2D Nanomaterials for Drug Delivery System
Syed Muzammil Munawar
Department of Chemistry & Biochemistry, C. Abdul Hakeem College, (Autonomous) Melvisharam, Tamil Nadu, India
Search for more papers by this authorDhandayuthabani Rajendiran
Department of Chemistry & Biochemistry, C. Abdul Hakeem College, (Autonomous) Melvisharam, Tamil Nadu, India
Search for more papers by this authorKaleel Basha Sabjan
Department of Chemistry & Biochemistry, C. Abdul Hakeem College, (Autonomous) Melvisharam, Tamil Nadu, India
Search for more papers by this authorSyed Muzammil Munawar
Department of Chemistry & Biochemistry, C. Abdul Hakeem College, (Autonomous) Melvisharam, Tamil Nadu, India
Search for more papers by this authorDhandayuthabani Rajendiran
Department of Chemistry & Biochemistry, C. Abdul Hakeem College, (Autonomous) Melvisharam, Tamil Nadu, India
Search for more papers by this authorKaleel Basha Sabjan
Department of Chemistry & Biochemistry, C. Abdul Hakeem College, (Autonomous) Melvisharam, Tamil Nadu, India
Search for more papers by this authorSubhendu Chakroborty
Research Coordinator, IES University, Bhopal, India
Search for more papers by this authorKaushik Pal
University Centre for Research and Development (UCRD), Chandigarh University, India
Search for more papers by this authorSummary
Activation of drug structure at the nanometer level can prolong drug loading time, increase drug biotransport, and increase drug uniformity, thereby reducing drug toxicity and improving efficacy. Consequently, nanostep structures for drug delivery in the clinical discipline have attracted increasing interest, which has generated tremendous momentum just like ordinary pharmaceutical companies, biomedical and pharmaceutical companies have invested a great deal of money, energy and time in researching effective nanocarriers structure, 2D substances are of great interest because of their unique residence times in physical and chemical environments and their broad potential for applications in devices, biosensing, medicine, energy, and catalysis. The two multidimensional substances also have excellent drug delivery abilities compared to the conventional drug delivery structures. The main function of the 2D substance is the ultrafine nanogrid structure intentionally attached to the specific massive area of the ground thick structure for various external stimuli, 2D substances can exist as extremely green photodynamic and photothermal remedies for ailments. In addition, two-dimensional nanomaterial layer systems offer immense space for highly ecological medicines. Meanwhile, 2D substances with 2D terrain-changing material can have vivid orientation. Drugs can be properly stacked, and the effects of drugs can be reduced. However, NIR reaction, pH reaction with two-dimensional substances, two-dimensional SDDS can properly dispense tablets and effectively control blood consciousness to achieve great healing potential. These residences offer the possibility of multimodal healing of the disease. These special blessings are making 2D substance research more popular in the SDDS. However, it needs to be done much faster than can be accomplished in scientific exercises, but there are pressing issues that need to be addressed, including the transient long-term degradability and long-term toxicity of 2D materials. In addition, they study 2D substances in vitro , which are reserved for terrestrial animals, and in vitro experiments are also an important step towards their scientific implementation. Further intensive research and further in vivo experiments are expected to eventually implement SDDS-derived 2D coated compound packages as part of a scientific exercise. In this chapter we highlight the recent SDDS improvements, which are huge a wide range of 2D sensitive substance companies consisting of micelles, polymers, liposomes, hydrogels, nanofilms, nanoparticles, etc . Large organic packaging of 2D substances in 2D substances modified to be pharmaceutical companies function. 2D Stuff because pharmaceutical companies can improve disease drug treatment outcomes through managed launch, sustained launch, and stepped forward drug targeting. Therefore, 2D substances are perfectly suited to enhance the following SDDS technology.
References
- Novoselov , K.S. , Geim , A.K. , Morozov , S.V. , Jiang , D. , Zhang , Y. , Dubonos , S.V. , Grigorieva , I.V. , Firsov , A.A. , Electric field effect in atomically thin carbon films . Science , 306 , 5696 , 666 – 669 , 2004 .
- Huang , Y. , Sutter , E. , Shi , N.N. , Zheng , J. , Yang , T. , Englund , D. , Gao , H.-J. , Sutter , P. , Reliable exfoliation of large-area high-quality flakes of graphene and other twodimensional materials . ACS Nano , 9 , 11 , 10612 – 10620 , 2015 .
