Application of 2D Nanomaterials for Energy Storage
Tulasi Barik
Department of Chemistry, SRICT-ISR, UPL University of Sustainable Technology, Gujarat, India
Search for more papers by this authorSubhendu Chakroborty
Department of Basic Sciences, IITM, IES University, Bhopal, Madhya Pradesh, India
Search for more papers by this authorTulasi Barik
Department of Chemistry, SRICT-ISR, UPL University of Sustainable Technology, Gujarat, India
Search for more papers by this authorSubhendu Chakroborty
Department of Basic Sciences, IITM, IES University, Bhopal, Madhya Pradesh, India
Search for more papers by this authorSubhendu Chakroborty
Research Coordinator, IES University, Bhopal, India
Search for more papers by this authorKaushik Pal
University Centre for Research and Development (UCRD), Chandigarh University, India
Search for more papers by this authorSummary
2D nanomaterials have recently attracted considerable attention in energy storage technology. Supercapacitors and batteries are two recent advancements in energy storage technology that have significantly assisted mankind in meeting their energy demands. 2D nanomaterials must possess different features, including a large surface area, outstanding electronic conductivity, exceptional electrochemical properties, and superior thermal stabilities for batteries and supercapacitors to work well. This chapter provides a concise summary of the use of 2D nanomaterials, such as graphene analogs, MXenes, chalcogenides, and transition metal oxides/hydrides, in batteries and supercapacitors. The relationship between the composition of 2D nanomaterials and their electrochemical properties depends entirely on the storage performance of the supercapacitors and batteries.
References
- Peng , L. , Zhu , Y. , Chen , D. , Ruoff , R.S. , Yu , G. , Two-dimensional materials for beyond-lithium-ion batteries . Adv. Energy Mater. , 6 , 1600025 , 2016 .
- Pomerantseva , E. and Gogotsi , Y. , Two-dimensional heterostructures for energy storage . Nat. Energy , 2 , 17089 , 2017 .
- Chowdhury , C. and Datta , A. , Exotic physics and chemistry of two-dimensional phosphorus: Phosphorene . J. Phys. Chem. Lett. , 8 , 2909 – 2916 , 2017 .
- Kim , J.H. , Jeong , J.H. , Kim , N. , Joshi , R. , Lee , G.-H. , Mechanical properties of two-dimensional materials and their applications . J. Phys. D Appl. Phys. , 52 , 083001 , 2019 .
- Tian , H. , Seh , Z.W. , Yan , K. , Fu , Z. , Tang , P. , Lu , Y. , Zhang , R. , Legut , D. , Cui , Y. , Zhang , Q. , Theoretical investigation of 2D layered materials as protective films for lithium and sodium metal anodes . Adv. Energy Mater. , 7 , 1602528 , 2017 .
- Geim , A.K. and Grigorieva , I.V. , Van der Waals Heterostructures . Nature , 499 , 419 – 425 , 2013 .
- Anasori , B. , Lukatskaya , M.R. , Gogotsi , Y. , 2D metal carbides and nitrides (mxenes) for energy storage . Nat. Rev. Mater. , 2 , 16098 , 2017 .
- Shi , L. and Zhao , T.S. , Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries . J. Mater. Chem. A , 5 , 3735 – 3758 , 2017 .
- Zeng , Z. , Yin , Z. , Huang , X. , Li , H. , He , Q. , Lu , G. , Boey , F. , Zhang , H. , Single-layer semiconducting nanosheets: High-yield preparation and device fabrication . Angew. Chem. Int. Ed. , 50 , 11093 – 11097 , 2011 .
- Wang , X. , Weng , Q. , Yang , Y. , Bando , Y. , Golberg , D. , Hybrid two-dimensional materials in rechargeable battery applications and their microscopic mechanisms . Chem. Soc. Rev. , 45 , 4042 – 4073 , 2016 .
- Park , M. , Zhang , X. , Chung , M. , Less , G.B. , Sastry , A.M. , A review of conduction phenomena in Li-ion batteries . J. Power Sources , 195 , 7904 – 7929 , 2010 .
- Casimir , A. , Zhang , H. , Ogoke , O. , Amine , J.C. , Lu , J. , Wu , G. , Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation . Nano Energy , 27 , 359 – 376 , 2016 .
- Zhou , G. , Wang , D.W. , Li , F. , Zhang , L. , Li , N. , Wu , Z.S. , Wen , L. , Lu , G.Q. , Cheng , H.M. , Graphene-wrapped Fe 3 O 4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries . Chem. Mater. , 22 , 5306 – 5313 , 2010 .
- Li , S. , Wang , B. , Li , B. , Liu , J. , Yu , M. , Wu , X. , Self-assembly of 2D sandwich-structured MnFe 2 O 4 /graphene composites for high-performance lithium storage . Mater. Res. Bull. , 61 , 369 – 374 , 2015 .
- Wang , B. , Li , X. , Zhang , X. , Luo , B. , Jin , M. , Liang , M. , Dayeh , S.A. , Picraux , S.T. , Zhi , L. , Adaptable silicon-carbon nanocables sandwiched between reduced graphene oxide sheets as lithium ion battery anodes . ACS Nano , 7 , 1437 – 1445 , 2013 .
- Agyeman , D.A. , Song , K. , Lee , G.H. , Park , M. , Kang , Y.M. , Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery . Adv. Energy Mater. , 6 , 1600904 , 2016 .
- Lee , J.K. , Smith , K.B. , Hayner , C.M. , Kung , H.H. , Silicon nanoparticles-graphene paper composites for Li ion battery anodes . Chem. Commun. , 46 , 2025 – 2027 , 2010 .
- Zhou , H.-S. , Kudo , T. , Yoo , E.J. , Hosono , E. , Honma , I. , Kim , J. , Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries . Nano Lett. , 8 , 2277 – 2282 , 2008 .
