Engineering 2D Nanomaterials for Biomedical Applications
Swaati Sharma
Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorHardeep Kaur
Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorMansi Thakur
Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorShinar Athwal
Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorSwaati Sharma
Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorHardeep Kaur
Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorMansi Thakur
Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorShinar Athwal
Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
Search for more papers by this authorSubhendu Chakroborty
Research Coordinator, IES University, Bhopal, India
Search for more papers by this authorKaushik Pal
University Centre for Research and Development (UCRD), Chandigarh University, India
Search for more papers by this authorSummary
Two-dimensional nanomaterials are flattering a novel perception in the electrical, chemical, energy accumulator, and biomedical industries. Subsequently, with the innovation of graphene, scientists have endeavored to discover unique 2D nanomaterials. However, the investigation of 2D nanomaterials is still in its beginning, with most of the investigations emphasizing the interpretation of the description of exceptional material features with rare details aiming at the biomedical solicitation of 2D nanomaterials. Nanoscience and nanotechnology, and their extensive uses, have become widespread globally because nanomaterials have unusual and exceptional properties. The current progress in 2D nanomaterials has increased significantly, and breathtaking queries about their increased connections with biological moieties. A variety of 2D nanomaterials, including 2D metal carbides and nitrides (MXenes), transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), covalent organic frameworks (COFs), metal organic frameworks (MOFs), layered silicates (nanoclays), and polymer nanoparticles have been examined for their potential biomedical applications. In this chapter, we explain the distinctive physical, chemical, and biomedical properties, distinctive properties that mark 2D nanoparticles as precious or important, practices recently exposed to nanomaterial synthesis, biomedical uses of 2D nanomaterials, and their use in the management of diseases such as cancer. We also emphasize state-of-the-art biomedical approaches to 2D nanomaterials, together with modern progress, which are influencing the following evolving sector.
References
- Nanotechnologies–Vocabulary–Part 1: Core Terms , International Organization for Standardization , 2015 . Retrieved January 8, 2018.
- Golberg , D. , Bando , Y. , Stéphan , O. , Kurashima , K. , Octahedral boron nitride fullerenes formed by electron beam irradiation . Appl. Phys. Lett. , 73 , 2441 – 2443 , 1998 .
- Mohapatra , R.K. and Das , D. , Chemical Modification of Solid Surfaces by the Use of Additive , Bentham Science , Singapore , 2020 .
- Gao , P. , Xiao , Y. , Li , L. , Li , W. , Tao , W. , Biomedical applications of 2D monoelemental materials formed by group va and via: A concise review . J. Nanobiotechnol. , 19 , 1 – 23 , 2021 .
- Mei , X. , Hu , T. , Wang , Y. , Weng , X. , Liang , R. , Wei , M. , Recent advancements in two-dimensional nanomaterials for drug delivery . Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. , 12 , e1596 , 2020 .
- Rafiei-Sarmazdeh , Z. , Zahedi-Dizaji , S. M. , Kang , A. K. , Chapter Metrics Overview , Chapter-1 Two-Dimensional Nanomaterials, (Nanostructures) , 807 December 15th, 2018 Reviewed: February 18th, 2019 Published: May 22nd, 2019 .
- Novoselov , K.S. , Geim , A.K. , Morozov , S.V. , Jiang , D.E. , Zhang , Y. , Dubonos , S.V. , Grigorieva , I.V. , Firsov , A.A. , Electric field effect in atomically thin carbon films . Science , 306 , 666 – 669 , 2004 .
- Carrow , J.K. , Singh , K.A. , Jaiswal , M.K. , Ramirez , A. , Lokhande , G. , Yeh , A.T. , Sarkar , T.R. , Singh , I. , Gaharwar , A.K. , Photothermal modulation of human stem cells using light-responsive 2D nanomaterials . Proc. Natl. Acad. Sci. U.S.A. , 117 , 13329 – 13338 , 2020 .
