Transition Metal Dichalcogenide (TMD)-Based 2D Nanomaterials for Various Kinds of Rechargeable Batteries
Periyakaruppan Karuppasamy
Department of Chemistry, Dayananda Sagar College of Engineering, Bengaluru, India
Search for more papers by this authorVaratharaj Rajapanian
Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India
Search for more papers by this authorPeriyakaruppan Karuppasamy
Department of Chemistry, Dayananda Sagar College of Engineering, Bengaluru, India
Search for more papers by this authorVaratharaj Rajapanian
Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India
Search for more papers by this authorSubhendu Chakroborty
Research Coordinator, IES University, Bhopal, India
Search for more papers by this authorKaushik Pal
University Centre for Research and Development (UCRD), Chandigarh University, India
Search for more papers by this authorSummary
Transition metal di-chalcogenides (TMDCs) have the common formula MX 2 , where M represents the transition metal atom (Ni, Mo, Co, Mn, W, etc.), and X represents the chalcogenide atoms (S, Se, Te, etc.). These MX 2 types of TMDCs have received great interest as electrode materials for energy storage applications in rechargeable batteries because of their atomically layered structure, high surface area, and enhanced electrochemical characteristics. The aforementioned remarkable properties of these materials have made it possible for researchers to discover new materials in all fields over the past two decades. The weak van der Waals forces of attraction between the two layers are mainly responsible for their covalently bound nature. Various synthesizing methods, rechargeable batteries such as Li, Na, K, Mg, Zn, Al, and Li-S ions energy storage applications using various 2D-TMDCs were discussed in this chapter.
References
- Chou , S.S. , Sai , N. , Lu , P. , Coker , E.N. , Liu , S. , Artyushkova , K. et al ., Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide . Nat. Commun. , 6 , 8311 , 2015 .
- Chia , X. and Pumera , M. , Layered transition metal dichalcogenide electrochemistry: Journey across the periodic table . Chem. Soc. Rev. , 47 , 5602 , 2018 .
- An , S. , Kim , Y.H. , Lee , C. , Park , D.Y. , Jeong , M.S. , Exfoliation of transition metal dichalcogenides by a high-power femtosecond laser . Sci. Rep. , 8 , 12957 , 2018 .
- Tian , Y. , Zeng , G. , A. Rutt , T., Kim , H. , Wang , J. , Koettgen , J. , Sun , Y. , Ouyang , B. , Chen , T. , Lun , Z. , Rong , Z. , Persson , K. , Ceder , G. , Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization . Chem. Rev. , 121 , 1623 , 2021 .
- Maiti , S. , Konar , R. , Sclar , H. , Grinblat , J. , Talianker , M. , Tkachev , M. , Wu , X. , Kondrakov , A. , Nessim , G.D. , Aurbach , D. , Stabilizing high-voltage lithium-ion battery cathodes using functional coatings of 2D tungsten diselenide . ACS Energy Lett. , 7 , 1383 , 2022 .
- Sun , W. , Zhang , Y. , Kang , W. , Deng , N. , Wang , X. , Kang , X. , Yan , Z. , Pan , Y. , Ni , J. , Synthesis of MoS2-based nanostructures and their applications in rechargeable ion batteries, catalysts and gas sensors: A review . RSC Adv. , 12 , 19512 , 2022 .
- Kannan , P.K. , Late , D.J. , Morgan , H. , Rout , C.S. , Recent developments in 2Dlayered inorganic nano materials for sensing . Nanoscale. , 7 , 13293 , 2015 .
- Yang , W. , Gan , L. , Li , H. , Zhai , T. , Two-dimensional layered nanomaterials for gas-sensing applications . Inorg. Chem. Front. , 3 , 433 , 2016 .
-
Lin , L.
,
Zhang , S.
,
Allwood , D.A.
,
Transition metal dichalcogenides for energy storage applications
, in:
Two-Dimensional Transition Metal Dichalcogenides Synthesis, Properties, and Applications
,
N.S. Arul
, and
V.D. Nithya
, (Eds.), pp.
173
–
201
,
Springer
,
Singapore
,
2019
.
10.1007/978-981-13-9045-6_6 Google Scholar
- Li , B.L. , Wang , J. , Zou , H.L. , Garaj , S. , Lim , C.T. , Xie , J. , Li , N.B. , Leong , D.T. , Low-dimensional transition metal dichalcogenide nanostructures based sensors . Adv. Funct. Mater. , 26 , 7034 , 2016 .
- Yang , S. , Jiang , C. , Wei , S.H. , Gas sensing in 2D materials . Appl. Phys. Rev. , 4 , 021304 , 2017 .
- Guo , S. and Dong , S. , Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications . Chem. Soc. Rev. , 40 , 2644 , 2011 .
- Lu , Q. , Yu , Y. , Ma , Q. , Chen , B. , Zhang , H. , 2D transition-metal-dichalcogenide nanosheet based composites for photocatalytic and electrocatalytic hydrogen evolution reactions . Adv. Mater. , 28 , 1917 , 2016 .
- Cao , X. , Tan , C. , Zhang , X. , Zhao , W. , Zhang , H. , Solution-processed two-dimensional metal dichalcogenide-based nanomaterials for energy storage and conversion . Adv. Mater. , 28 , 6167 , 2016 .
- Butler , S.Z. , Hollen , S.M. , Cao , L. , Cui , Y. , Gupta , J.A. , Gutiérrez , H.R. , Heinz , T.F. , Hong , S.S. , Huang ., J. , Ismach , A.F. , Johnston-Halperin , E. , Progress, challenges, and opportunities in two dimensional materials beyond graphene . ACS Nano , 7 , 2898 , 2013 .
- Wang , Q.H. , Kalantar-Zadeh , K. , Kis , A. , Coleman , J.N. , Strano , M.S. , Electronics and optoelectronics of two-dimensional transition metal dichalcogenides . Nat. Nanotechnol. , 7 , 699 , 2012 .
- Kumar , A. and Ahluwalia , P.K. , Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M= Mo, W; X= S, Se, Te) from abinitio theory: New direct bandgap semiconductors . Eur. Phys. J. B , 85 , 186 , 2012 .
