Lipoxygenase Dynamics and Catalysis Studied by Temperature-Dependent Hydrogen–Deuterium Exchange
Adam R. Offenbacher
East Carolina University, Greenville, NC, USA
Search for more papers by this authorAdam R. Offenbacher
East Carolina University, Greenville, NC, USA
Search for more papers by this authorAbstract
An active pursuit in biochemistry is the understanding of how the structure and dynamics of protein systems regulate their biological function. In this chapter, we describe temperature-dependent hydrogen–deuterium exchange mass-spectrometry (TDHDX-MS) as a tool used to investigate the structure and dynamics of metalloenzymes in solution. While the method is applicable to many metalloproteins, this review will present TDHDX-MS studies centered on the widely represented family of mononuclear, non-heme iron containing lipoxygenase (LOX) enzymes that oxidize fatty acids to initiate biological reactions and activate cellular signaling. We will present how TDHDX has been used to describe the anisotropic nature of energy transfer in LOXs to initiate the rate-limiting hydrogen atom transfer reaction that proceeds through a tunneling process. Further, TDHDX-MS has been used detect protein motions and conformations in LOXs related to molecular recognition, protein allostery, and polymorphisms linked to disease.
References
- 1B. G. Miller and R. Wolfenden, Annu. Rev. Biochem., 2002, 71, 847.
- 2J.-L. Yu, S. Wu, C. Zhou, Q.-Q. Dai, C. J. Schofield and G.-B. Li, Nucleic Acids Res., 2023, 51, 593.
- 3W. Lubitz, M. Chrysina and N. Cox, Photosynth. Res., 2019, 142, 105.
- 4S. Yoshikawa and A. Shimada, Chem. Rev., 2015, 115, 1936.
- 5B. L. Greene, G. Kang, C. Cui, M. Bennati, D. G. Nocera, C. L. Drennan and J. Stubbe, Annu. Rev. Biochem., 2020, 89, 45.
- 6B. M. Hoffman, D. Lukoyanov, Z.-Y. Yang, D. R. Dean and L. C. Seefeldt, Chem. Rev., 2014, 114, 4041.
- 7J. P. Klinman and A. R. Offenbacher, Acc. Chem. Res., 2018, 51, 1966.
- 8M. Knapp, J. Mendoza and J. Bridwell-Rabb, in ‘ Encyclopedia of Biological Chemistry III’, 3rd edition, ed. J. Jez, Elsevier, 2021, p. 413.
10.1016/B978-0-12-819460-7.00140-7 Google Scholar
- 9M. Montalban-Lopez, T. A. Scott, S. Ramesh, I. R. Rahman, A. J. van Heel, J. H. Viel, V. Bandarian, E. Dittmann, O. Genilloud, Y. Goto, M. J. G. Burgos, C. Hill, S. Kim, J. Koehnke, J. A. Latham, A. J. Link, B. Martinez, S. K. Nair, Y. Nicolet, S. Rebuffat, H.-G. Sahl, D. Sareen, E. W. Schmidt, L. Schmitt, K. Severinov, R. D. Sussmuth, A. W. Truman, H. Wang, J.-K. Weng, G. P. van Wezel, Q. Zhang, J. Zhong, J. Piel, D. A. Mitchell, O. P. Kuipers and W. A. van der Donk, Nat. Prod. Rep., 2021, 38, 130.
- 10X. Huang and J. T. Groves, J. Biol. Inorg. Chem., 2016, 22, 185.
- 11A.-F. Miller, Acc. Chem. Res., 2008, 41, 501.
- 12J. C. Lewis, Acc. Chem. Res., 2019, 52, 576.
- 13E. I. James, T. A. Murphree, C. Vorauer, J. R. Engen and M. Guttman, Chem. Rev., 2022, 122, 7562.
- 14K. D. Rand, M. Zehl and T. J. D. Jorgensen, Acc. Chem. Res., 2014, 47, 3018.
- 15J. R. Engen, T. Botzanowski, D. Peterle, F. Georgescauld and T. E. Wales, Anal. Chem., 2021, 93, 567.
- 16K. A. Cupp-Sutton, T. Welborn, M. Fang, J. B. Langford, Z. Wang, K. Smith and S. Wu, J. Proteome Res., 2023, 22, 532.