- Hu , T. , Mei , X. , Wang , Y. , Weng , X. , Liang , R. , Wei , M. , Two-dimensional nanomaterials: Fascinating materials in biomedical field . Sci. Bull. , 64 , 1707 – 172 , 2019 .
- Bolotsky , A. , Butler , D. , Dong , C. , Gerace , K. , Glavin , N.R. , Muratore , C. , Robinson , J.A. , Ebrahimi , A. , Two-dimensional materials in biosensing and healthcare: From in vitro diagnostics to optogenetics and beyond . ACS Nano , 13 , 9781 – 9810 , 2019 .
- Tao , W. , Kong , N. , Ji , X. , Zhang , Y. , Sharma , A. , Ouyang , J. , Qi , B. , Wang , J. , Xie , N. , Kang , C. , Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications . Chem. Soc. , 48 , 2891 – 2912 , 2019 .
- Zhen , Z. and Zhu , H. , Graphene: Fabrication, Characterizations, Properties and Applications , p. 538 , Academic Press , Version of Record 22 September 2017 .
- Lv , R. , Robinson , J.A. , Schaak , R.E. , Sun , D. , Sun , Y. , Mallouk , T.E. , Terrones , M. , Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets . Acc. Chem. Res. , 48 , 1 , 56 – 64 , 2015 .
- Manzeli , S. , Ovchinnikov , D. , Pasquier , D. , Yazyev , O.V. , Kis , A. , 2D transition metal dichalcogenides . Nat. Rev. Mater ., 2 , 17033 , Published: June 13, 2017 .
- Kalantar-Zadeh , K. , Ou , J.Z. , Daeneke , T. , Mitchell , A. , Sasaki , T. , Fuhrer , M.S. , Two dimensional and layered transition metal oxides . Appl. Mater. Today , 5 , 73 – 89 , December 2016 .
- Murali , A. , Lokhande , G. , Deo , K.A. , Brokesh , A. , Gaharwal , A.K. , Emerging 2D nanomaterials for biomedical applications . Mater. Today , 50 , 276 – 302 , November 2021 .
- Lee , Y. , Kim , J. , Jung , H. , Kim , M. , Bae , H. , Conductive polymer composites for soft tactile sensors . Adv. Mater. Technol. , 2 , 9 , 1700053 , 2017 .
- Zhu , C. , Du , D. , Lin , Y. , Graphene and graphene-like 2D materials for optical biosencing and bioimaging . 2D Materials , pp. 1 – 17 , IOP Publishing Ltd , 2, September 25, 2015 .
- Luo , Y. , Li , Z. , Ch. Zhu , X., Qu , L. , Du , D. , Lin , Y. , Engineered nanomaterials for photoreduction . Trends Biotechnol ., Science Direct, 36 , 11 , 1145 – 1156 , November 2018 .
- Yadav , V. , Roy , S. , Singh , P. , Khan , Z. , Jaiswal , A. , 2D MoS2-based nanomaterials for the therapeutic, bioimaging and biosensing application . National Library of Medicine , 15 , 1 , November 22, 2018 .
- Bullock , C.J. and Bussy , C. , Biocompatibility considerations in the design of graphene biomedical materials . Adv. Mater. Interf. , 6 , 11 , April 18, 2019 .
- Zhu , W. , Li , H. , Luo , P. , Emerging 2D nanomaterials for multimodel theranostics of cancer . Front. Bioeng. Biotechnol. , November 19, 2021 .
- https://www.ossila.com/en-in/pages/introduction-2d-materials .
- Mohapatra , R.K. , Engineering Chemistry with Laboratory Experiments , PHI , Delhi , 2015 .
- Mohapatra , R.K. , Das , D. , Azam , M. , Chemical Modification of Solid Surfaces by the Use of Additive , Bentham Science , Singapore , 2020 .
