella
sp. and
Navicula
sp
.
Algal Research
,
7
,
5
–
10
.
https://doi.org/10.1016/j.algal.2014.11.006
10.1016/j.algal.2014.11.006 Google Scholar
- Miazek , K. , Kratky , L. , Sulc , R. , Jirout , T. , Aguedo , M. , Richel , A. , & Goffin , D. ( 2017 ). Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: A review . International Journal of Molecular Sciences , 18 ( 7 ). https://doi.org/10.3390/ijms18071429
- Krishna , P. M. , Polisetti , V. , Damarla , K. , Mandal , S. K. , & Kumar , A. ( 2021 ). Improved biorefinery pathways of marine diatoms using a water miscible ionic liquid and its colloidal solution: efficient lipid extraction and in situ synthesis of fluorescent carbon dots for bio-imaging applications . RSC Advances , 11 ( 35 ), 21207 – 21215 . https://doi.org/10.1039/d1ra01425k
- Desai , R. K. , Streefland , M. , Wijffels , R. H. , & Eppink , M. H. M. ( 2016 ). Novel astaxanthin extraction from Haematococcus pluvialis using cell permeabilising ionic liquids . Green Chemistry , 18 ( 5 ), 1261 – 1267 . https://doi.org/10.1039/c5gc01301a
- Golberg , A. , Sack , M. , Teissie , J. , Pataro , G. , Pliquett , U. , Saulis , G. , Stefan , T. , Miklavcic , D. , Vorobiev , E. , & Frey , W. ( 2016 ). Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development . Biotechnology for Biofuels , 9 ( 1 ), 1 – 22 . https://doi.org/10.1186/s13068-016-0508-z
-
Zhang , R.
,
Lebovka , N.
,
Marchal , L.
,
Vorobiev , E.
, &
Grimi , N.
(
2020
).
Comparison of aqueous extraction assisted by pulsed electric energy and ultrasonication: Efficiencies for different microalgal species
.
Algal Research
,
47
(
March
).
https://doi.org/10.1016/j.algal.2020.101857
10.1016/j.algal.2020.101857 Google Scholar
- Einarsdóttir , R. , Þórarinsdóttir , K. A. , Aðalbjörnsson , B. V. , Guðmundsson , M. , Marteinsdóttir , G. , & Kristbergsson , K. ( 2022 ). Extraction of bioactive compounds from Alaria esculenta with pulsed electric field . Journal of Applied Phycology , 34 ( 1 ), 597 – 608 . https://doi.org/10.1007/s10811-021-02624-8
- Kashyap , M. , & Kiran , B. ( 2021 ). Milking microalgae in conjugation with nano-biorefinery approach utilizing wastewater . Journal of Environmental Management , 293 ( February ), 112864 . https://doi.org/10.1016/j.jenvman.2021.112864
- Hejazi , M. Amin , & Wijffels , R. H. ( 2004 ). Milking of microalgae . Trends in Biotechnology , 22 ( 4 ), 189 – 194 . https://doi.org/10.1016/j.tibtech.2004.02.009
- Hejazi , M. A. , De Lamarliere , C. , Rocha , J. M. S. , Vermuë , M. , Tramper , J. , & Wijffels , R. H. ( 2002 ). Selective extraction of carotenoids from the microalga Dunaliella salina with retention of viability . Biotechnology and Bioengineering , 79 ( 1 ), 29 – 36 . https://doi.org/10.1002/bit.10270
- Hejazi , M. A. , Holwerda , E. , & Wijffels , R. H. ( 2004 ). Milking Microalga Dunaliella salina for β-Carotene Production in Two-Phase Bioreactors . Biotechnology and Bioengineering , 85 ( 5 ), 475 – 481 . https://doi.org/10.1002/bit.10914
- Vinayak , V. , Khan , M. J. , Varjani , S. , Saratale , G. D. , Saratale , R. G. , & Bhatia , S. K. ( 2021 ). Microbial fuel cells for remediation of environmental pollutants and value addition: Special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells . Journal of Biotechnology , 338 , 5 – 19 . https://doi.org/10.1016/J.JBIOTEC.2021.07.003
-
Vinayak , V.
,
Gordon , R.
,
Gautam , S.
, &
Rai , A.
(
2014
).
Discovery of a Diatom That Oozes Oil
.