- Chia , X. , Ambrosi , A. , Sofer , Z. , Luxa , J. , Pumera , M. , Catalytic and charge transfer properties of transition metal dichalcogenides arising from electrochemical pretreatment . ACS Nano , 9 , 5164 , 2015 .
- Das , S. , Prakash , A. , Salazar , R. , Appenzeller , J. , Toward low-power electronics: Tunneling phenomena in transition metal dichalcogenides . ACS Nano , 8 , 1681 , 2014 .
- Lv , R. , Robinson , J.A. , Schaak , R.E. , Sun , D. , Sun , Y. , Mallouk , T.E. , Terrones , M. , Transitionmetal dichalcogenides and beyond: Synthesis, properties, and applications of single-and few layer nanosheets . Acc. Chem. Res. , 48 , 56 , 2014 .
- Pospischil , A. , Furchi , M.M. , Mueller , T. , Solar-energy conversion andlight emission in an atomic monolayer p–n diode . Nat. Nanotechnol. , 9 , 257 , 2014 .
- Rao , C.N.R. , Ramakrishna Matte , H.S.S. , Subrahmanyam , K.S. , Maitra , U. , Unusual magneticproperties of graphene and related materials . Chem. Sci. , 3 , 45 , 2012 .
- Zhou , Y. , Yang , C. , Xiang , X. , Zu , X. , Remarkable magnetism and ferromagnetic coupling insemi-sulfuretted transition-metal dichalcogenides . Phys. Chem. Chem. Phys. , 15 , 14202 , 2013 .
- Pumera , M. , Sofer , Z. , Ambrosi , A. , Layered transition metal dichalcogenides for electrochemical energy generation and storage . J. Mater. Chem. A , 2 , 8981 , 2014 .
- Tributsch , H. , Photo-electrochemical behaviour of layer-type transition metal dichalcogenides . Faraday Discuss. Chem. Soc. , 70 , 189 , 1980 .
- Chhowalla , M. , Shin , H.S. , Eda , G. , Li , L.J. , Loh , K.P. , Zhang , H. , The chemistry of two dimensional layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 263 , 2013 .
- Wang , H. , Feng , H. , Li , J. , Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage . Small , 10 , 2165 , 2014 .
- Huang , K.J. , Liu , Y.J. , Wang , H.B. , Liu , Y.M. , Wang , L.L. , Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor . Electrochim. Acta , 109 , 587 , 2013 .
- Muller , G.A. , Cook , J.B. , Kim , H.S. , Tolbert , S.H. , Dunn , B. , High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals . Nano Lett. , 15 , 1911 , 2015 .
- Ellmer , K. , Preparation routes based on magnetron sputtering for tungsten disulfide (WS2) films for thin-film solar cells . Phys. Status Solidi. , 245 , 1745 , 2008 .
- Shanmugam , M. , Bansal , T. , Durcan , C.A. , Bin , Y. , Molybdenum disulphide/ titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell . Appl. Phys. Lett. , 100 , 153901 , 2012 .
- Bhandavat , R. , David , L. , Singh , G. , Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes . J. Phys. Chem. Lett. , 3 , 1523 , 2012 .
- Xiao , J. , Choi , D. , Cosimbescu , L. , Koech , P. , Liu , J. , Lemmon , J.P. , Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries . Chem. Mater. , 22 , 4522 , 2010 .
- Kong , D. , Cha , J.J. , Wang , H. , Lee , H.R. , Cui , Y. , First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction . Energy Environ. Sci. , 6 , 3553 , 2013 .
- Chen , T.Y. , Chang , Y.H. , Hsu , C.L. , Wei , K.H. , Chiang , C.Y. , Li , L.J. , Comparative study on MoS 2 and WS 2 for electrocatalytic water splitting . Int. J. Hydrog. Energy , 38 , 12302 , 2013 .
- Yang , L. , Wang , S. , Mao , J. , Deng , J. , Gao , Q. , Tang , Y. , Schmidt , O.G. , Hierarchical MoS 2 /polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries . Adv. Mater. , 25 , 1180 , 2013 .
- Kam , K.K. and Parkinson , B.A. , Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides . J. Phys. Chem. , 86 , 463 , 1982 .
- Ho , W. , Yu , J.C. , Lin , J. , Jiaguo , Y. , Li, Puishan, Preparation and photocatalytic behavior of MoS 2 and WS 2 nanocluster sensitized TiO 2 . Langmuir , 20 , 5865 , 2004 .
- Mak , K.F. , Lee , C. , Hone , J. , Shan , J. , Heinz , T.F. , Atomically thin MoS2: A new direct-gap semiconductor . Phys. Rev. Lett. , 105 , 136805 , 2010 .
- Chhowalla , M. , Shin , H.S. , Eda , G. , Li , L.J. , Loh , K.P. , Zhang , H. , The chemistry of two dimensional layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 263 , 2013 .
- Wang , H. , Yuan , H. , Hong , S.S. , Li , Y. , Cui , Y. , Physical and chemical tuning of two-dimensional transition metal dichalcogenides . Chem. Soc. Rev. , 44 , 2664 , 2015 .
- Rao , C.N.R. , Maitra , U. , Waghmare , U.V. , Extraordinary attributes of 2-dimensional MoS2 nanosheets . Chem. Phys. Lett. , 609 , 172 , 2014 .
- Terrones , H. , López-Urías , F. , Terrones , M. , Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides . Sci. Rep. , 3 , 1 , 2013 .
- Wilson , J.A. and Yoffe , A.D. , The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties . Adv. Phys. , 18 , 193 , 1969 .
- Gatensby , R. , McEvoy , N. , Lee , K. , Hallam , T. , Berner , N.C. , Rezvani , E. , Winters , S. , O'Brien , M. , Duesberg , G.S. , Controlled synthesis of transition metal dichalcogenide thin films forelectronic applications . Appl. Surf. Sci. , 297 , 139 , 2014 .
- Zhu , Z. , Cheng , Y. , Schwingenschlogl , U. , Topological phase diagrams of bulk and monolayer TiS2–xTex . Phys. Rev. Lett. , 110 , 077202 , 2013 .