- Wang , G. , Shen , X. , Yao , J. , Park , J. , Graphene nanosheets for enhanced lithium storage in lithium ion batteries . Carbon , 47 , 2049 – 2053 , 2009 .
- Bobnar , J. , Lozinšek , M. , Kapun , G. , Njel , C. , Dedryvère , R. , Genorio , B. , Dominko , R. , Fluorinated reduced graphene oxide as a protective layer on the metallic lithium for application in the high energy batteries . Sci. Rep. , 8 , 1 – 10 , 2018 .
- Kim , S. , Kim , S.K. , Sun , P. , Oh , N. , Braun , P.V. , Reduced graphene oxide/lii composite lithium ion battery cathodes . Nano Lett. , 17 , 6893 – 6899 , 2017 .
- Kim , S.D. , Lee , J.G. , Kim , T.G. , Rana , K. , Jeong , J.Y. , Park , J.H. , Yoon , S.S. , Ahn , J.H. , Additive-free electrode fabrication with reduced graphene oxide using supersonic kinetic spray for flexible lithium-ion batteries . Carbon , 139 , 195 – 204 , 2018 .
- Fu , C. , Zhao , G. , Zhang , H. , Li , S. , Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries . Int. J. Electrochem. Sci. , 8 , 6269 – 6280 , 2013 .
- Chen , Y. , Fu , K. , Zhu , S. , Luo , W. , Wang , Y. , Li , Y. , Hitz , E. , Yao , Y. , Dai , J. , Wan , J. , Danner , V.A. , Li , T. , Hu , L. , Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors . Nano Lett. , 16 , 3616 – 3623 , 2016 .
- Foroozan , T. , Soto , F.A. , Yurkiv , V. , Sharifi-Asl , S. , Deivanayagam , R. , Huang , Z. , Rojaee , R. , Mashayek , F. , Balbuena , P.B. , Shahbazian-Yassar , R. , Synergistic effect of graphene oxide for impeding the dendritic plating of Li . Adv. Funct. Mater. , 28 , 1705917 , 2018 .
- Fu , K. , Wang , Y. , Yan , C. , Yao , Y. , Chen , Y. , Dai , J. , Lacey , S. , Wang , Y. , Wan , J. , Li , T. , Wang , Z. , Xu , Y. , Hu , L. , Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries . Adv. Mater. , 28 , 2587 – 2594 , 2016 .
- Mukherjee , S. , Ren , Z. , Singh , G. , Beyond graphene anode materials for emerging metal ion batteries and supercapacitors . Nanomicro Lett. , 10 , 1 – 27 , 2018 .
- Bolotin , K. , II , Sikes , K.J. , Jiang , Z. , Klima , M. , Fudenberg , G. , Hone , J. , Kim , P. , Stormer , H.L. , Ultrahigh electron mobility in suspended graphene . Solid State Commun. , 146 , 351 – 355 , 2008 .
- Wang , C. , Li , D. , Too , C.O. , Wallace , G.G. , Electrochemical properties of graphene paper electrodes used in lithium batteries . Chem. Mater. , 21 , 2604 – 2606 , 2009 .
- Fan , Y. , Yang , Z. , Hua , W. , Liu , D. , Tao , T. , Rahman , M.M. , Lei , W. , Huang , S. , Chen , Y. , Functionalized boron nitride nanosheets/graphene interlayer for fast and long-life lithium–sulfur batteries . Adv. Energy Mater. , 7 , 1602380 , 2017 .
- Lei , W. , Qin , S. , Liu , D. , Portehault , D. , Liu , Z. , Chen , Y. , Large scale boron carbon nitride nanosheets with enhanced lithium storage capabilities . Chem. Commun. , 49 , 352 – 354 , 2013 .
- Mortazavi , B. , Dianat , A. , Cuniberti , G. , Rabczuk , T. , Application of silicene, germanene and stanene for na or Li ion storage: A theoretical investigation . Electrochim. Acta , 213 , 865 – 870 , 2016 .
- Li , L. , Chen , L. , Mukherjee , S. , Gao , J. , Sun , H. , Liu , Z. , Ma , X. , Gupta , T. , Singh , C.V. , Ren , W. , Cheng , H.-M. , Koratkar , N. , Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries . Adv. Mater. , 29 , 1602734 , 2017 .
- Makaremi , M. , Mortazavi , B. , Singh , C.V. , 2D hydrogenated graphene-like borophene as a high capacity anode material for improved Li/Na ion batteries: A first principles study . Mater. Today Energy , 8 , 22 – 28 , 2018 .
- Mortazavi , B. et al ., Borophene as an anode material for Ca, Mg, Na or Li ion storage: A first-principle study . J. Power sources , 329 , 456 – 461 , 2016 .
- Li , W. et al ., Ultrafast and directional diffusion of lithium in phosphorene for highperformance lithium-ion battery . Nano Lett. , 15 , 3 , 1691 – 1697 , 2015 .
- Guo , G.-C. et al ., Pristine and defect-containing phosphorene as promising anode materials for rechargeable Li batteries . J. Mater. Chem. A , 3 , 21 , 11246 – 11252 , 2015 .
- Chen , L. , Zhou , G. , Liu , Z. , Ma , X. , Chen , J. , Zhang , Z. , Ma , X. , Li , F. , Cheng , H.M. , Ren , W. , Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery . Adv. Mater. , 28 , 510 – 517 , 2016 .
- Zhuang , J. , Xu , X. , Peleckis , G. , Hao , W. , Dou , S.X. , Du , Y. , Silicene: A promising anode for lithium-ion batteries . Adv. Mater. , 29 , 1606716 , 2017 .