- Penkov , O. , Kim , H.-J. , Kim , H.-J. , Kim , D.-E. , Tribology of graphene: A review . Int. J. Precis. Eng. Manuf. , 15 , 3 , 577 – 585 , 2014 .
- Pantelic , R.S. , Meyer , J.C. , Kaiser , U. , Stahlberg , H. , The application of graphene as a sample support in transmission electron microscopy . Sol. State. Commun. , 152 , 15 , 1375 – 1382 , 2012 . Available from: https://www/emsdiasum.com/microscopy/products/graphene/graphene_tem.aspx
- Rao , C.N.R. , Sood , A.K. , Subrahmanyam , K.S. , Govindaraj , A. , Graphene: The new two-dimensional nanomaterial . Angew. Chem. Int. Ed. , 48 , 7752 – 7777 , 2009 .
- Shao , Y. , Wang , J. , Wu , H. , Liu , J. , Aksay , I.A. , Lin , Y. , Graphene based electrochemical sensors and biosensors: A review . Electroanalysis , 22 , 1027 – 1036 , 2010 .
- Geim , A.K. and Kim , P. , Carbon wonderland . Sci. Am. , 298 , 90 – 97 , 2008 .
- Novoselov , K.S. et al ., Electric field effect in atomically thin carbon films . Sci. Natl. Library Med. , 306 , 666 – 669 , 2004 .
- Park , S. and Ruoff , R.S. , Chemical methods for the production of graphenes . Nat. Nanotechnol. , 4 , 217 – 224 , 2009 .
- Sampath , S. , Basuray , A.N. , Hartlieb , K.J. , Aytun , T. , Stupp , S.I. , Stoddart , J.F. , Direct exfoliation of graphite to graphene in aqueous media with diazaperopyrenium dications . Adv. Mater. , 25 , 2740 – 2745 , 2013 .
- http://www.4spepro.org/pdf/004401/004401.pdf
-
Bak , S.
,
Kim , D.
,
Lee , H.
,
Graphene quantum dots and their possible energy applications: A review
.
Curr. Appl. Phys.
,
11
,
1192
–
1201
,
2016
.
10.1016/j.cap.2016.03.026 Google Scholar
- Peng , Z. , Xiang , C. , Yan , Z. , Natelson , D. , Graphene nanoribbon and nanostructured sno2 composite anodes for lithium ion batteries . ACS Nano , 7 , 7 , 6001 – 6006 , 2013 .
- http://s3.amazonaws.com/academia.edu.documents/41175514/Advanced_carbon_aerogels_for_energy_appl20160114-15050-1liyorj.pdf?
- Xia , Z.Y. et al ., The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: A nanoscale study . Adv. Funct. Mater. , 23 , 4684 – 4693 , 2013 .
- Chhowalla , M. et al ., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 263 – 275 , 2013 .
- Nicolosi , V. , Chhowalla , M. , Kanatzidis , G. , Strano , S. , Coleman , N. , Liquid exfoliation of layered materials . Science , 340 , 6139 , 2013 .
- Luckham , F. and Rossi , S. , Colloidal and rheological properties of bentonite suspensions . Adv. Colloid Interface Sci. , 82 , 1 , 43 – 92 , 1999 .
- Eda , G. and Chhowalla , M. , Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics . Adv. Mater. , 22 , 22 , 2392 – 2415 , 2010 .
- Nascimento , J. , Serodre , T. , Santos , J. , Paulinelli , L. , Santos , A. et al ., Molecular insights into the production of few-layer graphene in N-Cyclohexylpyrrolidone + water mixtures . Carbon , 171 , 723 – 738 , 2021 .
- Hernandez , Y. , Nicolosi , V. , Lotya , M. , Blighe , F. , Sun , Z. et al ., High-yield production of graphene by liquid-phase exfoliation of graphite . Nat. Nanotechnol. , 3 , 9 , 563 – 568 , 2008 .