- 17G. R. Masson, J. E. Burke, N. G. Ahn, G. S. Anand, C. Borchers, S. Brier, G. M. Bou-Assaf, J. R. Engen, S. W. Englander, J. Faber, R. Garlish, P. R. Griffin, M. L. Gross, M. Guttman, Y. Hamuro, A. J. R. Heck, D. Houde, R. E. Iacob, T. J. D. Jorgensen, I. A. Kaltashov, J. P. Klinman, L. Konermann, P. Man, L. Mayne, B. D. Pascal, D. Reichmann, M. Skehel, J. Snijder, T. S. Strutzenberg, E. S. Underbakke, C. Wagner, T. E. Wales, B. T. Walters, D. D. Weis, D. J. Wilson, P. L. Wintrode, Z. Zhang, J. Zheng, D. C. Schriemer and K. D. Rand, Nat. Methods, 2019, 16, 595.
- 18S. W. Englander, J. Am. Soc. Mass Spectrom., 2006, 17, 1481.
- 19L. Konermann, J. Pan and Y.-H. Liu, Chem. Soc. Rev., 2011, 40, 1224.
- 20S. W. Englander, T. R. Sosnick, J. J. Englander and L. Mayne, Curr. Opin. Struct. Biol., 1996, 6, 18.
- 21A. N. Hoofnagle, K. A. Resing and N. G. Ahn, Annu. Rev. Biophys. Biomol. Struct., 2003, 32, 1.
- 22T. E. Wales and J. R. Engen, Mass Spectrom. Rev., 2005, 25, 158.
10.1002/mas.20064 Google Scholar
- 23G. P. Connelly, Y. Bai, M.-F. Jeng and S. W. Englander, Proteins, 1993, 17, 87.
- 24F. Persson and B. Halle, Proc. Natl. Acad. Sci. U. S. A., 2015, 112, 10383.
- 25L. Konermann, X. Tong and Y. Pan, J. Mass Spectrom., 2008, 43, 1021.
- 26Y. Bai, J. S. Milne, L. Mayne and S. W. Englander, Proteins Struct. Funct. Genet., 1993, 17, 75.
- 27J. P. Klinman, FEBS Lett., 2022, 597, 79.
- 28D. M. Ferraro, N. D. Lazo and A. D. Robertson, Biochemistry, 2004, 43, 587.
- 29Z.-X. Liang, T. Lee, K. A. Resing, N. G. Ahn and J. P. Klinman, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 9556.
- 30T. R. Keppel, B. A. Howard and D. D. Weis, Biochemistry, 2011, 50, 8722.
- 31A. R. Offenbacher, S. Hu, E. M. Poss, C. A. M. Carr, A. D. Scouras, D. M. Prigozhin, A. T. Iavarone, A. Palla, T. Alber, J. S. Fraser and J. P. Klinman, ACS Cent. Sci., 2017, 3, 570.
- 32S. Gao, E. J. Thompson, S. L. Barrow, W. Zhang, A. T. Iavarone and J. P. Klinman, J. Am. Chem. Soc., 2020, 142, 19936.
- 33A. Ohler, P. E. Taylor, J. A. Bledsoe, A. T. Iavarone and A. R. Offenbacher, ACS Catal., 2024, 14, 5444.
- 34S. Gao and J. P. Klinman, Curr. Opin. Struct. Biol., 2022, 75, 102434.
- 35A. R. Offenbacher, A. T. Iavarone and J. P. Klinman, J. Biol. Chem., 2018, 293, 1138.
- 36A. R. Brash, J. Biol. Chem., 1999, 274, 23679.
- 37I. Feussner and C. Wasternack, Annu. Rev. Plant Biol., 2002, 53, 275.
- 38J. Z. Haeggstrom and C. D. Funk, Chem. Rev., 2011, 111, 5866.
- 39J. P. Klinman, Biochemistry, 2013, 52, 2068.
- 40N. Lehnert and E. I. Solomon, J. Biol. Inorg. Chem., 2003, 8, 294.
- 41E. Hatcher, A. V. Soudackov and S. Hammes-Schiffer, J. Am. Chem. Soc., 2004, 126, 5763.