- Wang , X. , Tang , C. , Zhou , X. , Zhu , W. , Cheng , C. , Theoretical investigating of graphene/antimonene heterostructure as a promising high cycle capability anodes for fast-charging lithium ion batteries . Appl. Surf. Sci. , 491 , 451 – 459 , 2019 .
- Leong , C.C. , Pan , H. , Ho , S.K. , Two-dimensional transition-metal oxide monolayers as cathode materials for Li and Na ion batteries . Phys. Chem. Chem. Phys. , 18 , 7527 – 7534 , 2016 .
- Deng , S. , Wang , L. , Hou , T. , Li , Y. , Two-dimensional MnO2 as a better cathode material for lithium ion batteries . J. Phys. Chem. C , 119 , 28783 – 28788 , 2015 .
- Tan , H.T. , Sun , W. , Wang , L. , Yan , Q. , 2D transition metal oxides/hydroxides for energy-storage applications . ChemNanoMat , 2 , 562 – 577 , 2016 .
- Shen , L. , Dong , Q. , Zhu , G. , Dai , Z. , Zhang , Y. , Wang , W. , Dong , X. , Versatile MnO 2 /CNT Putty-Like Composites for High-Rate Lithium-ion Batteries . Adv. Mater. Interfaces , 5 , 1800362 , 2018 .
- Jia , R. , Yue , J.L. , Xia , Q.Y. et al ., Carbon shelled porous SnO 2-δ nanosheet arrays as advanced anodes for lithium-ion batteries . Energy Storage Mater. , 13 , 303 – 311 , 2018 .
- Rui , X. , Lu , Z. , Yu , H. , Yang , D. , Hng , H.H. , Lim , T.M. , Yan , Q. , Ultrathin V 2 O 5 nanosheet cathodes: Realizing ultrafast reversible lithium storage . Nanoscale , 5 , 556 – 560 , 2013 .
- Zhu , Y. and Cao , C. , Remarkable electrochemical lithium storage behaviour of two-dimensional ultrathin α-Ni(OH) 2 nanosheets . RSC Adv. , 5 , 83757 – 83763 , 2015 .
- Mei , J. , Liao , T. , Ayoko , G.A. , Sun , Z. , Two-dimensional bismuth oxide heterostructured nanosheets for lithium-and sodium-ion storages . ACS Appl. Mater. Interfaces , 11 , 28205 – 28212 , 2019 .
- Ma , N. , Jiang , X.Y. , Zhang , L. , Wang , X.S. , Cao , Y.L. , Zhang , X.Z. , Novel 2D layered molybdenum ditelluride encapsulated in few-layer graphene as high-performance anode for lithium-ion batteries . Small , 14 , 1703680 , 2018 .
- Guo , S. , Yu , H. , Liu , P. , Liu , X. , Li , D. , Chen , M. , Ishida , M. , Zhou , H. , Surface coating of lithium-manganese-rich layered oxides with delaminated mno nanosheets as cathode materials for Li-ion batteries . J. Mater. Chem. A , 2 , 2 4422 – 4428 , 2014 .
- Han , X. , Gong , Y. , Fu , K. , He , X. , Hitz , G.T. , Dai , J. , Pearse , A. , Liu , B. , Wang , H. , Rubloff , G. , Mo , Y. , Thangadurai , V. , Wachsman , E.D. , Hu , L. , Negating interfacial impedance in garnet-based solid-state Li metal batteries . Nat. Mater. , 16 , 572 – 579 , 2017 .
- Li , Y. , Yao , J. , Uchaker , E. , Yang , J. , Huang , Y. , Zhang , M. , Cao , G. , Leaf-like V 2 O 5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries . Adv. Energy Mater. , 3 , 1171 – 1175 , 2013 .
- Patil , S.B. , Kim , H.J. , Lim , H.K. , Oh , S.M. , Kim , J. , Shin , J. , Kim , H. , Choi , J.W. , Hwang , S.J. , Exfoliated 2D lepidocrocite titanium oxide nanosheets for high sulfur content cathodes with highly stable Li-S battery performance . ACS Energy Lett. , 3 , 412 – 419 , 2018 .
- Wang , L. and Sasaki , T. , Titanium oxide nanosheets: Graphene analogues with versatile functionalities . Chem. Rev. , 114 , 9455 – 9486 , 2014 .
- Chen , D. , Peng , L. , Yuan , Y. , Zhu , Y. , Fang , Z. , Yan , C. , Chen , G. , Shahbazian-Yassar , R. , Lu , J. , Amine , K. , Yu , G. , Two-dimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing . Nano Lett. , 17 , 3907 – 3913 , 2017 .
- Sun , H. , Hanlon , D. , Dinh , D.A. , Boland , J.B. , Del Rio Castillo , A.E. , Di Giovanni , C. , Ansaldo , A. , Pellegrini , V. , Coleman , J.N. , Bonaccorso , F. , Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries . 2D Mater ., 5 , 015024 , 1 – 10 , 2018 .
- Cen , Y. , Li , S. , Zhou , Y. , Cai , X. , Wang , X. , Xiang , Q. , Hu , B. , Yu , D. , Liu , Y. , Chen , C. , Ultrathin VO 2 (B) nanosheets as cathode material for high-performance hybrid magnesium-lithium ion batteries . J. Electrochem. Soc. , 166 , A1660 – A1667 , 2019 .
- Azam , A. , Kim , J. , Park , J. , Novak , T.G. , Tiwari , A.P. , Song , S.H. , Kim , B. , Jeon , S. , Two-dimensional WO 3 nanosheets chemically converted from layered WS 2 for high-performance electrochromic devices . Nano Lett. , 18 , 5646 – 5651 , 2018 .
- Zou , Y. and Wang , Y. , NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries . Nanoscale , 3 , 2615 – 2620 , 2011 .
- Chhowalla , M. , Shin , H.S. , Eda , G. , Li , L.-J. , Loh , K.P. , Zhang , H. , The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 263 – 275 , 2013 .