- Zhang , Y. , Li , Z. , Jia , H. , Luo , X. , Xu , J. , Zhang , X. , Yu , D. , TiS 2 whisker growth by a simple vapor-deposition method . J. Cryst. Growth , 293 , 124 , 2006 .
- Laua , K.T. , Edwards , S. , Diamond , D. , Nanostructured semiconductor oxides for the next generation of electronics and functional devices . Sens. Actuators B. , 98 , 12 , 2004 .
- Tao , Z.-L. , Xu , L.-N. , Gou , X.-L. , Chen , J. , Yuan , H.-T. , TiS 2 nanotubes as the cathode materials of Mg-ion batteries . Chem. Commun. , 18 , 2080 , 2004 .
- Du , G. , Guo , Z. , Wang , S. , Zeng , R. , Chen , Z. , Liu , H. , Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium-ion batteries . Chem. Commun. , 46 , 1106 , 2010 .
- Chang , K. , Chen , W. , Ma , L. , Li , H. , Li , H. , Huang , F. , Xu , Z. , Zhang , Q. , Lee , J.Y. , Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium-ion batteries . J. Mater. Chem. , 21 , 6251 , 2011 .
- Coogan , A. and Gunko , Y.K. , Solution-based “bottom-up” synthesis of group VI transition metal dichalcogenides and their applications . Mater. Adv. , 2 , 146 , 2021 .
- Gan , X.R. , Zhao , H.M. , Quan , X. , Two-dimensional MoS2: A promising building block for biosensors . Biosens. Bioelectron. , 89 , 56 , 2017 .
- Zhan , J.H. , Zhang , Z.D. , Qian , X.F. , Wang , C. , Xie , Y. , Qian , Y.T. , Solvothermal synthesis of nanocrystalline MoS 2 from MoO 3 and elemental sulfur . J. Solid State Chem. , 141 , 270 , 1998 .
-
Fan , R.
and
Chen , Z.
,
A novel route to obtain molybdenum dichalcogenides by hydrothermal reaction
.
Chem. Lett.
,
29
,
920
,
2000
.
10.1246/cl.2000.920 Google Scholar
- Wang , P.P. , Sun , H.X. , Ji , Y. , Li , W. , Wang , X. , Three-dimensional assembly of single-layered MoS 2 . Adv. Mater. , 26 , 964 , 2014 .
- Murray , C.B. , Kagan , C.R. , Bawendi , M.G. , Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies . Annu. Rev. Mater. Sci. , 30 , 545 , 2000 .
- Bai , X. , Purcell-Milton , F. , Gunko , Y. , Optical properties, synthesis, and potential applications of Cu-based ternary or quaternary anisotropic quantum dots, polytypic nanocrystals, and core/shell heterostructures . Nanomaterials , 9 , 85 , 2019 .
- Yin , W. , Bai , X. , Chen , P. , Zhang , X. , Su , L. , Ji , C. , Gao , H. , Song , H. , Yu , W.W. , Rational control of size and photoluminescence of WS 2 quantum dots for white light-emitting diodes . ACS Appl. Mater. Interfaces , 10 , 43824 , 2018 .
- Savjani , N. , Lewis , E.A. , Bissett , M.A. , Brent , J.R. , Dryfe , R.A.W. , Haigh , S.J. , O'Brien , P. , Synthesis of lateral size-controlled monolayer 1 H- MoS 2 @ Oleylamine as supercapacitor electrodes . Chem. Mater. , 28 , 657 , 2016 .
- Jung , W. , Lee , S. , Yoo , D. , Jeong , S. , Miro , P. , Kuc , A. , Heine , T. , Cheon , J. , Colloidal synthesis of single-layer MSe 2 (M = Mo, W) nanosheets via anisotropic solution-phase growth approach . J. Am. Chem. Soc. , 137 , 7266 , 2015 .
- Zhou , P. , Tanghe , I. , Schiettecatte , P. , van Thourhout , D. , Hens , Z. , Geiregat , P. , Ultrafast carrier dynamics in colloidal WS 2 nanosheets obtained through a hot injection synthesis . J. Chem. Phys. , 151 , 164701 , 2019 .
- Geisenhoff , J.Q. , Tamura , A.K. , Schimpf , A.M. , Using ligands to control reactivity, size and phase in the colloidal synthesis of WSe 2 nanocrystals . Chem. Commun. , 55 , 8856 , 2019 .
- Seo , J.W. , Jun , Y.W. , Park , S.W. , Nah , H. , Moon , T. , Park , B. , Kim , J.G. , Kim , Y.J. , Cheon , J. , Two-dimensional nanosheet crystals . Angew. Chem. Int. Ed. , 46 , 8828 , 2007 .
- Mastria , R. , Scarfiello , R. , Altamura , D. , Giannini , C. , Liscio , A. , Kovtun , A. , Bianco , G.V. , Bruno , G. , Grillo , V. , Tavabi , A.H. , Dunin-Borkowski , R.E. , Nobile , C. , Cola , A. , Cozzoli , P.D. , Gambino , S. , Rizzo , A. , An insight into chemistry and structure of colloidal 2D-WS 2 nanoflakes: Combined XPS and XRD study . Sci. Rep. , 9 , 1 , 2019 .
- Ding , X. , Peng , F. , Zhou , J. , Gong , W. , Slaven , G. , Loh , K.P. , Lim , C.T. , Leong , D.T. , Defect engineered bioactive transition metals dichalcogenides quantum dots . Nat. Commun. , 10 , 1 , 2019 .
- Sharma , P. , Kumar , A. , Bankuru , S. , Chakraborty , J. , Puravankara , S. , Large-scale surfactant-free synthesis of WS 2 nanosheets: An investigation into the detailed reaction chemistry of colloidal precipitation and their application as an anode material for lithium-ion and sodium-ion batteries . New J. Chem. , 44 , 1594 , 2020 .
- Therese , H.A. , Li , J. , Kolb , U. , Tremel , W. , Synthesis of fullerene-and nanotube-like SnS 2 nanoparticles and Sn/S/carbon nanocomposites . Solid State Sci. , 7 , 67 , 2005 .