- 42M. E. Newcomer and A. R. Brash, Protein Sci., 2015, 24, 298.
- 43L. Collazo and J. P. Klinman, J. Biol. Chem., 2016, 291, 9052.
- 44G. Coffa, C. Schneider and A. R. Brash, Biochem. Biophys. Res. Commun., 2005, 338, 87.
- 45J. C. Boyington, B. J. Gaffney and L. M. Amzel, Science, 1993, 260, 1482.
- 46E. H. Oliw, Arch. Biochem. Biophys., 2024, 752, 109874.
- 47R. C. Scarrow, M. G. Trimitsis, C. P. Buck, G. N. Grove, R. A. Cowling and M. J. Nelson, Biochemistry, 1994, 33, 15023.
- 48T. Yu, A. V. Soudackov and S. Hammes-Schiffer, J. Phys. Chem. Lett., 2016, 7, 3429.
- 49B. J. Gaffney, D. V. Mavrophilipos and K. S. Doctor, Biophys. J., 1993, 64, 773.
- 50E. Skrzypczak-Jankun, R. A. Bross, R. T. Carroll, W. R. Dunham and M. O. Funk, J. Am. Chem. Soc., 2001, 123, 10814.
- 51J. J. de Groot, G. A. Veldink, J. F. G. Vliegenthart, J. Boldingh, R. Wever and B. F. van Gelder, Biochim. Biophys. Acta, 1975, 377, 71.
- 52S. Slappendel, G. A. Veldink, J. F. G. Vliegenthart, R. Aasa and B. G. Malmstrom, Biochim. Biophys. Acta, 1981, 667, 77.
- 53M. J. Nelson, Biochemistry, 1988, 27, 4273.
- 54B. J. Gaffney, M. D. Bradshaw, S. D. Frausto, F. Wu, J. H. Freed and P. Borbat, Biophys. J., 2012, 103, 2134.
- 55M. D. Bradshaw and B. J. Gaffney, Biochemistry, 2014, 53, 5102.
- 56M. Horitani, A. R. Offenbacher, C. A. M. Carr, T. Yu, V. Hoeke, G. E. Cutsail, III S. Hammes-Schiffer, J. P. Klinman and B. M. Hoffman, J. Am. Chem. Soc., 2017, 139, 1984.
- 57A. Sharma, C. Whittington, M. Jabed, S. G. Hill, A. Kostenko, T. Yu, P. Li, P. E. Doan, B. M. Hoffman and A. R. Offenbacher, Biochemistry, 2023, 62, 1531.
- 58J. P. Klinman, A. R. Offenbacher and S. Hu, J. Am. Chem. Soc., 2017, 139, 18409.
- 59A. R. Offenbacher and T. R. Holman, Molecules, 2020, 25, 3374.
- 60N. C. Gilbert, S. G. Bartlett, M. T. Waight, D. B. Neau, W. E. Boeglin, A. R. Brash and M. E. Newcomer, Science, 2011, 331, 217.
- 61P. Eek, R. Jarving, N. C. Gilbert, M. E. Newcomer and N. Samel, J. Biol. Chem., 2012, 287, 22377.
- 62X.-S. Chen and C. D. Funk, J. Biol. Chem., 2001, 276, 811.
- 63D. L. Rohlik, E. Patel, N. C. Gilbert, A. R. Offenbacher and B. L. Garcia, Biochem. Biophys. Res. Commun., 2023, 670, 47.
- 64M. J. Kobe, D. B. Neau, C. E. Mitchell, S. G. Bartlett and M. E. Newcomer, J. Biol. Chem., 2015, 289, 8562.
10.1074/jbc.M113.543777 Google Scholar
- 65T. Hammarberg, P. Provost, B. Persson and O. Radmark, J. Biol. Chem., 2000, 275, 38787.
- 66R. Jarving, A. Lookene, R. Kurg, L. Siimon, I. Jarving and N. Samel, Biochemistry, 2012, 51, 3310.
- 67E. H. Oliw, Arch. Biochem. Biophys., 2022, 722, 109169.
- 68C. Schneider, K. Niisuke, W. E. Boeglin, M. Voehler, D. F. Stec, N. A. Porter and A. R. Brash, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 18941.