- Yang , E. , Ji , H. , Jung , Y. , Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes . J. Phys. Chem. C , 119 , 26374 – 26380 , 2015 .
- Li , Y. , Enhanced Li adsorption and diffusion on MoS 2 zigzag nanoribbons by edgeneffects: A computational study . J. Phys. Chem. Lett. , 3 , 16 , 2221 – 2227 , 2012 .
- Jing , Y. , Metallic VS 2 monolayer: A promising 2D anode material for lithium ion batteries . J. Phys. Chem. C , 117 , 48 , 25409 – 25413 , 2013 .
- Im , H.S. , Lim , Y.R. , Cho , Y.J. , Park , J. , Cha , E.H. , Kang , H.S. , Germanium and tin selenide nanocrystals for high-capacity lithium ion batteries: Comparative phase conversion of germanium and tin . J. Phys. Chem. C , 118 , 21884 – 21888 , 2014 .
- Sen , U.K. and Mitra , S. , High-rate and high-energy-density lithium-ion battery anode containing 2D MoS 2 nanowall and cellulose binder . ACS Appl. Mater. Interfaces , 5 , 1240 – 1247 , 2013 .
- Chen , H.W. , Liu , R.M. , Wu , Y. et al ., Interface coupling 2D/2D SnSe 2 / graphene heterostructure as long-cycle anode for all-climate lithium-ion battery . J. Chem. Eng. , 407 , 126973 , 2021 .
- Anasori , B. , Lukatskaya , M.R. , Gogotsi , Y. , 2D metal carbides and nitrides (MXenes) for energy storage . Nat. Rev. Mater. , 2 , 16098 , 2017 .
- Eames , C. and Islam , M.S. , Ion intercalation into two-dimensional transition-metal carbides: Global screening for new high-capacity battery materials . J. Am. Chem. Soc. , 136 , 16270 – 16276 , 2014 .
- Ahmed , B. , Anjum , D.H. , Hedhili , M.N. , Gogotsi , Y. , Alshareef , H.N. , H 2 O 2 assisted room temperature oxidation of Ti 2 C MXene for Li-ion battery anodes . Nanoscale , 8 , 7580 – 7587 , 2016 .
- Mashtalir , O. , Lukatskaya , M.R. , Zhao , M.Q. , Barsoum , M.W. , Gogotsi , Y. , Amine-assisted delamination of Nb 2 C MXene for Li-ion energy storage devices . Adv. Mater. , 27 , 3501 – 3506 , 2015 .
- Yabuuchi , N. , Kubota , K. , Dahbi , M. , Komaba , S. , Research development on sodium-ion batteries . Chem. Rev. , 114 , 11636 – 11682 , 2014 .
- Wang , H. , Hamanaka , S. , Yokoyama , T. , Yoshikawa , H. , Awaga , K. , In-situ XAFS studies of mn12 molecular-cluster batteries: Super-reduced Mn12 clusters in solid-state electrochemistry . Chem. Asian J. , 6 , 1074 – 1079 , 2011 .
- Gu , M. , Belharouak , I. , Zheng , J.M. , Wu , H.M. , Xiao , J. , Genc , A. , Amine , K. , Thevuthasan , S. , Baer , D.R. , Zhang , J.G. , Browning , N.D. , Liu , J. , Wang , C.M. , Formation of the spinel phase in the layered composite cathode used in Li-ion batteries . ACS Nano , 7 , 760 – 767 , 2013 .
- Pramudita , J.C. , Pontiroli , D. , Magnani , G. , Gaboardi , M. , Ricco , M. , Milanese , C. , Brand , H.E.A. , Sharma , N. , Graphene and selected derivatives as negative electrodes in sodium- and lithium-ion batteries . Chemelectrochem , 2 , 600 – 610 , 2015 .
- Grosjean , C. , Miranda , P.H. , Perrin , M. , Poggi , P. , Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry . Renew. Sustain. Energy Rev. , 16 , 1735 – 1744 , 2012 .
- Hasa , I. , Mariyappan , S. , Saurel , D. , Challenges of today for Na-based batteries of the future: From materials to cell metrics . J. Power Sources , 482 , 228872 , 2021 .
- Kim , Y.J. , Ha , K.H. , Oh , S.M. , High-capacity anode materials for sodium-ion batteries . Chemistry , 20 , 11980 – 11992 , 2014 .
- Shi , L. and Zhao , T. , Recent advances in inorganic 2D materials and their applications in lithium and sodium batteries . J. Mater. Chem. , 5 , 3735 – 3758 , 2017 .
- Mao , J. , Zhou , T. , Zheng , Y. , Gao , H. , H.k. Liu , Z. , Guo , Two-dimensional nanostructures for sodium-ion battery anodes . J. Mater. Chem. , 6 , 3284 – 3303 , 2018 .
- Wu , Y. and Yu , Y. , 2D material as anode for sodium ion batteries: Recent progress and perspectives . Energy Stor. Mater. , 16 , 323 – 343 , 2019 .
- Liu , J. , Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT . RSC Adv. , 8 , 32 , 17773 – 17785 , 2018 .
- Sun , J. , Lee , H.W. , Pasta , M. , Yuan , H.T. , Zheng , G.Y. , Sun , Y.M. , Li , Y.Z. , Cui , Y. , A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries . Nat. Nanotechnol. , 10 , 980 , 2015 .
- Liu , Y.H. , Zhang , A.Y. , Shen , C.F. , Liu , Q.Z. , Cao , X. , Ma , Y.Q. , Chen , L. , Lau , C. , Chen , T.C. , Wei , F. , Zhou , C.W. , Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries . ACS Nano , 11 , 5530 , 2017 .