- Lotya , M. , Hernandez , Y. , King , P. , Smith , R. , Nicolosi , V. et al ., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions . J. Am. Chem. Soc. , 131 , 10 , 3611 – 3620 , 2009 .
- Zhou , M. , Tian , T. , Li , X. et al ., Production of graphene by liquid-phase exfoliation of intercalated graphite . Int. J. Electrochem. Sci. , 9 , 2 , 810 – 820 , 2014 .
- Wang , M. , Xu , X. , Ge , Y. , Dong , P. , Baines , R. et al ., Surface tension components ratio: An efficient parameter for direct liquid phase exfoliation . ACS Appl. Mater. Interfaces , 9 , 10 , 9168 – 9175 , 2017 .
- Narayan , R. and Kim , S. , Surfactant mediated liquid phase exfoliation of graphene . Nano Converg. , 2 , 1 , 2015 .
- Shen , J. , He , Y. , Wu , J. , Gao , C. , Keyshar , K. et al ., Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components . Nano Lett. , 15 , 8 , 5449 – 5454 , 2015 .
- Cui , X. , Zhang , C. , Hao , R. , Hou , Y. , Liquid-phase exfoliation, functionalization and applications of graphene . Nanoscale , 3 , 5 , 2118 – 2126 , 2011 .
- Schniepp , H. , Li , J. , Mcallister , M. , Sai , H. , Herrera-Alonso , M. et al ., Functionalized single graphene sheets derived from splitting graphite oxide . J. Phys. Chem. B , 110 , 17 , 8535 – 8539 , 2006 .
- Mcallister , M. , Li , J. , Adamson , D. , Schniepp , H. , Abdala , A. et al ., Single sheet functionalized graphene by oxidation and thermal expansion of graphite . Chem. Mater. , 19 , 4 , 4396 – 4404 , 2007 .
- https://www.cheaptubes.com/graphene-synthesis-properties-and-applications/
- Nair , R.R. , Blake , P. , Grigorenko , A.N. , Novoselov , K.S. , Booth , T.J. , Stauber , T. , Peres , N.M.R. , Geim , A.K. , Fine structure constant defines visual transparency of graphene . Science , 320 , 5881 , 1308, June 6, 2008 .
- Balandin , A.A. , Ghosh , S. , Bao , W. , Calizo , I. , Teweldebrhan , D. , Miao , F. , Lau , C.N. , Superior thermal conductivity of single-layer graphene . Nano Lett. , 8 , 3 , 902 – 907 , February 20, 2008 .
- Touloukian , Y.S. , Thermophysical Properties of Matter: Thermal Conductivity: Nonmetallic Solids , vol. 7 , IFI/Plenum , Plenum Publishing , 1970 .
- Lee , C. , Wei , X.D. , Kysar , J.W. , Hone , J. , Measurement of the elastic properties and intrinsic strength of monolayer grapheme . Science , 321 , 385 – 388 , 2008 .
- Briggs , B.D. , Nagabhirava , B. , Rao , G. , Deer , R. , Gao , H. , Xu , Y. , Yu , B. , Electromechanical robustness of monolayer graphene with extreme bending . Appl. Phys. Lett. , 97 , 22 , 223102 , 2010 .
- Shehzad , K. , Xu , Y. , Gao , C. , Duan , X. , Three-dimensional macro-structures of two-dimensional nanomaterials . Chem. Soc. Rev. , 45 , 20 , 5541 – 5588 , 2016 .
- Al Faruque , M.A. , Syduzzaman , M. , Sarkar , J. , Bilisik , K. , Naebe , M. , A review on the production methods and applications of graphene-based materials . Nanomaterials MDPI , 11 , 2414 , 1 – 34 , 2021 .
- Hasan , T. , Hu , G. , Howe , R. , Yang , Z. , New graphene based inks for hugh-speed manufacturing of printed electronics , University of Cambridge , Oct. 19, 2015 .