Advanced Science Letters
,
20
(
7
),
1256
–
1267
.
https://doi.org/10.1166/asl.2014.5591
10.1166/asl.2014.5591 Google Scholar
- Rai , A. , Khan , M. J. , Ahirwar , A. , Deka , R. , Singh , N. , Schoefs , B. , Marchand , J. , Varjani , S. , & Vinayak , V. ( 2022 ). Hydrogen economy and storage by nanoporous microalgae diatom: Special emphasis on designing photobioreactors . International Journal of Hydrogen Energy , 47 , 100 , 42099 – 42121 . https://doi.org/10.1016/j.ijhydene.2022.01.057
- Malcata , F. X. ( 2011 ). Microalgae and biofuels: A promising partnership? Trends in Biotechnology , 29 ( 11 ), 542 – 549 . https://doi.org/10.1016/j.tibtech.2011.05.005
- Postma , P. R. , Pataro , G. , Capitoli , M. , Barbosa , M. J. , Wijffels , R. H. , Eppink , M. H. M. , Olivieri , G. , & Ferrari , G. ( 2016 ). Selective extraction of intracellular components from the microalga Chlorella vulgaris by combined pulsed electric field-temperature treatment . Bioresource Technology , 203 , 80 – 88 . https://doi.org/10.1016/j.biortech.2015.12.012
- Yadugiri , A. V. T. ( 2009 ). Milking diatoms – a new route to sustainable energy Published by : Current Science Association Milking diatoms - a new route to sustainable energy . 97 ( 6 ), 748 – 750 .
- Mascarelli , A. L. ( 2009 ). Gold rush for algae . Nature , 461 ( 7263 ), 460 – 461 . https://doi.org/10.1038/461460a
- Chaudry , S. , Bahri , P. A. , & Moheimani , N. R. ( 2016 ). Selection of an Energetically More Feasible Route for Hydrocarbon Extraction from Microalgae – Milking of B. braunii as a Case Study . In Computer Aided Chemical Engineering (Vol. 38 ). Elsevier Masson SAS . https://doi.org/10.1016/B978-0-444-63428-3.50262-9
- Amaro , H. M. , Guedes , A. C. , & Malcata , F. X. ( 2011 ). Advances and perspectives in using microalgae to produce biodiesel . Applied Energy , 88 ( 10 ), 3402 – 3410 . https://doi.org/10.1016/J.APENERGY.2010.12.014
- Brennan , L. , & Owende , P. ( 2010 ). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products . Renewable and Sustainable Energy Reviews , 14 ( 2 ), 557 – 577 . https://doi.org/10.1016/J.RSER.2009.10.009
- Danquah , M. K. , Ang , L. , Uduman , N. , Moheimani , N. , & Forde , G. M. ( 2009 ). Dewatering of microalgal culture for biodiesel production: Exploring polymer flocculation and tangential flow filtration . Journal of Chemical Technology and Biotechnology , 84 ( 7 ), 1078 – 1083 . https://doi.org/10.1002/jctb.2137
- Kashyap , M. , Samadhiya , K. , Ghosh , A. , Anand , V. , Lee , H. , Sawamoto , N. , Ogura , A. , Ohshita , Y. , Shirage , P. M. , & Bala , K. ( 2021 ). Synthesis, characterization and application of intracellular Ag/AgCl nanohybrids biosynthesized in Scenedesmu s sp. as neutral lipid inducer and antibacterial agent . Environmental Research , 201 ( February ), 111499 . https://doi.org/10.1016/j.envres.2021.111499
- Khan , M. J. , Bawra , N. , Verma , A. , Kumar , V. , Pugazhendhi , A. , Joshi , K. B. , & Vinayak , V. ( 2021b ). Cultivation of diatom Pinnularia saprophila for lipid production: A comparison of methods for harvesting the lipid from the cells . Bioresource Technology , 319 (September 2020 ), 124129 . https://doi.org/10.1016/j.biortech.2020.124129
- Lohman , E. J. , Gardner , R. D. , Halverson , L. , Macur , R. E. , Peyton , B. M. , & Gerlach , R. ( 2013 ). An efficient and scalable extraction and quantification method for algal derived biofuel . Journal of Microbiological Methods , 94 ( 3 ), 235 – 244 . https://doi.org/10.1016/j.mimet.2013.06.007
- Feller , R. , Matos , Â. P. , Mazzutti , S. , Moecke , E. H. S. , Tres , M. V. , Derner , R. B. , Oliveira , J. V. , & Junior , A. F. ( 2018 ). Polyunsaturated ω-3 and ω-6 fatty acids, total carotenoids and antioxidant activity of three marine microalgae extracts obtained by supercritical CO2 and subcritical n-butane . The Journal of Supercritical Fluids , 133 , 437 – 443 . https://doi.org/10.1016/J.SUPFLU.2017.11.015
- Vinayak , V. , Kumar , V. , Kashyap , M. , Joshi , K. B. , Gordon , R. , & Schoefs , B. ( 2017 ). Fabrication of resonating microfluidic chamber for biofuel production in diatoms (Resonating device for biofuel production) . 2016 3rd International Conference on Emerging Electronics, ICEE 2016 , 4 – 9 . https://doi.org/10.1109/ICEmElec.2016.8074628