- Chakravarty , D. and Late , D.J. , Microwave and hydrothermal syntheses of WSe 2 micro/nanorods and their application in supercapacitors . RSC Adv. , 5 , 21700 , 2015 .
- Kumar , N. , George , B.P.A. , Abrahamse , H. , Parashar , V. , Ngila , J.C. , Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS 2 nanosheets and MoO 3 nanorods: Their cytotoxicity towards lung and breast cancer cells . Appl. Surf. Sci. , 396 , 8 , 2017 .
- Masimukku , S. , Hu , Y.C. , Lin , Z.H. , Chan , S.W. , Chou , T.M. , Wu , J.M. , High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance . Nano Energy , 46 , 338 , 2018 .
- Askari , M.B. , Kalourazi , A.F. , Seifi , M. , Shahangian , S.S. , Askari , N. , Manjili , T.J. , Hydrothermal synthesis of molybdenum disulfide (MoS 2 ) and study of structure, optical, electrical and high antibacterial properties . Optik , 174 , 154 , 2018 .
- Wang , J. , Wang , N. , Guo , Y. , Yang , J. , Wang , J. , Wang , F. , Sun , J. , Xu , H. , Liu , Z.H. , Jiang , R. , Metallic-phase MoS 2 nanopetals with enhanced electrocatalytic activity for hydrogen evolution . ACS Sustain. Chem. Eng. , 6 , 13435 , 2018 .
- Xie , J. , Zhang , H. , Li , S. , Wang , R. , Sun , X. , Zhou , M. , Zhou , J. , Lou , X.W. , Xie , Y. , Defect-rich MoS 2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution . Adv. Mater. , 25 , 5807 , 2013 .
- Chu , H. , Liu , X. , Liu , B. , Zhu , G. , Lei , W. , Du , H. , Liu , J. , Li , J. , Li , C. , Sun , C. , Hexagonal 2H-MoSe 2 broad spectrum active photocatalyst for Cr (VI) reduction . Sci. Rep. , 6 , 1 , 2016 .
- Lu , Y. , Yao , X. , Yin , J. , Peng , G. , Cui , P. , Xu , X. , MoS 2 nanoflowers consisting of nanosheets with a controllable interlayer distance as high-performance lithium ion battery anodes . RSC Adv. , 5 , 7938 , 2015 .
- Giubileo , F. , Grillo , A. , Passacantando , M. , Urban , F. , Iemmo , L. , Luongo , G. , Pelella , A. , Loveridge , M. , Lozzi , L. , di Bartolomeo , A. , Field emission characterization of MoS 2 nanoflowers . Nanomaterials , 9 , 717 , 2019 .
- Thang , N.T. , Hong , L.T. , Thoan , N.H. , Hung , C.M. , van Duy , N. , van Hieu , N. , Hoa , N.D. , Controlled synthesis of ultrathin MoS 2 nanoflowers for highly enhanced NO 2 sensing at room temperature . RSC Adv. , 10 , 12759 , 2020 .
- Sun , Y. , He , W. , Sun , X. , Liu , B. , MoS 2 quantum dots as a specific fluorescence sensor for selection of rutin and for temperature sensing . Luminescence , 35 , 1416 , 2020 .
- Sun , Y. , Xu , J. , Zhu , Z. , Wang , Y. , Xia , H. , You , Z. , Lee , C. , Tu , C. , Comparison of MoS 2 nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers . Opt. Mater. Express , 5 , 2924 , 2015 .
- Zhan , J.H. , Zhang , Z.D. , Qian , X.F. , Wang , C. , Xie , Y. , Qian , Y.T. , Synthesis of nanocrystalline cobalt selenide in nonaqueous solvent . J. Solid State Chem. , 141 , 270 , 1998 .
- Liu , Y. , Zhang , N. , Kang , H. , Shang , M. , Jiao , L. , Chen , J. , Design, synthesis, and energy-related applications of metal sulfides . Chem.-Eur. J. , 21 , 11878 , 2015 .
- Wang , P.P. , Sun , H. , Ji , Y. , Li , W. , Wang , X. , Three-dimensional assembly of single-layered MoS 2 . Adv. Mater. , 26 , 964 , 2014 .
- Wang , W.T. , Legut , D. , Fan , Y. , Qin , J. , Li , X. , Zhang , Q. , Building fast diffusion channel by constructing metal sulfide/metal selenide heterostructures for high-performance sodium ion batteries anode . Nano Lett. , 20 , 6199 , 2020 .
- Sokolikova , M.S. , Sherrell , P.C. , Palczynski , P. , Bemmer , V.L. , Mattevi , C. , Direct solution-phase synthesis of 1T-WSe 2 nanosheets . Nat. Commun. , 10 , 1 , 2019 .
- Zhou , P. , Tanghe , I. , Schiettecatte , P. , van Thourhout , D. , Hens , Z. , Geiregat , P. , Ultrafast carrier dynamics in colloidal WS 2 nanosheets obtained through a hot injection synthesis . J. Chem. Phys. , 151 , 164701 , 2019 .
- Wang , Y. , Zhang , F. , Wang , Q. , Yang , P. , Lin , H. , Schiettecatte , P. , Geiregat , P. , Hens , Z. , Ultrafast carrier dynamics in few-layer colloidal molybdenum disulfide probed by broadband transient absorption spectroscopy . J. Phys. Chem. C , 123 , 10571 , 2019 .
- Ding , X. , Peng , F. , Zhou , J. , Gong , W. , Slaven , G. , Loh , K.P. , Lim , C.T. , Leong , D.T. , Defect engineered bioactive transition metals dichalcogenides quantum dots . Nat. Commun. , 10 , 1 , 2019 .
- Kurzweil , P. , Gaston planté and his invention of the lead–acid battery-the genesis of the first practical rechargeable battery . J. Power Sources , 195 , 4424 , 2010 .
- R.R. Haering , J.A.R. Stiles , K. Brandt , Lithium molybdenum disulphide battery cathode . US Patent US4224390A, 1980 .
- Nagaura , T. and Tozawa , K. , Lithium-ion rechargeable battery . Prog. Batteries Sol. Cells , 9 , 209 , 1990 .