- 69R. Chrisnasari, M. Hennebelle, J.-P. Vincken, W. J. H. van Berkel and T. A. Ewing, Biotechnol. Adv., 2022, 61, 108046.
- 70A. R. Offenbacher, J. P. Roth and J. P. Klinman, in ‘ Encyclopedia of Biological Chemistry III’, 3rd edition, ed. J. Jez, Elsevier, 2021, p. 44.
10.1016/B978-0-12-809633-8.21376-9 Google Scholar
- 71C.-C. Hwang and C. B. Grissom, J. Am. Chem. Soc., 1994, 116, 795.
- 72M. H. Glickman, J. S. Wiseman and J. P. Klinman, J. Am. Chem. Soc., 1994, 116, 793.
- 73M. H. Glickman and J. P. Klinman, Biochemistry, 1996, 35, 12882.
- 74M. H. Glickman and J. P. Klinman, Biochemistry, 1995, 34, 14077.
- 75T. Jonsson, M. H. Glickman, S. Sun and J. P. Klinman, J. Am. Chem. Soc., 1996, 118, 10319.
- 76M. J. Knapp, K. W. Rickert and J. P. Klinman, J. Am. Chem. Soc., 2002, 124, 3865.
- 77A. T. Wecksler, V. Kenyon, N. K. Garcia, J. D. Deschamps, W. A. van der Donk and T. R. Holman, Biochemistry, 2009, 48, 8721.
- 78A. T. Wecksler, C. Jacquot, W. A. van der Donk and T. R. Holman, Biochemistry, 2009, 48, 6259.
- 79E. N. Seagraves and T. R. Holman, Biochemistry, 2003, 42, 5236.
- 80A. Kostenko, K. Ray, A. T. Iavarone and A. R. Offenbacher, Biochemistry, 2019, 58, 3193.
- 81C. Su, M. Sahlin and E. H. Oliw, J. Biol. Chem., 2000, 275, 18830.
- 82C. A. M. Carr and J. P. Klinman, Biochemistry, 2014, 53, 2212.
- 83A. R. Brash, C. Schneider and M. Hamberg, Lipids, 2012, 47, 101.
- 84I. Hoffmann, M. Hamberg, R. Lindh and E. H. Oliw, Biochim. Biophys. Acta, 2012, 1821, 1508.
- 85M. R. Egmond, G. A. Veldink, J. F. G. Vliegenthart and J. Boldingh, Biochem. Biophys. Res. Commun., 1973, 54, 1178.
- 86K. W. Rickert and J. P. Klinman, Biochemistry, 1999, 38, 12218.
- 87K. S. Venkatasubban and R. L. Schowen, Crit. Rev. Biochem., 1984, 17, 1.
- 88S. Hu, S. C. Sharma, A. D. Scouras, A. V. Soudackov, C. A. M. Carr, S. Hammes-Schiffer, T. Alber and J. P. Klinman, J. Am. Chem. Soc., 2014, 136, 8157.
- 89A. V. Soudackov and S. Hammes-Schiffer, Faraday Discuss., 2016, 195, 171.
- 90A. R. Offenbacher, A. Sharma, P. E. Doan, J. P. Klinman and B. M. Hoffman, Biochemistry, 2020, 59, 901.
- 91P. Singh, A. Vandemeulebroucke, J. Li, C. Schulenburg, G. Fortunato, A. Kohen, D. Hilvert and C. M. Cheatum, ACS Catal., 2021, 11, 6726.
- 92J. P. T. Zaragoza, A. R. Offenbacher, S. Hu, C. L. Gee, Z. M. Firestein, N. Minnetian, Z. Deng, F. Fan, A. T. Iavarone and J. P. Klinman, Proc. Natl. Acad. Sci. U. S. A., 2023, 120, e2211630120.
- 93S. Hu, J. Cattin-Orola, J. W. Munos and J. P. Klinman, Angew. Chem., 2016, 55, 9361.
- 94D. M. Leitner, Annu. Rev. Phys. Chem., 2008, 59, 233.
- 95A. Kohen, R. Cannio, S. Bartolucci and J. P. Klinman, Nature, 1999, 399, 496.
- 96Z. D. Nagel, S. Cun and J. P. Klinman, J. Biol. Chem., 2013, 288, 14087.