- Tao , W. , Zhu , X. , Yu , X. , Zeng , X. , Xiao , Q. , Zhang , X. , Ji , X. , Wang , X. , Shi , J. , Zhang , H. , Mei , L. , Black phosphorus nanosheets as a robust delivery platform for cancer theranostics . Adv. Mater. , 29 , 1 , 1 – 9 , 2017 .
- Xue , T. , Liang , W. , Li , Y. , Sun , Y. , Xiang , Y. , Zhang , Y. , Dai , Z. , Duo , Y. , Wu , L. , Qi , K. , Shivananju , B.N. , Zhang , L. , Cui , X. , Zhang , H. , Bao , Q. , Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor . Nat. Commun. , 10 , 1 , 28, 2019 .
- Wang , S. , Weng , J. , Fu , X. , Lin , J. , Fan , W. , Lu , N. , Qu , J. , Chen , S. , Wang , T. , Huang , P. , Black phosphorus nanosheets for mild hyperthermia-enhanced chemotherapy and chemo-photothermal combination therapy . Nanotheranostics , 1 , 2 , 208 – 216 , 2017 .
- Ji , X. , Kong , N. , Wang , J. , Li , W. , Xiao , Y. , Gan , S.T. , Zhang , Y. , Li , Y. , Song , X. , Xiong , Q. , Shi , S. , Li , Z. , Tao , W. , Zhang , H. , Mei , L. , Shi , J. , A novel top-down synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy . Adv. Mater ., 30 , 36 , e1803031, 1 – 11 , 2018 .
- Li , T. , Wu , L. , Zhang , J. , Xi , G. , Pang , Y. , Wang , X. , Chen , T. , Hydrothermal reduction of polyethylenimine and polyethylene glycol dual-functionalized nanographene oxide for high-efficiency gene delivery . ACS Appl. Mater. Interfaces , 8 , 45 , 31311 – 31320 , 2016 .
- Yang , H. , Zhao , J. , Wu , C. , Ye , C. , Zou , D. , Wang , S. , Facile synthesis of colloidal stable MoS2 nanoparticles for combined tumor therapy . Chem. Eng. J. , 351 , 548 – 558 , 2018 .
- Zhu , X. , Zhang , H. , Huang , H. , Zhang , Y. , Hou , L. , Zhang , Z. , Functionalized grapheme oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors . Nanotechnology , 26 , 36 , 1 – 13 , 2015 .
- Zhang , Q. , Deng , H. , Li , H. , Song , K. , Zeng , C. , Rong , L. , Preparation of grapheme oxide-based supramolecular hybrid nanohydrogel through host-guest interaction and its application in drug delivery . J. Biomed. Nanotechnol. , 14 , 12 , 2056 – 2065 , 2018 .
- Sahu , A. , Kim , M. , Ryu , J. , Son , J.-G. , Lee , E. , Noh , D.Y. , Tae , G. , Nanographene oxide as a switch for CW/pulsed NIR laser triggered drug release from liposomes . Mater. Sci. Eng. C Mater. Biol. Appl. , 82 , 19 – 24 , 2018 .
- Liu , Y. and Liu , J. , Hybrid nanomaterials of WS2 or MoS2 nanosheets with liposomes: Biointerfaces and multiplexed drug delivery . Nanoscale , 9 , 35 , 13187 – 13194 , 2017 .
- Han , U. , Seo , Y. , Hong , J. , Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and grapheme oxide . Sci. Rep. , 6 , 1 – 10 , 2016 .
- Fan , J. , He , N. , He , Q. , Liu , Y. , Ma , Y. , Fu , X. , Liu , Y. , Huang , P. , Chen , X. , A novel selfassembled sandwich nanomedicine for NIR-responsive release of NO . Nanoscale , 7 , 47 , 20055 – 20062 , 2015 .
- Zhao , Z. , Fan , H. , Zhou , G. , Bai , H. , Liang , H. , Wang , R. , Zhang , X. , Tan , W. , Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet– aptamer nanoprobe . J. Am. Chem. Soc. , 136 , 32 , 11220 – 11223 , 2014 .
- Yang , H. , Bremner , D.H. , Tao , L. , Li , H. , Hu , J. , Zhu , L. , Carboxymethyl chitosan mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery . Carbohydr. Polym. , 135 , 72 – 78 , 2016 .
- Xie , B. , Yi , J. , Peng , J. , Zhang , X. , Lei , L. , Zhao , D. , Lei , Z. , Nie , H. , Characterization of synergistic anti-tumor effects of doxorubicin and p53 via graphene oxide-polyethyleneimine nanocarriers . J. Mater. Sci. Technol. , 33 , 8 , 807 – 814 , 2017 .