- Pumera , M. , Graphene-based nanomaterials for energy storage . Energy Environ. Sci. , 4 , 668 , 2011 .
- Mahmood , N. , Zhang , C. , Yin , H. , Hou , Y. , Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells . J. Mater. Chem. A , 2 , 15 , 2014 .
- Srivastava , M. , Singh , J. , Kuila , T. , Layek , R.K. , Kim , N.H. , Lee , J.H. , Recent Advances in graphene and its metal-oxide hybrid nanostructures for lithiumion batteries . Nanoscale , 7 , 4820 , 2015 .
- Goodenough , J.B. and Park , K.S. , The Li-ion rechargeable battery: A perspective . J. Am. Chem. Soc. , 135 , 1167 , 2013 .
- Yang , Z. , Zhang , J. , Kintner-Meyer , M.C.W. , Lu , X. , Choi , D. , Lemmon , J.P. et al ., Electrochemical energy storage for green grid . Chem. Rev. , 111 , 3577 , 2011 .
- Li , Y. , Wu , D. , Zhou , Z. , Cabrera , C.R. , Chen , Z. , Enhanced Li adsorption and diffusion on MoS 2 Zigzag nanoribbons by edge effects: A computational study . J. Phys. Chem. Lett. , 3 , 2221 , 2012 .
- Shu , H. , Li , F. , Hu , C. , Liang , P. , Cao , D. , Chen , X. , The capacity fading mechanism and improvement of cycling stability in MoS 2 -based anode materials for lithium-ion batteries . Nanoscale , 8 , 2918 , 2016 .
- Lian , P. , Zhu , X. , Liang , S. , Li , Z. , Yang , W. , Wang , H. , Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries . Electrochim. Acta , 55 , 3909 , 2010 .
- Hwang , H. , Kim , H. , Cho , J. , MoS 2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials . Nano Lett. , 11 , 4826 , 2011 .
- Zhong , Y. , Shi , T. , Huang , Y. , Cheng , S. , Chen , C. , Liao , G. et al ., Three-dimensional MoS 2 /graphene aerogel as binder-free electrode for Li-ion battery . Nanoscale Res. Lett. , 14 , 85 , 2019 .
- Zhang , K. , Kim , H.J. , Shi , X. , Lee , J.T. , Choi , J.M. , Song , M.S. et al ., Graphene/ acid coassisted synthesis of ultrathin MoS 2 nanosheets with outstanding rate capability for a lithium battery anode . Inorg. Chem. , 52 , 9807 , 2013 .
- Wang , Y. , Chen , B. , Seo , D.H. , Han , Z.J. , Wong , J.I. , Ostrikov , K. et al ., MoS 2 -coated vertical graphene nanosheet for high-performance rechargeable lithium-ion batteries and hydrogen production . NPG Asia Mater. , 8 , e268 , 2016 .
- Zhang , G. , Feng , H. , Ma , C. , Chen , J. , Wang , Z. , Zheng , W. , MoS 2 nanotubes via ionic-liquid-assisted assembly of MoS 2 nanosheets for lithium storage . ACS Appl. Nano Mater. , 4 , 3397 , 2021 .
- Ren , J. , Ren , R.P. , Lv , Y.K. , A flexible 3D graphene@ CNT@ MoS 2 hybrid foam anode for high-performance lithium-ion battery . Chem. Eng. J. , 353 , 419 , 2018 .
- Yu , S. , Jung , J.W. , Kim , I.D. , Single layers of WS 2 Nanoplates embedded in nitrogen-doped carbon nanofibers as anode materials for lithium-ion batteries . Nanoscale , 7 , 11945 , 2015 .
- Wang , Z. , Chen , T. , Chen , W. , Chang , K. , Ma , L. , Huang , G. , Chen , D. , Lee , J.Y. , CTAB-assisted synthesis of single-layer MoS 2 –graphene composites as anode materials of Li-ion batteries . J. Mater. Chem. A , 1 , 2202 , 2013 .
- Nguyen , T.P. and Kim , I.T. , Ag nanoparticle-decorated MoS 2 nanosheets for enhancing electrochemical performance in lithium storage . Nanomaterials , 11 , 626 , 2021 .
- Wang , P.P. , Sun , H. , Ji , Y. , Li , W. , Wang , X. , Three-dimensional assembly of single-layered MoS 2 . Adv. Mater. , 26 , 964 , 2014 .
-
Kato , K.
,
Sayed , F.N.
,
Babu , G.
,
Ajayan , P.M.
,
All 2D materials as electrodes for high power hybrid energy storage applications
.
2D Mater.
,
5
,
025016
,
2018
.
10.1088/2053-1583/aaad29 Google Scholar
- Ju , W. , Dong , C. , Jin , B. , Zhu , Y. , Wen , Z. , Jiang , Q. , Composites of reduced graphene oxide and Fe 2 O 3 nanoparticles anchored on MoS 2 nanosheets for lithium storage . ACS Appl. Nano Mater. , 3 , 9009 , 2020 .
- Zhu , X. , Yang , C. , Xiao , F. , Wang , J. , Su , X. , Synthesis of nano-TiO 2 -decorated MoS 2 nanosheets for lithium-ion batteries . New J. Chem. , 39 , 683 , 2015 .
- Bai , J. , Zhao , B. , Zhou , J. , Fang , Z. , Li , K. , Ma , H. , Dai , J. , Zhu , X. , Sun , Y. , Improved electrochemical performance of ultrathin MoS 2 nanosheet/Co composites for lithium-ion battery anodes . ChemElectroChem , 6 , 1930 , 2019 .
- Rui , B. , Li , J. , Chang , L. , Wang , H. , Lin , L. , Guo , Y. , Nie , P. , Engineering MoS 2 nanosheets anchored on metal organic frameworks derived carbon polyhedra for superior lithium and potassium storage . Front. Energy Res. , 7 , 142 , 2019 .
- Zhou , R. , Wang , H. , Chang , J. , Yu , C. , Dai , H. , Chen , Q. , Zhou , J. , Yu , H. , Sun , G. , Huang , W. , Ammonium intercalation induced expanded 1T-rich molybdenum diselenides for improved lithium-ion storage . ACS Appl. Mater. Interfaces , 13 , 17459 , 2021 .