- Xu , X.D. , Zeng , H.L. , Han , D.Z. , Nitrogen and sulfur Co-doped graphene nanosheets to improve anode materials for sodium-ion batteries . ACS Appl. Mater. Interfaces , 10 , 37172 – 37180 , 2018 .
- Liu , Y.H. , Liu , Q.Z. , Zhang , A.Y. , Room-temperature pressure synthesis of layered black phosphorus-graphene composite for sodium-ion battery anodes . ACS Nano , 12 , 8323 – 8329 , 2018 .
- Wang , Y.X. , Chou , S.L. , Liu , H.K. , Dou , S.X. , Reduced graphene oxide with superior cycling stability and rate capability for sodium storage . Carbon , 57 , 202 , 2013 .
- Yang , J.Q. , Zhou , X.L. , Wu , D.H. , Zhao , X.D. , Zhou , Z. , S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries . Adv. Mater. , 29 , 1604108 , 2017 .
- Tang , K. , Fu , L. , White , R.J. , Yu , L. , Titirici , M.M. , Antonietti , M. , Maier , J. , Hollow carbon nanospheres with superior rate capability for sodium-based batteries . Adv. Energy Mater. , 2 , 873 , 2012 .
- Wenzel , S. , Hara , T. , Janek , J. , Adelhelm , P. , Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies . Energy Environ. Sci. , 4 , 3342 , 2011 .
- Guan , Z. , Liu , H. , Xu , B. , Hao , X. , Wang , Z.X. , Chen , L.Q. , Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material . J. Mater. Chem. A , 3 , 7849 , 2015 .
- Liu , X.W. , Gao , M. , Yang , H. , Zhong , X.W. , Yu , Y. , 2D sandwich-like nanosheets of ultrafine Sb nanoparticles anchored to graphene for high-efficiency sodium storage . Nano Res. , 10 , 4360 , 2017 .
- Nayak , P.K. , Yang , L. , Brehm , W. , Adelhelm , P. , From lithium-ion to sodiumion batteries: Advantages, challenges, and surprises . Angew. Chem. Int. Ed. , 57 , 1 , 102 , 2018 . https://doi.org/10.1002/anie.201703772 .
- Mao , J.F. , Zhou , T.F. , Zheng , Y. , Gao , H. , Liu , H.K. , Guo , Z.P. , Two-dimensional nanostructures for sodium-ion battery anodes . J. Mater. Chem. A , 6 , 8 , 3284 – 3303 , 2018 . https://doi.org/10.1039/c7ta10500b .
- Wang , P.F. , You , Y. , Yin , Y.X. , Guo , Y.G. , Layered oxide cathodes for sodiumion batteries: Phase transition, air stability, and performance . Adv. Energy Mater. , 8 , 8 , 1701912 , 2018 . https://doi.org/10.1002/aenm.201701912 .
- Chao , D. , Zhu , C. , Yang , P. , Xia , X. , Liu , J. , Array of nanosheets render ultrafast and high-capacity na-ion storage by tunable pseudocapacitance . Nat. Commun. , 7 , 12122 , 2016 . https://doi.org/10.1038/ncomms12122 .
- Guo , Q. , Ma , Y. , Chen , T. , Xia , Q. , Yang , M. , Xia , H. , Yu , Y. , Cobalt sulfide quantum dot embedded N/S-doped carbon nanosheets with superior reversibility and rate capability for sodium-ion batteries . ACS Nano , 11 , 12 , 12658 – 12667 , 2017 . https://doi.org/10.1021/acsnano.7b07132 .
- Xu , C. , Xu , Y. , Tang , C. , Wei , Q. , Meng , J. , Carbon-coated hierarchical NaTi 2 (PO 4 ) 3 mesoporous microflowers with superior sodium storage performance . Nano Energy , 28 , 224 – 231 , 2016 . https://doi.org/10.1016/j.nanoen.2016.08.026 .
- Zhou , J. , Wang , L. , Yang , M. , Wu , J. , Chen , F. , Hierarchical VS 2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions . Adv. Mater. , 29 , 35 , 170206 , 2017 . https://doi.org/10.1002/adma.201702061 .
- Zhao , X. , Cai , W. , Yang , Y. , Song , X. , Neale , Z. , Wang , H.-E. , Sui , J. , Cao , G. , MoSe 2 nanosheets perpendicularly grown on grapheme with Mo–C bonding for sodium-ion capacitors . Nano Energy , 47 , 224 – 234 , 2018 . https://doi.org/10.1016/j.nanoen.2018.03.002 .
- Xie , X.Q. , Makaryan , T. , Zhao , M.Q. , Van Aken , K.L. , Gogotsi , Y. , Wang , G.X. , MoS 2 nanosheets vertically aligned on carbon paper: A freestanding electrode for highly reversible sodium-ion batteries . Adv. Energy Mater. , 6, 5 , 1502161 , 2016 . https://doi.org/10.1002/aenm.201502161 .
- Yu , D. , Pang , Q. , Gao , Y. , Wei , Y. , Wang , C. , Chen , G. , Du , F. , Hierarchical flower-like VS 2 nanosheets-a high rate-capacity and stable anode material for sodium-ion battery . Energy Stor. Mater ., 11 , 1 – 7 , 2018 . https://doi.org/10.1016/j.ensm.2017.09.002 .
- Xie , D. , Xia , X.H. , Zhong , Y. , Wang , Y.D. , Wang , D.H. , Wang , X.L. , Tu , J.P. , Exploring advanced sandwiched arrays by vertical graphene and N-doped carbon for enhanced sodium storage . Adv. Energy Mater. , 7 , 3 , 1601804 , 2017 . https://doi.org/10.1002/aenm.201601804 .
- He , P. , Fang , Y. , Yu , X.Y. , Lou , X.W.D. , Hierarchical nanotubes constructed by carbon-coated ultrathin sns nanosheets for fast capacitive sodium storage . Angew. Chem. Int. Ed. , 56 , 40 , 12202 – 12205 , 2017 . https://doi.org/10.1002/anie.201706652 .