- Yu , J. , Lin , Y.-H. , Yang , L. , Huang , C.-C. , Chen , L. , Wang , W.-C. , Chen , G.-W. , Yan , J. , Sawettanun , S. , Lin , C.-H. , Improved anticancer photothermal therapy using the bystander effect enhanced by antiarrhythmic peptide conjugated dopamine modified reduced graphene oxide nanocomposite . Adv. Healthc. Mater. , 6 , 2 , 1 – 9 , 2017 .
- Zeng , G. , Huang , L. , Huang , Q. , Liu , M. , Xu , D. , Huang , H. , Yang , Z. , Deng , F. , Zhang , X. , Wei , Y. , Rapid synthesis of MoS2-PDA-Ag nanocomposites as heterogeneous catalysts and antimicrobial agents via microwave irradiation . Appl. Surf. Sci. , 459 , 588 – 595 , 2018 .
- Athinarayanan , J. , Periasamy , V.S. , Krishnamoorthy , R. , Alshatwi , A.A. , Evaluation of antibacterial and cytotoxic properties of green synthesized Cu2O/Graphene nanosheets . Mater. Sci. Eng. C Mater. Biol. Appl. , 93 , 242 – 253 , 2018 .
- Zhang , L. , Wang , Y. , Wang , J. , Wang , Y. , Chen , A. , Wang , C. , Mo , W. , Li , Y. , Yuan , Q. , Zhang , Y. , A photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection . ACS Appl. Mater. Interfaces , 11 , 1 , 2018 .
- Saravanan , S. , Vimalraj , S. , Anuradha , D. , Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair . Biomed. Pharmacother. , 107 , 908 – 917 , 2018 .
- Khaleel Basha , S. , Syed Muzammil , M. , Dhandayuthabani , R. , Sugantha Kumari , V. , Development of nanoemulsion of alginate/aloe vera for oral delivery of insulin . Mater. Today Proc. , 36 , 357 – 363 , 2021 .
- Khaleel Basha , S. , Syed Muzammil , M. , Dhandayuthabani , R. , Sugantha Kumari , V. , Polysaccharides as excipient in drug delivery system . Mater. Today Proc. , 36 , 280 – 289 , 2021 .
- Khaleel Basha , S. , Syed Muzammil , M. , Dhandayuthabani , R. , Sugantha Kumari , V. , Nanoemulsion as oral drug delivery-a review . Curr. Drug Res. Rev. Bentham Sci. Publishers , 36 , 12 , 4 – 15 , 2020 .
-
Khaleel Basha , S.
,
Dhandayuthabani , R.
,
Syed Muzammil , M.
,
Sugantha Kumari , V.
,
Solid lipid nanoparticles for oral drug delivery
.
Mater. Today Proc.
,
36
,
313
–
324
,
2021
.
10.1016/j.matpr.2020.04.109 Google Scholar
- Zhang , X. , Nie , J. , Yang , X. , Liu , Z. , Guo , W. , Qiu , J. , Wang , S. , Yu , X. , Guan , Y. , Liu , H. , Li , L. , Nanostructured molybdenum disulfide biointerface for adhesion and osteogenic differentiation of mesenchymal stem cells . Appl. Mater. Today , 10 , 164 – 172 , 2018 .
- Zhou , X. , Cao , C. , Chen , Q. , Yu , Q. , Liu , Y. , Yin , T. , Liu , J. , PEG modified grapheme oxide loaded with EALYLV peptides for inhibiting the aggregation of hIAPP associated with type-2 diabetes . J. Mater. Chem. B , 3 , 35 , 7055 – 7067 , 2015 .
- Lee , H. , Choi , T.K. , Lee , Y.B. , Cho , H.R. , Ghaffari , R. , Wang , L. , Choi , H.J. , Chung , T.D. , Lu , N. , Hyeon , T. , Choi , S.H. , Kim , D.-H. , A graphene-based electrochemical device with thermo responsive microneedles for diabetes monitoring and therapy . Nat. Nanotechnol. , 11 , 6 , 566 – 572 , 2016 .
- Gao , N. , Nie , J. , Wang , H. , Xing , C. , Mei , L. , Xiong , W. , Zeng , X. , Peng , Z. , A versatile platform based on black phosphorus nanosheets with enhanced stability for cancer synergistic therapy . J. Biomed. Nanotechnol. , 14 , 11 , 1883 – 1897 , 2018 .