- Li , Z. , Zhang , L.Y. , Zhang , L. , Huang , J. , Liu , H. , ZIF-67-derived CoSe/NC composites as anode materials for lithium-ion batteries . Nanoscale Res. Lett. , 14 , 1 , 2019 .
- Panda , M.R. , Gangwar , R. , Muthuraj , D. , Sau , S. , Pandey , D. , Banerjee , A. , Chakrabarti , A. , Sagdeo , A. , Weyland , M. , Majumder , M. , Bao , Q. , Mitra , S. , High performance lithium-ion batteries using layered 2H-MoTe 2 as anode . Small , 16 , 2002669 , 2020 .
- Zhang , C. , Park , S.H. , Ronan , O. , Harvey , A. , Ascaso , A.S. , Lin , Z. , McEvoy , N. , Boland , C.S. , Berner , N.C. , Duesberg , G.S. , Rozier , P. , Coleman , J.N. , Nicolosi , V. , Enabling flexible het-erostructures for Li-ion battery anodes based on nanotube and liquid-phase exfoliated 2D gallium chalcogenide nanosheet colloidal solutions . Small , 13 , 1701677 , 2017 .
- Xiao , J. , Choi , D. , Cosimbescu , L. , Koech , P. , Liu , J. , Lemmon , J.P. , Exfoliated MoS 2 nanocomposite as ananode material for lithium ion batteries . Chem. Mater. , 22 , 4522 , 2010 .
- Chen , Y.M. , Yu , X.Y. , Li , Z. , Paik , U. , Lou , X.W. , Hierarchical MoS 2 tubular structures internally wired bycarbon nanotubes as a highly stable anode material for lithium-ion batteries . Sci. Adv. , 2 , e1600021 , 2016 .
- Shi , Y. , Wang , Y. , Wong , J.I. , Tan , A.Y.S. , Hsu , C.L. , Li , L.J. et al ., Self-assembly of hierarchical MoS x /CNT nanocomposites (2,x,3): Towards high performance anode materials for lithium ion batteries . Sci. Rep. , 3 , 2169 , 2013 .
- Zhou , X. , Wan , L.J. , Guo , Y.G. , Facile synthesis of MoS 2 @CMK-3 nanocomposite as an improved anode material for lithium-ion batteries . Nanoscale , 4 , 5868 , 2012 .
- Jiang , H. , Ren , D. , Wang , H. , Hu , Y. , Guo , S. , Yuan , H. et al ., 2D monolayer MoS 2 -carbon inter overlapped superstructure: Engineering ideal atomic interface for lithium ion storage . Adv. Mater. , 27 , 3687 , 2015 .
- George , C. , Morris , A.J. , Modarres , M.H. , De Volder , M. , Structural evolution of electrochemically lithiated MoS 2 nanosheets and the role of carbon additive in Li-ion batteries . Chem. Mater. , 28 , 7304 , 2016 .
- Zhang , Z. , Yang , X. , Fu , Y. , Nanostructured WSe 2 /C composites as anode materials for sodium-ion batteries . RSC Adv. , 6 , 12726 , 2016 .
- Konar , R. , Rosy , R.S. , Perelshtein , I. , Teblum , E. , Telkhozhayeva , M. , Tkachev , M. , Richter , J.J. , Cattaruzza , E. , PietropolliCharmet , A. , Stoppa , P. , Noked , M. , Nessim , G.D. , Scalable synthesis of few-layered 2D tungsten diselenide (2H-WSe 2 ) nanosheets directly grown on tungsten (W) foil using ambient-pressure chemical vapor deposition for reversible li-ion storage . ACS Omega , 5 , 19409 , 2020 .
- Konar , R. and Nessim , G.D. , A mini-review focusing on ambient-pressure chemical vapor deposition (AP-CVD) based synthesis of layered transition metal selenides for energy storage applications Mater . Adv. , 3 , 4471 , 2022 .
- Zhou , J. , Qin , J. , Guo , L. , Zhao , N. , Shi , C. , Liu , E. , He , F. , Ma , L. , Lia , J. , He , C. , Scalable synthesis of high-quality transition metal dichalcogenide nanosheets and their application as sodium-ion battery anodes . J. Mater. Chem. A , 4 , 17370 , 2016 .
- Lan , H.W.X. , Jiang , D. , Zhang , Y. , Zhong , H. , Zhang , Z. , Jiang , Y. , Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries . J. Power Sources , 283 , 187 , 2015 .
- Mukherjee , S. , Turnley , J. , Mansfield , E. , Holm , J. , Soares , D. , David , L. , Singh , G. , Exfoliated transition metal dichalcogenide nanosheets for supercapacitor and sodium ion battery applications . R. Soc. Open Sci. , 6 , 190437 , 2019 .
- Sun , Q. , Fu , L. , Shang , C. , A novel open-framework Cu-Ge-based chalcogenide anode material for sodium-ion battery . Scanning , 27 , 3876525 , 2017 .
- Yang , E. , Ji , H. , Jung , Y. , Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes . J. Phys. Chem. C , 119 , 2637 , 2015 .
- David , L. , Bhandavat , R. , Singh , G. , MoS 2 /graphene composite paper for sodium-ion battery electrodes . ACS Nano , 8 , 1759 , 2014 .
- Sun , D. , Ye , D. , Liu , P. , Tang , Y. , Guo , J. , Wang , L. et al ., MoS 2 /graphene nanosheets from commercialbulky MoS 2 and graphite as anode materials for high rate sodium-ion batteries . Adv. Energy Mater. , 8 , 1702383 , 2018 .
- Sahu , T.S. and Mitra , S. , Exfoliated MoS 2 sheets and reduced graphene oxide-an excellent and fast anode forsodium-ion battery . Sci. Rep. , 5 , 12571 , 2015 .
- Ji , G. , Yu , Y. , Yao , Q. , Qu , B. , Chen , D. , Chen , W. et al ., Promotion of reversible Li1 storage in transition metal dichalcogenides by Ag nanoclusters . NPG Asia Mater. , 8 , e247 , 2016 .