- 97Z. D. Nagel and J. P. Klinman, Chem. Rev., 2006, 106, 3095.
- 98J. J. Marsh, H. S. Guan, S. Li, P. G. Chiles, D. Tran and T. A. Morris, Biochemistry, 2013, 52, 5491.
- 99I. R. Moller, M. Slivacka, J. Hausner, A. K. Nielsen, E. Pospisilova, P. S. Merkle, R. Liskova, M. Polak, C. J. Loland, A. Kadek, P. Man and K. D. Rand, Anal. Chem., 2019, 91, 10970.
- 100M. P. Meyer, D. R. Tomchick and J. P. Klinman, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 1146.
- 101J. S. Fraser, M. W. Clarkson, S. C. Degnan, R. Erion, D. Kern and T. Alber, Nature, 2009, 462, 669.
- 102J. S. Fraser, H. van den Bedem, A. J. Samelson, P. T. Lang, J. M. Holton, N. Echols and T. Alber, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 16247.
- 103J. P. T. Zaragoza, A. Nguy, N. Minnetian, Z. Deng, A. T. Iavarone, A. R. Offenbacher and J. P. Klinman, J. Phys. Chem. B, 2019, 123, 8662.
- 104X. Yu and D. M. Leitner, J. Phys. Chem. B, 2003, 107, 1698.
- 105L. Guevara, M. Gouge, A. Ohler, S. G. Hill, E. Patel and A. R. Offenbacher, Arch. Biochem. Biophys., 2023, 747, 109740.
- 106S. V. Kathuria, Y. H. Chan, R. P. Nobrega, A. Ozen and C. R. Matthews, Protein Sci., 2016, 25, 662.
- 107F. Desantis, M. Miotto, L. Di Rienzo, E. Milanetti and G. Ruocco, Sci. Rep., 2022, 12, 12087.
- 108D. Schell, J. Tsai, J. M. Scholtz and C. N. Pace, Proteins, 2006, 63, 278.
- 109M. M. Pinney, D. A. Mokhtari, E. Akiva, F. Yabukarski, D. M. Sanchez, R. Liang, T. Doukov, T. J. Martinez, P. C. Babbitt and D. Herschlag, Science, 2021, 371, eaay2784.
- 110K. B. Zeldovich, I. N. Berezovsky and E. I. Shaknovich, PLoS Comput. Biol., 2007, 3, e5.
- 111A. E. Eriksson, W. A. Baase, X. J. Zhang, D. W. Heinz, M. Blaber, E. P. Baldwin and B. W. Matthews, Science, 1992, 255, 178.
- 112K. Wolek, A. Gomez-Sicilia and M. Cieplak, J. Chem. Phys., 2015, 143, 243105.
- 113J. Zhang, J. L. Balsbaugh, S. Gao, N. G. Ahn and J. P. Klinman, Proc. Natl. Acad. Sci. U. S. A., 2020, 117, 10797.
- 114E. J. Thompson, A. Paul, A. T. Iavarone and J. P. Klinman, J. Am. Chem. Soc., 2021, 143, 785.
- 115S. Hu, A. R. Offenbacher, E. M. Thompson, C. L. Gee, J. Wilcoxen, C. A. M. Carr, D. M. Prigozhin, V. Yang, T. Alber, R. D. Britt, J. S. Fraser and J. P. Klinman, J. Am. Chem. Soc., 2019, 141, 1555.
- 116C. H. Clapp, M. Strulson, P. C. Rodriguez, R. Lo and M. J. Novak, Biochemistry, 2006, 45, 15884.
- 117R. Mogul, E. Johansen and T. R. Holman, Biochemistry, 2000, 39, 4801.
- 118A. T. Wecksler, N. K. Garcia and T. R. Holman, Bioorg. Med. Chem., 2009, 17, 6534.
- 119V. C. Ruddat, S. Whitman, T. R. Holman and C. F. Bernasconi, Biochemistry, 2003, 42, 4172.
- 120D. E. Roberts, A. M. Benton, C. Fabian-Bayola, A. M. Spuches and A. R. Offenbacher, FEBS Lett., 2022, 596, 350.