- Yang , H. , Bremner , D.H. , Tao , L. , Li , H. , Hu , J. , Zhu , L. , Carboxymethyl chitosan mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery . Carbohydr. Polym. , 135 , 72 – 78 , 2016 .
- Xing , C. , Chen , S. , Liang , X. , Liu , Q. , Qu , M. , Zou , Q. , Li , J. , Tan , H. , Liu , L. , Fan , D. , Zhang , H. , Two-dimensional MXene (Ti3C2)-integrated cellulose hydrogels: Toward smart three-dimensional network nanoplatforms exhibiting light-induced swelling and bimodal photothermal/chemotherapy anticancer activity . ACS Appl. Mater. Interfaces , 10 , 33 , 27631 – 27643 , 2018 .
- Novoselov , K.S. , Geim , A.K. , Morozov , S.V. , Jiang , D. , Zhang , Y. , Dubonos , S.V. , Grigorieva , I.V. , Firsov , A.A. , Electric field effect in atomically thin carbon films . Science , 306 , 666 , 2004 .
- Huang , Y. , Sutter , E. , Shi , N.N. , Zheng , J. , Yang , T. , Englund , D. , Gao , H.-J. , Sutter , P. , Reliable exfoliation of large-area high-quality flakes of graphene and other two dimensional materials . ACS Nano , 9 , 11 , 10612 – 10620 , 2015 .
- Coleman , J.N. , Lotya , M. , O'Neill , A. , Bergin , S.D. , King , P.J. , Khan , U. , Young , K. , Gaucher , A. , De , S. , Smith , R.J. , Shvets , I.V. , Arora , S.K. , Stanton , G. , Kim , H.Y. , Lee , K. , Kim , G.T. , Duesberg , G.S. , Hallam , T. , Boland , J.J. , Wang , J.J. , Donegan , J.F. , Grunlan , J.C. , Moriarty , G. , Shmeliov , A. , Nicholls , R.J. , Perkins , J.M. , Grieveson , E.M. , Theuwissen , K. , McComb , D.W. , Nellist , P.D. , Nicolosi , V. , Two-dimensional nanosheets produced by liquid exfoliation of layered materials . Science , 331 , 6017 , 568 – 571 , 2011 .
- Tao , W. , Zhu , X. , Yu , X. , Zeng , X. , Xiao , Q. , Zhang , X. , Ji , X. , Wang , X. , Shi , J. , Zhang , H. , Mei , L. , Black phosphorus nanosheets as a robust delivery platform for cancer theranostics . Adv. Mater. , 29 , 1 , 1 – 9 , 2017 .
- Xue , T. , Liang , W. , Li , Y. , Sun , Y. , Xiang , Y. , Zhang , Y. , Dai , Z. , Duo , Y. , Wu , L. , Qi , K. , Shivananju , B.N. , Zhang , L. , Cui , X. , Zhang , H. , Bao , Q. , Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor . Nat. Commun. , 10 , 1 , 28, 2019 .
- Guo , Z. , Chen , S. , Wang , Z. , Yang , Z. , Liu , F. , Xu , Y. , Wang , J. , Yi , Y. , Zhang , H. , Liao , L. , Chu , P.K. , Yu , X.F. , Metal-ion-modified black phosphorus with enhanced stability and transistor performance . Adv. Mater. , 29 , 42 , 1 – 8 , 2017 .
- Wang , S. , Weng , J. , Fu , X. , Lin , J. , Fan , W. , Lu , N. , Qu , J. , Chen , S. , Wang , T. , Huang , P. , Black phosphorus nanosheets for mild hyperthermia-enhanced chemotherapy and chemo-photothermal combination therapy . Nanotheranostics , 1 , 2 , 208 – 216 , 2017 .
- Zhu , Y. , Murali , S. , Cai , W. , Li , X. , Suk , J.W. , Potts , J.R. , Ruoff , R.S. , Graphene and graphene oxide: Synthesis, properties, and applications . Adv. Mater. , 22 , 35 , 3906 – 3924 , 2010 .
- Naguib , M. , Kurtoglu , M. , Presser , V. , Lu , J. , Niu , J. , Heon , M. , Hultman , L. , Gogotsi , Y. , Barsoum , M.W. , Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2 . Adv. Mater. , 23 , 37 , 4248 – 4253 , 2011 .
- Backes , C. , Higgins , T.M. , Kelly , A. , Boland , C. , Harvey , A. , Hanlon , D. , Coleman , J.N. , Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation . Chem. Mater. , 29 , 1 , 243 – 255 , 2016 .