- Liu , H. , Huang , Z. , Wu , G. , Wu , Y. , Yuan , G. , He , C. , Qi , X. , Zhong , J. , A novel WS 2 /NbSe 2 2d-heterostructure as an ultrafast charging and discharging anode material for lithium-ion batteries . Mater. Chem. A , 6 , 17040 , 2018 .
- Roy , A. , Movva , H.C.P. , Satpati , B. , Kim , K. , Dey , R. , Rai , A. , Pramanik , T. , Guchhait , S. , Tutuc , E. , Banerjee , S.K. , Structural and electrical properties of MoTe 2 and MoSe 2 grown by molecular beam epitaxy . ACS Appl. Mater. Interfaces , 8 , 7396 , 2016 .
- Zhang , J. , Kang , W. , Jiang , M. , You , Y. , Cao , Y. , Ng , T.W. , Yu , D.Y.W. , Lee , C.-S. , Xu , J. , Conversion of 1T-MoSe 2 to 2H-MoS 2x Se 2–2x mesoporous nanospheres for superior sodium storage performance . Nanoscale , 9 , 1484 , 2017 .
-
Mudgal , P.
,
Arora , H.
,
Pati , J.
et al
.,
Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries
.
Proc. Indian Natl. Sci. Acad.
,
88
,
430
,
2022
.
10.1007/s43538-022-00101-5 Google Scholar
- Yue , J.L. , Sun , Q. , Fu , Z.W. , Cu 2 Se with facile synthesis as a cathode material for rechargeable sodium batteries . Chem. Commun. , 49 , 5868 , 2013 .
- Share , K. , Lewis , J. , Oakes , L. , Carter , R.E. , Cohn , A.P. , Pint , C.L. , Tungsten diselenide (WSe 2 ) as a high capacity, low overpotential conversion electrode for sodium ion batteries . RSC Adv. , 5 , 101262 , 2015 .
- Wang , T. , Legut , D. , Fan , Y. , Qin , J. , Li , X. , Zhang , Q. , Building fast diffusion channel by constructing metal sulfide/metal selenide heterostructures for high-performance sodium ion batteries anode . Nano Lett. , 20 , 6199 , 2020 .
- Wu , C. , Zhao , G. , Yu , X. , Liu , C. , Lyu , P. , Maurin , G. , Le , S. , Sun , K. , Zhang , N. , MoS 2 /graphene heterostructure with facilitated Mg-diffusion kinetics for high-performance rechargeable magnesium batteries . Chem. Eng. J. , 412 , 128736 , 2021 .
- Zhang , Z. , Yang , M. , Zhao , N. , Wang , L. , Li , Y. , Two-dimensional transition metal dichalcogenides as promising anodes for potassium ion batteries from first-principles prediction . Phys. Chem. Chem. Phys. , 21 , 23441 , 2019 .
- Wu , Y. , Xu , Y. , Li , Y. , Lyu ., P. , Wen , J. , Zhang , C. , Zhou , M. , Fang , Y. , Zhao , H. , Kaiser , U. , Lei , Y. , Unexpected intercalation-dominated potassium storage in WS 2 as a potassium-ion battery anode . Nano. Res. , 12 , 2997 , 2019 .
- Xu , Y. , Bahmani , F. , Zhou , M. , Li , Y. , Liang , F. , Kazemi , S.H. , Kaiser , U. , Meng , G. , Lei , Y. , Enhancing potassium-ion battery performance by defect and interlayer engineering . Nanoscale Horiz. , 4 , 202 , 2019 .
- Dong , Y. , Xu , Y. , Li , W. , Fu , Q. , Wu , M. , Manske , E. , Kröger , J. , Lei ., Y. , Insights into the crystallinity of layer-structured transition metal dichalcogenides on potassium ion battery performance: A case study of molybdenum disulfide . Nanomicro Small , 15 , 1900497 , 2019 .
- Liu , B. , Luo , T. , Mu , G. , Wang , X. , Chen , D. , Shen , G. , Rechargeable Mg-Ion batteries based on WSe 2 nanowire cathodes . ACS Nano , 7 , 8051 , 2013 .
- Yue , J.L. , Sun , Q. , Fu , Z.W. , Cu 2 Se with facile synthesis as a cathode material for rechargeable sodium batteries . Chem. Commun. , 49 , 5868 , 2013 .
- Wang , Q.Z. , Yichun , W. , Xin , Z. , Wang , G. , Ji , P. , Yin , F. , WSe 2 /reduced graphene oxide nanocomposite with superfast sodium ion storage ability as anode for sodium ion capacitors . J. Electrochem. Soc. , 165 , A3642 , 2018 .
- Konar , R. , Tamari , R. , Teblum , E. , Nessim , G.D. , Meshi , L. , In-depth characterization of stacking faults forming during the growth of transition-metal Di-chalcogenides (TMDCs) by ambient pressure-CVD . Mater. Charact. , 184 , 111666 , 2021 .
- Ko , Y.N. , Choi , S.H. , Park , S.B. , Kang , Y.C. , Hierarchical MoSe2 yolk–shell microspheres with superior Na-ion storage properties . Nanoscale , 6 , 10511 , 2014 .
- Lu , C. , Li , Z. , Xia , Z. , Ci , H. , Cai , J. , Song , Y. , Yu , L. , Yin , W. , Dou , S. , Sun , J. , Liu , Z. , Confining MOF-derived SnSe nanoplatelets in nitrogen-doped graphene cages via direct CVD for durable sodium ion storage . Nano Res. , 12 , 3051 , 2019 .
- Li , H. , Yang , Q. , Mo , F. , Liang , G. , Liu , Z. , Tang , Z. , Ma , L. , Liu , J. , Shi , Z. , Zhi , C. , MoS 2 nanosheets with expanded interlayer spacing for rechargeable aqueous Zn-ion batteries . Energy Storage Mater. , 19 , 94 , 2021 .
- Liu , H. , Wang , J.G. , Hua , W. , You , Z. , Hou , Z. , Yang , J. , Wei , C. , Kang , F. , Boosting zinc-ion intercalation in hydrated MoS 2 nanosheets toward substantially improved performance . Energy Storage Mater. , 35 , 731 , 2021 .