- Sun , D. , Ye , D. , Liu , P. , Tang , Y. , Guo , J. , Wang , L. , Wang , H. , MoS 2 /graphene nanosheets from commercial bulky MoS 2 and graphite as anode materials for high rate sodium-ion batteries . Adv. Energy Mater. , 8 , 10 , 1702383 , 2018 . https://doi.org/10.1002/aenm.201702383 .
- Geng , X.M. , Jiao , Y.C. , Han , Y. , Mukhopadhyay , A. , Yang , L. , Zhu , H.L. , Freestanding metallic 1T MoS2 with dual ion diffusion paths as high rate anode for sodium-ion batteries . Adv. Funct. Mater. , 27 , 40 , 1702998 , 2017 . https://doi.org/10.1002/adfm.201702998 .
- Liu , W.L. , Ju , S.L. , Yu , X.B. , Phosphorus-amine-based synthesis of nanoscale red phosphorus for application to sodium-ion batteries . ACS Nano , 14 , 974 – 984 , 2020 .
- Wang , H.Q. , An , D. , Li , N. et al ., PbTe nanodots confined on ternary B2O3/ BC2O/C nanosheets as electrode for efficient sodium storage . J. Power Sources , 461 , 228110 , 2020 .
- Xie , X.Q. , Zhao , M.Q. , Anasori , B.K. , Maleski , K. , Ren , C.E. , Li , J.W. , Byles , B.W. , Pomerantseva , E. , Wang , G.X. , Gogotsi , Y. , Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices . Nano Energy , 26 , 513 , 2016 .
- Zhang , C. , Zhao , H. , Lei , Y. , Recent research progress of anode materials for potassium-ion batteries . Energy Environ. Mater. , 3 , 105 , 2020 .
- Sha , M. , Liu , L. , Zhao , H. , Lei , Y. , Review on recent advances of cathode materials for potassium-ion batteries . Energy Environ. Mater. , 3 , 56 , 2020 .
- Hwang , J.-Y. , Myung , S.-T. , Sun , Y.-K. , Recent progress in rechargeable potassium batteries . Adv. Funct. Mater. , 28 , 1802938 , 2018 .
- Xue , L. , Li , Y. , Gao , H. , Zhou , W. , Lü , X. , Kaveevivitchai , W. , Manthiram , A. , Goodenough , J.B. , Low-cost high-energy potassium cathode . J. Am. Chem. Soc. , 139 , 2164 , 2017 .
- Pramudita , J.C. , Sehrawat , D. , Goonetilleke , D. , Sharma , N. , An initial review of the status of electrode materials for potassium-ion batteries . Adv. Energy Mater. , 7 , 1602911 , 2017 .
- Han , J. , Li , G.-N. , Liu , F. , Wang , M. , Zhang , Y. , Hu , L. , Dai , C. , Xu , M. , Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries . Chem. Commun. , 53 , 1805 , 2017 .
-
Li , L.
,
Liu , L.
,
Hu , Z.
,
Lu , Y.
,
Liu , Q.
,
Jin , S.
,
Zhang , Q.
,
Zhao , S.
,
Chou , S.-L.
,
Understanding high-rate K
+
-solvent co-intercalation in natural graphite for potassium-ion batteries
.
Angew. Chem.
,
132
,
13017
,
2020
.
10.1002/ange.202001966 Google Scholar
- Liu , Y. , Gao , C. , Dai , L. , Deng , Q. , Wang , L. , Luo , J. , Liu , S. , Hu , N. , The features and progress of electrolyte for potassium ion batteries . Small , 16 , 2004096 , 2020 .
- Zhou , M. , Bai , P. , Ji , X. , Yang , J. , Wang , C. , Xu , Y. , Electrolytes and interphases in potassium ion batteries . Adv. Mater. , 33 , 2003741 , 2021 .
- Zhang , C. , Xu , Y. , Zhou , M. , Liang , L. , Dong , H. , Wu , M. , Yang , Y. , Lei , Y. , Potassium prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries . Adv. Funct. Mater. , 27 , 1604307 , 2017 .
-
Zhang , R.
,
Huang , J.
,
Deng , W.
,
Bao , J.
,
Pan , Y.
,
Huang , S.
,
Sun , C.-F.
,
Safe, low-cost, fast-kinetics and low-strain inorganic-open-framework anode for potassium-ion batteries
.
Angew. Chem.
,
131
,
16626
,
2019
.
10.1002/ange.201909202 Google Scholar
- Zhang , L. , Wang , W.A. , Ma , X. , Lu , S. , Xiang , Y. , Crystal, interfacial and morphological control of electrode materials for nonaqueous potassium-ion batteries . Nano Today , 37 , 101074 , 2021 .
- Wang , J. , Liu , Z. , Zhou , J. , Han , K. , Lu , B. , Insights into metal/metalloid-based alloying anodes for potassium ion batteries . ACS Mater. Lett. , 3 , 1572 , 2021 .
- Wu , Z. , Liang , G. , Pang , W.K. , Zhou , T. , Cheng , Z. , Zhang , W. , Liu , Y. , Johannessen , B. , Guo , Z. , Coupling topological insulator SnSb 2 Te 4 nanodots with highly doped graphene for high-rate energy storage . Adv. Mater. , 32 , 1905632 , 2020 .
- Xia , Z. , Chen , X. , Ci , H. , Fan , Z. , Yi , Y. , Yin , W. , Wei , N. , Cai , J. , Zhang , Y. , Sun , J. , Designing N-doped graphene/ReSe 2 /Ti 3 C 2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries . J. Energy Chem. , 53 , 155 , 2021 .