- Lei , W. , Li , C. , Cole , M. , Qu , K. , Ding , S. , Zhang , Y. , Warner , J. , Zhang , X. , Wang , B. , Milne , W. , A graphene-based large area surface-conduction electron emission display . Carbon , 56 , 255 – 263 , 2013 .
- Oyefusi , A. et al ., Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: Promising bone implant materials . Spectrochim. Acta A Mol. Biomol. Spectrosc. , 132 , 410 – 416 , 2014 .
- Cutting Edge Vision and Innovation in Graphene Application . Applied Graphene Materials PLC, Graphene dispersions. appliedgraphenematerials. com. Archived from the original on 27 May 2014 . Retrieved 26 May 2014.
- Kang , J. , Matsumoto , Y. , Li , X. , Jiang , J. , Xie , X. , Kawamoto , K. , Kenmoku , M. , Chu , J.H. , Liu , W. , Mao , J. , Ueno , K. , Banerjee , K. , On-chip intercalated-graphene inductors for next-generation radio frequency electronics . Nat. Electron. , 1 , 46 – 51 , 2018 .
- Paine , R.T. and Narula , C.K. , Synthetic routes to boron nitride . Chem. Rev. , 90 , 73 – 91 , 1990 .
- Kawaguchi , M. et al ., Electronic structure and intercalation chemistry of graphite-like layered material with a composition of BC6N . J. Phys. Chem. Solids , 69 , 5 – 6 , 1171, 2008 .
- Lin , Y. and Connell , J.W. , Advances in 2D boron nitride nanostructures: Nanosheets, nanoribbons, nanomeshes, and hybrids with graphene . Nanoscale , 4 , 6908 – 6939 , 2012 .
- Song , L. et al ., Large scale growth and characterization of atomic hexagonal boron nitride layers . Nano Lett. , 10 , 3209 – 3215 , 2010 .
- Shi , Y. et al ., Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition . Nano Lett. , 10 , 4134 – 4139 , 2010 .
- Marom , N. et al ., Stacking and registry effects in layered materials: The case of hexagonal boron nitride . Phys. Rev. Lett. , 105 , 046801 – 046804 , 2010 .
- Erickson , K.J. et al ., Longitudinal splitting of boron nitride nanotubes for the facile synthesis of high quality boron nitride nanoribbons . Nano Lett. , 11 , 3221 – 3226 , 2011 .
- Blasé , X. , De Vita , A. , Charlier , J.C. , Car , R. , Frustration effects and microscopic growth mechanisms for BN nanotubes . Phys. Rev. Lett. , 80 , 1666 – 1669 , 1998 .
- Rudolph , S. , Boron nitride (BN) . Am. Ceram. Soc. Bull. , 79 , 50 , 2007 .
- Engler , M. , Hexagonal boron nitride (hbn)–applications from metallurgy to cosmetics . Ceram. Forum Int. Ber. DKG , 84 , 2007 .
- Hubacek , M. , Synthesis of Boron Nitride from Oxide Precursors , TMD Hosting , December 12, 2007 .
- Mirkarimi , P.B. et al ., Review of advances in cubic boron nitride film synthesis . Mater. Sci. Eng. R Rep. , 21 , 2 , 47 – 100 , 1997 .
- Tornieporth-Oetting , I. and Klapötke , T. , Nitrogen triiodide . Angew. Chem. Int. Ed. , 29 , 6 , 677 – 679 , 1990 .
-
Pan , Z.
et al
.,
Harder than diamond: Superior indentation strength of wurtzite BN and lonsdaleite
.
Phys. Rev. Lett.
,
102
,
5
,
055503
,
2012
.
10.1103/PhysRevLett.102.055503 Google Scholar
- Leichtfried , G. et al ., 13.5 Properties of diamond and cubic boron nitride , in: Landolt-Börnstein–Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials , vol. 2A2 , P. Beiss (Eds.), pp. 118 – 139 , Springer , Berlin , 2002 .