- Cai , C. , Tao , Z. , Zhu , Y. , Tan , Y. , Wang , A. , Zhou , H. , Yang , Y. , A nano interlayer spacing and rich defect 1T-MoS 2 as cathode for superior performance aqueous zinc-ion batteries . Nanoscale Adv. , 3 , 3780 , 2021 .
- Gao , Z. , Yu , X. , Zhao , J. , Zhao , W. , Xu , R. , Liu , Y. , Shen , H. , Synthesis of long hierarchical MoS 2 nanofibers assembled from nanosheets with an expanded interlayer distance for achieving superb Na-ion storage performance . Nanoscale. , 9 , 15558 , 2017 .
- He , P. , Yan , M. , Zhang , G. , Sun , R. , Chen , L. , An , Q. , Mai , L. , Layered VS 2 nanosheet-based aqueous Zn ion battery cathode . Adv. Energy Mater. , 7 , 1601920 , 2017 .
- Wu , Z. , Lu , C. , Wang , Y. , Zhang , L. , Jiang , L. , Tian , W. , Cai , C. , Gu , Q. , Sun , Z. , Hu , L. , Ultrathin VSe 2 nanosheets with fast ion diffusion and robust structural stability for rechargeable zinc-ion battery cathode . Small , 16 , 2000698 , 2020 .
- Wang , H. , Wang , L. , Wang , X. , Quan , J. , Mi , L. , Yuan , L. , Li , L. , Zhang , B. , Zhong , H. , Jiang , Y. , High quality MoSe 2 nanosphereswith superior electrochemical properties forsodium batteries . J. Electrochem. Soc. , 163 , A1627 , 2016 .
- Zhang , Z. , Yang , X. , Fu , Y. , Du , K. , Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries . J. Power Sources , 296 , 2 , 2015 .
- Panda , M.R. , Raj K, A. , Ghosh , A. , Kumar , A. , Muthuraj , D. , Sau , S. , Yu , W. , Zhang , Y. , Sinha , A.K. , Weyland , M. , Bao , Q. , Mitra , S. , Blocks of molybdenum ditelluride: A high rate anode for sodium-ion battery and full cell prototype study . Nano Energy , 64 , 103951 , 2019 .
- Zhou , J. , Wang , L. , Yang , M. , Wu , J. , Chen , F. , Huang , W. , Han , N. , Ye , H. , Zhao , F. , Li , Y. , Li , Y. , Hierarchical VS 2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions . Adv. Mater. , 29 , 1702061 , 2017 .
- Wang , J. , Luo , N. , Wu , J. , Huang , S. , Yu , L. , Wei , M. , Hierarchical spheres constructed by ultrathin VS 2 nanosheets for sodium-ion batteries . J. Mater. Chem. , 7 , 3691 , 2019 .
- Xu , B. , Ma , X. , Tian , J. , Zhao , F. , Liu , Y. , Wang , B. , Yang , H. , Xia , Y. , Layer-structured NbSe 2 anode material for sodium-ion and potassium-ion batteries . Ionics , 25 , 4171 – 4177 , 2019 .
- Ou , X. , Xiong , X. , Zheng , F. , Yang , C. , Lin , Z. , Hu , R. , Jin , C. , Chen , Y. , Liu , M. , In-situ x-ray diffraction characterization of NbS 2 nanosheets as the anode material for sodium-ion batteries . J. Power Sources , 325 , 410 , 2016 .
- Hong , M. , Li , J. , Zhang , W. , Liu , S. , Chang , H. , Semimetallic 1t0 WTe2 nanorods as anode material for the sodium ion battery . Energy Fuels , 32 , 6371 , 2018 .
- Cho , J.S. , Ju , H.S. , Lee , J.K. , Kang , Y.C. , Carbon/two-dimensional MoTe 2 core/shell-structured microspheres as an anode material for Na-ion batteries . Nanoscale , 9 , 1942 , 2017 .
- Liu , Y. , Zhang , L. , Zhao , Y. , Shen , T. , Yan , X. , Yu , C. et al ., Novel plasma-engineered MoS 2 nanosheets for superior lithium-ion batteries . J. Alloys Compd. , 787 , 996 , 2019 .
- Cha , A. , Patel , M.D. , Park , J. , Hwang , J. , Prasad , V. , Cho , K. et al ., 2D MoS 2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries . Nat. Nanotechnol. , 13 , 337 , 2018 .
- Guo , P. , Liu , D. , Liu , Z. , Shang , X. , Liu , Q. , He , D. , Dual functional MoS 2 / graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries . Electrochim. Acta , 256 , 28 , 2017 .
- Dirlam , P.T. , Park , J. , Simmonds , A.G. , Domanik , K. , Arrington , C.B. , Schaefer , J.L. et al ., Elemental sulfur and molybdenum disulfide composites for Li-S batteries with long cycle life and high-rate capability . ACS Appl. Mater. Interfaces , 8 , 13437 , 2016 .
- Lin , H. , Yang , L. , Jiang , X. , Li , G. , Zhang , T. , Yao , Q. et al ., Electrocatalysis of polysulfide conversion by sulfur-deficient MoS 2 nanoflakes for lithium-sulfur batteries . Energy Environ. Sci. , 10 , 1476 , 2017 .
- Li , Z. , Niu , B. , Liu , J. , Li , J. , Kang , F. , Rechargeable aluminum-ion battery based on mos 2 microsphere cathode . ACS Appl. Mater. Interfaces , 10 , 9451 , 2018 .
- Qiao , J. , Zhou , H. , Liu , Z. , Wen , H. , Yang , J. , Defect-free soft carbon as cathode material for Al-ion batteries . Ionics , 25 , 1235 , 2019 .
- Wu , L. , Sun , R. , Xiong , F. , Pei , C. , Han , K. , Peng , C. , Fan , Y. , Yang , W. , An , Q. , Mai , L. , A rechargeable aluminum-ion battery based on a VS 2 nanosheet cathode . Phys. Chem. Chem. Phys. , 20 , 22563 , 2018 .
- Divya , S. , Johnston , J.H. , Nann , T. , Molybdenum dichalcogenide cathodes for aluminum-ion batteries . Energy Technol. , 8 , 2000038 , 2020 .