- Li , J. , Rui , B. , Wei , W. , Nie , P. , Chang , L. , Le , Z. , Liu , M. , Wang , H. , Wang , L. , Zhang , X. , Nanosheets assembled layered MoS 2 /MXene as high performance anode materials for potassium ion batteries . J. Power Sources , 449 , 227481 , 2020 .
- Jiang , Q. , Hu , S. , Wang , L. , Huang , Z. , Yang , H. , Han , X. , Li , Y. , Lv , C. , He , Y. , Zhou , T. , Hu , J. , Boosting potassium storage in nanosheet assembled MoSe 2 hollow sphere through surface decoration of MoO 2 nanoparticles . Appl. Surf. Sci. , 505 , 144573 , 2020 .
- Han , Y. , Li , W. , Zhou , K. , Wu , X. , Wu , H. , Wu , X. , Shi , Q. , Diao , G. , Chen , M. , Bimetallic sulfide Co 9 S 8 /N-C@MoS 2 dodecahedral heterogeneous nanocages for boosted Li/K storage . ChemNanoMat , 6 , 132 , 2020 .
- Qin , Y. , Zhang , Y. , Wang , J. , Zhang , J. , Zhai , Y. , Wang , H. , Li , D. , Heterogeneous structured Bi 2 S 3 /MoS 2 @NC nanoclusters: Exploring the superior rate performance in sodium/potassium ion batteries . ACS Appl. Mater. Interfaces , 12 , 42902 , 2020 .
- Cao , L. , Luo , B. , Xu , B. , Zhang , J. , Wang , C. , Xiao , Z. , Li , S. , Li , Y. , Zhang , B. , Zou , G. , Hou , H. , Ou , X. , Ji , X. , Stabilizing intermediate phases via efficient entrapment effects of layered VS 4 /SnS@C heterostructure for ultralong lifespan potassium-ion batteries . Adv. Funct. Mater. , 31 , 2103802 , 2021 .
- Yang , C. , Feng , J. , Lv , F. , Zhou , J. , Lin , C. et al ., Metallic graphene-like VSe 2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism . Adv. Mater. , 30 , 27 , 1800036 , 2018 . https://doi.org/10.1002/adma.201800036 .
- Xie , K. , Yuan , K. , Li , X. , Lu , W. , Shen , C. , Liang , C. , Vajra , R. , Ajayan , P. , Wei , B. , Superior potassium ion storage via vertical MoS 2 “nano-rose” with expanded interlayers on grapheme . Small , 13, 42 , 1701471 , 2017 . https://doi.org/10.1002/smll.201701471 .
- Lian , P. , Dong , Y. , Wu , Z.-S. , Zheng , S. , Wang , X. et al ., Alkalized Ti 3 C 2 mxene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries . Nano Energy , 40 , 1 – 8 , 2017 . https://doi.org/10.1016/j.nanoen.2017.08.002 .
- Jian , Z. , Luo , W. , Ji , X. , Carbon electrodes for K-ion batteries . J. Am. Chem. Soc. , 137 , 36 , 11566 – 11569 , 2015 . https://doi.org/10.1021/jacs.5b06809 .
- Naguib , M. , Adams , R.A. , Zhao , Y. , Zemlyanov , D. , Varma , A. , Nanda , J. , Pol , V.G. , Electrochemical performance of mxenes as K-ion battery anodes . Chem. Commun. , 53 , 51 , 6883 – 6886 , 2017 . https://doi.org/10.1039/c7cc02026k .
- Ma , G.Y. , Huang , K.S. , Ma , J.S. et al ., Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries . J. Mater. Chem. A , 5 , 7854 – 7861 , 2017 .
- Zhang , H. , Cheng , Y. , Zhang , Q. , Fast and durable potassium storage enabled by constructing stress-dispersed Co 3 Se 4 nanocrystallites anchored on graphene sheets . ACS Nano , 15 , 10107 – 10118 , 2021 .
- Jia , B. , Yu , Q. , Zhao , Y. , Qin , M. , Wang , W. , Liu , Z. , Lao , C. , Liu , Y. , Wu , H. , Zhang , Z. , Qu , X. , Bamboo-like hollow tubes with MoS 2 /N-doped-C interfaces boost potassium-ion storage . Adv. Funct. Mater. , 28 , 1803409 , 2018 .
- Li , J. , Rui , B. , Wei , W. , Nie , P. , Chang , L. , Le , Z. , Liu , M. , Wang , H. , Wang , L. , Zhang , X. , Nanosheets assembled layered MoS 2 /MXene as high performance anode materials for potassium ion batteries . J. Power Sources , 449 , 227481 , 2020 .
- Huang , H. , Cui , J. , Liu , G. , Bi , R. , Zhang , L. , Carbon-coated MoSe 2 /MXene hybrid nanosheets for superior potassium storage . ACS Nano , 13 , 3448 , 2019 .
- Cao , Y. , Chen , H. , Shen , Y. , Chen , M. , Zhang , Y. , Zhang , L. , Wang , Q. , Guo , S. , Yang , H. , SnS 2 nanosheets anchored on nitrogen and sulfur co-doped mxene sheets for high-performance potassium-ion batteries . ACS Appl. Mater. Interfaces , 13 , 17668 , 2021 .
- Liu , H. , He , Y. , Zhang , H. , Wang , S. , Cao , K. , Jiang , Y. , Liu , X. , Jing , Q. , Heterostructure engineering of ultrathin SnS 2 /Ti 3 C 2 T x nanosheets for high-performance potassium-ion batteries . J. Colloid Interface Sci. , 606 , 167 , 2022 .
- Zhao , R. , Di , H. , Hui , X. , Zhao , D. , Wang , R. , Wang , C. , Yin , L. , Self-assembled Ti 3 C 2 MXene and N-rich porous carbon hybrids as superior anodes for high-performance potassium-ion batteries . Energy Environ. Sci. , 13 , 246 , 2020 .