- Housecroft , C.E. and Sharpe , A.G. , Inorganic Chemistry , 2 nd ed., vol. 318 , Pearson Education , 2005 .
- Engler , M. , Hexagonal boron nitride (hBN)–applications from metallurgy to cosmetics . Ceram. Foeum Int. Ber. DKG , 84 , 0173 – 9913 , 2007 .
- Greim , J. and Schwetz , K.A. , Boron carbide, boron nitride, and metal borides , in: Ullmann's Encyclopedia of Industrial Chemistry , Wiley-VCH , Weinheim , 2005 .
- Schein , L.B. , Springer Series in Electrophysics, Electrophotography and Development Physics. Physics Today , vol. 14 , pp. 66 – 68 , Springer-Verlag , Berlin , 1988 .
- Engler , M. , Hexagonal boron nitride (hBN)–applications from metallurgy to cosmetics . Ceram. Foeum Int. Ber. DKG , 84 , 0173 – 9913 , 2007 .
- Kawaguchi , M. et al ., Electronic structure and intercalation chemistry of graphite-like layered material with a composition of BC6N . J. Phys. Chem. Solids , 69 , 5 – 6 , 1171, 2008 .
- Hu , S. et al ., Proton transport through one-atom-thick crystals . Nature , 516 , 7530 , 227 – 230 , 2014 .
- Park , J.-H. , Park , J.C. , Yun , S.J. , Kim , H. , Luong , D.H. , Kim , S.M. , Choi , S.H. , Yang , W. , Kong , J. , Kim , K.K. , Lee , Y.H. , Large-area monolayer hexagonal boron nitride on Pt foil . ACS Nano , 8 , 8 , 8520 – 8 , 2014 .
- Chhowalla , M. , Shin , H.S. , Eda , G. , Li , L.J. , Loh , K.P. , Zhang , H. , The chemistry of 2D layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 263 – 275 , 2013 .
- Zhang , X. , Lai , Z. , Tan , C. , Zhang , H. , Solution-processed two-dimensional MoS2 nanosheets . Angew. Chem. Int. Ed. , 55 , 8816 – 8838 , 2016 .
- Mak , K.F. , Lee , C. , Hon , J. , Shan , J. , Heinz , T.F. , Atomically thin MoS2: A new direct gap semiconductor . Phys. Rev. Lett. , 105 , 136805 – 136808 , 2010 .
- Xu , M. , Liang , T. , Shi , M. , Chen , H. , Graphene-like two-dimensional materials . Chem. Rev. , 113 , 3766 – 3798 , 2013 .
- Mak , K.F. , Lee , C. , Hone , J. , Shan , J. , Heinz , T.F. , Atomically thin MoS2: A new direct-gap semiconductor . Phys. Rev. Lett. , 105 , 13 , 2010 .
- Yin , Z.Y. , Li , H. , Jiang , L. , Shi , Y.M. , Sun , Y.H. , Lu , G. , Zhang , Q. , Chen , X.D. , Zhang , H. , Single-layer MoS2 phototransistors . ACS Nano , 6 , 74 , 2012 .
- Li , H. , Yin , Z.Y. , He , Q.Y. , Huang , X. , Lu , G. , Fam , D.W.H. , Tok , A.I.Y. , Zhang , Q. , Zhang , H. , Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature . Small , 8 , 63 , 2012 .
- Ghatak , S. , Pal , A.N. , Ghosh , A. , Nature of electronic states in atomically thin mos2 field-effect transistors . ACS Nano , 5 , 7707 , 2011 .
- Walker , G.F. , Macroscopic swelling of vermiculite crystals in water . Nature , 187 , 312 , 1960 .
- Feng , J. , Sun , X. , Wu , C.Z. , Peng , L.L. , Lin , C.W. , Hu , S.L. , Yang , J.L. , Xie , Y. , Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors . J. Am. Chem. Soc. , 133 , 17832 , 2011 .