-
Zeng , X.
,
Luo , M.
,
Liu , G.
,
Wang , X.
,
Tao , W.
,
Lin , Y.
,
Ji , X.
,
Nie , L.
,
Mei , L.
,
Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments
.
Adv. Sci.
,
5
,
10
,
1
–
8
,
2018
.
10.1002/advs.201800510 Google Scholar
- Hu , Y. , He , L. , Ma , W. , Chen , L. , Reduced graphene oxide-based bortezomib delivery system for photothermal chemotherapy with enhanced therapeutic efficacy . Polym. Int. , 67 , 12 , 1648 – 1654 , 2018 .
- Zhao , M. , Dai , Y. , Li , X. , Li , Y. , Zhang , Y. , Wu , H. , Wen , Z. , Dai , C. , Evaluation of long term biocompatibility and osteogenic differentiation of graphene nanosheet doped calcium phosphate-chitosan AZ91D composites . Mater. Sci. Eng. C Mater. Biol. Appl. , 90 , 365 – 378 , 2018 .
- Zhao , B. , Wu , F. , Bai , Y.-Y. , Fang , M. , Wang , L. , Preparation and biological properties of a graphene oxide/silk fibroin barrier membrane loaded with simvastatin . New Carbon Mater. , 33 , 5 , 460 – 468 , 2018 .
- Zhang , X. , Nie , J. , Yang , X. , Liu , Z. , Guo , W. , Qiu , J. , Wang , S. , Yu , X. , Guan , Y. , Liu , H. , Li , L. , Nanostructured molybdenum disulfide biointerface for adhesion and osteogenic differentiation of mesenchymal stem cells . Appl. Mater. Today , 10 , 164 – 172 , 2018 .
- Li , S. , Lin , D. , Hu , X. , Yang , X. , Directly probing the dissociation effects of grapheme oxide nanosheets on hIAPP fibrils . Nanotechnology , 29 , 49 , 2018 .
- Nedumpully-Govindan , P. , Gurzov , E.N. , Chen , P. , Pilkington , E.H. , Stanley , W.J. , Litwak , S.A. , Davis , T.P. , Ke , P.C. , Ding , F. , Graphene oxide inhibits hIAPP amyloid fibrillation and toxicity in insulin-producing NIT-1 cells . Phys. Chem. Chem. Phys. , 18 , 1 , 94 – 100 , 2016 .
- Lu , T. , Wang , C. , Zhu , Z. , Jiang , W. , Huo , M. , Li , F. , Polyethyleneimine functionalized graphene oxide against hIAPP amyloid aggregation . Chem. J. Chin. Univ. Chin. , 39 , 6 , 1274 – 1280 , 2018 .
- Gao , N. , Nie , J. , Wang , H. , Xing , C. , Mei , L. , Xiong , W. , Zeng , X. , Peng , Z. , A versatile platform based on black phosphorus nanosheets with enhanced stability for cancer synergistic therapy . J. Biomed. Nanotechnol. , 14 , 11 , 1883 – 1897 , 2018 .
- Soren , S. , Chakroborty , S. , Pradhan , L. , Chandra , P. , Sahu , J. , Parhi , P. , Hydrothermal synthesis of graphene modified sno nanocomposite for oxygen reduction reaction . Mater. Today Proc. , 57 , 1 , 72 – 76 , 2022 .
- Soren , S. , Chakroborty , S. , Pal , K. , Enhanced in tunning of photochemical and electrochemical responses of inorganic bi-metal oxide nanoparticles via rGO frameworks (MO/rGO): A comprehensive review . Elsevier Mater. Sci. Eng. B , 278 , 115632 , 2022 .
- Panda , P. , Pal , K. , Chakroborty , S. , Smart advancements of key challenges in graphene-assembly glucose sensor technologies: A mini review . Mater. Lett. , 303 , 130508 , 2021 .
- Chakroborty , S. , Bharadwaj , V. , Sahoo , S.K. , Sensing and biosensing with 2D nanosheets beyond grapheme , in: Sensing and Biosensing with Optically Active Nanomaterials , pp. 119 – 141 , Elsevier , Amsterdam , 2021 .
-
Chakroborty , S.
and
Panda , P.
,
Nanovaccinology against infectious diseases
, in:
Nanovaccinology Outbreak As Targeted Therapeutics
,
Wiley-VCH
,
Verlag GmbH
,
2022
.
10.1002/9781119858041.ch5 Google Scholar