- Yu , A. , Ultrathin, transparent, and flexible graphene films for supercapacitor application . Appl. Phys. Lett. , 96 , 25 , 253105 , 2010 .
- Mukherjee , S. , Ren , Z. , Singh , G. , Beyond graphene anode materials for emerging metal ion batteries and supercapacitors . Nanomicro Lett. , 10 , 4 , 70 , 2018 .
- Liu , H. , Phosphorene: An unexplored 2D semiconductor with a high hole mobility . ACS Nano , 8 , 4 , 4033 – 4041 , 2014 .
- El-Kady , M.F. and Kaner , R.B. , Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage . Nat. Commun. , 4 , 1 , 1 – 9 , 2013 .
- Yang , B. , Flexible black-phosphorus nanoflake/carbon nanotube composite paper for high-performance all-solid-state supercapacitors . ACS Appl. Mater. Interfaces , 9 , 51 , 44478 – 44484 , 2017 .
- Chen , Y. , High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes . Carbon , 49 , 2 , 573 – 580 , 2011 .
- Wu , Q. , Supercapacitors based on flexible graphene/polyaniline nanofiber composite films . ACS Nano , 4 , 4 , 1963 – 1970 , 2010 .
- Balasingam , S.K. , Lee , J.S. , Jun , Y. , Few-layered MoSe 2 nanosheets as an advanced electrode material for supercapacitors . Dalton Trans. , 44 , 35 , 15491 – 15498 , 2015 .
- Cao , L. , Direct laser-patterned micro-supercapacitors from paintable MoS 2 films . Small , 9 ( 17 ), 905 – 2910 , 2013 .
- Feng , J. , Metallic few-layered VS 2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors . J. Am. Chem. Soc. , 133 , 44 , 17832 – 17838 , 2011 .
- Zhang , L. , Wu , H.B. , Lou , X.W.D. , Unusual CoS 2 ellipsoids with anisotropic tube-like cavities and their application in supercapacitors . Chem. Commun. , 48 , 55 , 6912 – 6914 , 2012 .
- Zhang , Y. , Controlled growth of high-quality monolayer WS 2 layers on sapphire and imaging its grain boundary . ACS Nano , 7 , 10 , 8963 – 8971 , 2013 .
- Ghidiu , M. , Lukatskaya , M.R. , Zhao , M.Q. , Gogotsi , Y. , Barsoum , M.W. , Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance . Nature , 516 , 7529 , 78 – 81 , 2015 .
- Djire , A. , Bos , A. , Liu , J. , Zhang , H. , Miller , E.M. , Neale , N.R. , Pseudocapacitive storage in nanolayered Ti 2 NT x MXene using Mg-ion electrolyte . ACS Appl. Nano Mater. , 2 , 5 , 2785 – 2795 , 2019 .
- Anasori , B. , Two-dimensional, ordered, double transition metals carbides (MXenes) . ACS Nano , 9 , 10 , 9507 – 9516 , 2015 .
- Wu , X. , Wang , Z. , Yu , M. , Xiu , L. , Qiu , J. , Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability . Adv. Mater. , 29 , 24 , 1 – 8 , 2017 .
- Zhou , H. , MnO 2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance . J. Alloys Compd. , 802 , 259 – 268 , 2019 .
- Zhao , K. , Vertically aligned MnO 2 nanosheets coupled with carbon nanosheets derived from Mn-MOF nanosheets for supercapacitor electrodes . J. Mater. Sci. , 53 , 18 , 13111 – 13125 , 2018 .
- Xia , H.C. , Zhang , J.N. , Yang , Z. , Guo , S.Y. , Guo , S.H. , Xu , Q. , 2D MOF nano-flake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances . Nanomicro Lett. , 9, 4 , 43 , 2017 . https://doi.org/10.1007/s40820-017-0144-6 .
- Shang , P. , Zhang , J.A. , Tang , W.Y. , Xu , Q. , Guo , S.J. , 2D Thin nanoflakes assembled on mesoporous carbon nanorods for enhancing electrocatalysis and for improving asymmetric supercapacitors . Adv. Funct. Mater. , 26 , 43 , 7766 – 7774 , 2016 . https://doi.org/10.1002/adfm.201603504 .
- Jabeen , N. , Hussain , A. , Xia , Q. , Sun , S. , Zhu , J. , Xia , H. , Highperformance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO 2 nanosheet assembled nanowall arrays . Adv. Mater. , 29 , 32 , 1700804 , 2017 . https://doi.org/10.1002/adma.201700804 .
- Li , P. , Jin , Z. , Peng , L. , Zhao , F. , Xiao , D. , Jin , Y. , Yu , G. , Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanostructured conductive polymer hydrogels . Adv. Mater. , 30 , 1800124 , 2018 . https://doi.org/10.1002/adma.201800124 .
- Qi , J.Q. , Chang , Y. , Sui , Y.W. , He , Y.Z. , Meng , Q.K. , Wei , F.X. , Ren , Y.J. , Jin , Y.X. , Facile synthesis of Ag-decorated Ni 3 S 2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor . Adv. Mater. Interfaces , 5 , 3 , 1700985 , 2018 . https://doi.org/10.1002/admi.201700985 .
- Xu , J.S. , Sun , Y.D. , Lu , M.J. , Wang , L. , Zhang , J. , Qian , J.H. , Liu , X.Y. , Fabrication of hierarchical MnMoO 4 center dot H 2 -O@MnO 2 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors . Chem. Eng. J. , 334 , 1466 – 1476 , 2018 . https://doi.org/10.1016/j.cej.2017.11.085 .
- Yang , X.J. , Zhao , L.J. , Lian , J.S. , Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor . J. Power Sources , 343 , 373 – 382 , 2017 . https://doi.org/10.1016/j.jpowsour.2017.01.078 .