- Golberg , D. , Exfoliating the inorganics . Nat. Nanotechnol. , 6 , 200 , 2011 .
- Feng , J. , Peng , L.L. , Wu , C.Z. , Su , X. , Hu , S.L. , Lin , C.W. , Dai , J. , Yang , J.L. , Xie , Y. , Physical properties of inorganic two-dimensional nanomaterilas . Chem. Soc. Rev. , 24 , 1969 , 2012 .
- Dines , M.B. , Intercalation in layered compounds . J. Chem. Educ. , 51 , 211 , 1974 .
- Han , S.A. , Bhatia , R. , Kim , S.-W. , Synthesis, propperties and potential applications of two-dimensional transition metan dichalcogenides . Nano Converg. , 2 , 17 , 2015 .
- Lee , Y.-H. , Zhang , X.-Q. , Zhang , W. , Chang , M.-T. , Lin , C.-T. , Chang , K.-D. , Yu , Y.-C. , Wang , J.T.-W. , Chang , C.-S. , Li , L.-J. , Lin , T.-W. , Synthesis of large-area MoS2 atomic layers with chemical vapor deposition . Adv. Mater. , 24 , 2320 , 2012 .
- Lee , Y.-H. , Yu , L. , Wang , H. , Fang , W. , Ling , X. , Shi , Y. , Lin , C.-T. , Huang , J.-K. , Chang , M.-T. , Chang , C.-S. , Dresselhaus , M. , Palacios , T. , Li , L.-J. , Kong , J. , Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces . Nano Lett. , 13 , 1852 , 2013 .
- https://www.ossila.com/en-in/pages/introduction-2d-materials .
- Castellanos-Gomez , A. , Poot , M. , Steele , G.A. , van der Zant , H.S.J. , Agraït , N. , Rubio-Bollinger , G. , Elastic properties of Freely Suspended MoS2 nanosheets . Adv. Mater. , 24 , 772 , 2012 .
- Bertolazzi , S. , Brivio , J. , Kis , A. , Stretching and breaking of uitrathin MoS2 . ACS Nano , 5 , 9703 , 2011 .
- Chhowalla , M. , Shin , H.S. , Eda , G. , Li , L.J. , Loh , K.P. , Zhang , H. , The chemistry of 2D dimensional layered transition metal dichalcogenide nanosheets . Nat. Chem. , 5 , 263 , 2013 .
- Benameur , M.M. , Radisavljevic , B. , Heron , J.S. , Sahoo , S. , Berger , H. , Kis , A. , Visibility of dichalcogenide nanolayers . Nanotechnology , 22 , 125706 , 2011 .
- Li , H. , Lu , G. , Yin , Z.Y. , He , Q.Y. , Zhang , Q. , Zhang , H. , Optical identification of single- and few-layered MoS2 sheets . Small , 8 , 682 , 2012 .
- Zhong , C. , Duan , C. , Huang , F. , Wu , H. , Cao , Y. , Chem. Mater. , 23 , 326 , 2010 .
- Han , S.A. , Bhatia , R. , Kim , S.-W. , Synthesis, propperties and potential applications of two-dimensional transition metan dichalcogenides . Nano Converg. , 2 , 17 , 1 – 14 , 2015 .
- Xiao , J. , Choi , D. , Cosimbescu , L. , Koech , P. , Liu , J. , Lemmon , J.P. , A graphene-like MoS2/graphene nanocomposite as a high performance anode for lithium ion batteries . Chem. Mater. , 22 , 4522 , 2010 .
- Ornes , S. , Lawrence Berkeley National Laboratory , Berkeley Lab. U.S. Department of Energy Office of Science , August 25, 2022 .
- Cao , Y. , Fatemi , V. , Fang , S. , Watanabe , K. , Taniguchi , T. , Kaxiras , E. , Jarillo-Herrero , P. , Unconventional superconductivity in magic-angle graphene superlattice . Nature , 556 , 43 , 2018 .