- 121W.-C. Tsai, N. C. Gilbert, A. Ohler, M. Armstrong, S. Perry, C. Kalyanaraman, A. Yasgar, G. Rai, A. Simeonov, A. Jadhav, M. Standley, H.-W. Lee, P. Crews, A. T. Iavarone, M. P. Jacobson, D. B. Neau, A. R. Offenbacher, M. E. Newcomer and T. R. Holman, Bioorg. Med. Chem., 2021, 46, 116349.
- 122I. Ivanov, W. Shang, L. Toledo, L. Masgrau, D. I. Svergun, S. Stehling, H. Gomez, A. Di Venere, G. Mei, J. M. Lluch, E. Skrzypczak-Jankun, A. Gonzalez-Lafont and H. Kuhn, Proteins, 2011, 80, 703.
- 123T. M. Weaver, Protein Sci., 2000, 9, 201.
- 124R. B. Cooley, D. J. Arp and P. A. Karplus, J. Mol. Biol., 2010, 404, 232.
- 125V. Le Guilloux, P. Schmidtke and P. Tuffery, BMC Bioinformatics, 2009, 10, 168.
- 126M. A. C. Neves, M. Yeager and R. Abagyan, J. Phys. Chem. B, 2012, 116, 7006.
- 127H. Kuhn, S. Banthiya and K. van Leyen, Biochim. Biophys. Acta, 2015, 1851, 308.
- 128J. Yeung, P. Fernandez-Perez, J. Vesci, T. R. Holman and M. Holinstat, Blood, 2013, 122, 3515.
- 129J. M. Connolly and D. P. Rose, Cancer Lett., 1998, 132, 107.
- 130S. A. Tersey, E. Bolanis, T. R. Holman, D. J. Maloney, J. L. Nadler and R. G. Mirmira, Mol. Endocrinol., 2015, 29, 791.
- 131B. E. Tourdot and M. Holinstat, Trends Pharmacol. Sci., 2017, 38, 1006.
- 132A. I. Schafer, N. Engl. J. Med., 1982, 306, 381.
- 133L. F. Quintana, B. Guzman, S. Collado, J. Claria and E. Poch, Kidney Int., 2006, 69, 526.
- 134V. T. S. Prasad, P. Kolli and D. Moganti, Exp. Ther. Med., 2011, 2, 317.
- 135T. Harslof, L. B. Husted, M. Nyegaard, M. Carstens, L. Stenkjaer, K. Brixen, P. Eiken, J.-E. B. Jensen, A. D. Borglum, L. Mosekilde, L. Rejnmark and B. L. Langdahl, Osteoporos. Int., 2011, 22, 2249.
- 136T. Mitsui, S. Makino, G. Tamiya, H. Sato, Y. Kawakami, Y. Takahashi, T. Meguro, H. Izumino, Y. Sudo, I. Norota, K. Ishii and K. Hayasaka, J. Hum. Genet., 2021, 66, 753.
- 137M. Tran, R. L. Signorelli, A. Yamaguchi, E. Chen, M. Holinstat, A. T. Iavarone, A. R. Offenbacher and T. R. Holman, Arch. Biochem. Biophys., 2023, 733, 109472.
- 138W.-C. Tsai, A. M. Aleem, C. Whittington, W. A. Cortopassi, C. Kalyanaraman, A. Baroz, A. T. Iavarone, E. Skrzypczak-Jankun, M. P. Jacobson, A. R. Offenbacher and T. R. Holman, Biochemistry, 2021, 60, 802.
- 139J. I. Mobbs, K. A. Black, M. Tran, W. A. C. Burger, H. Venugopal, T. R. Holman, M. Holinstat, D. M. Thal and A. Glukhova, Blood, 2023, 142, 1233.
- 140W. Shang, I. Ivanov, D. I. Svergun, O. Y. Borbulevych, A. M. Aleem, S. Stehling, J. Jankun, H. Kuhn and E. Skrzypczak-Jankun, J. Mol. Biol., 2011, 409, 654.
- 141N. C. Gilbert, J. Gerstmeier, E. E. Schexnaydre, F. Borner, U. Garscha, D. B. Neau, O. Werz and M. E. Newcomer, Nat. Chem. Biol., 2020, 16, 783.
- 142T. S. Anthonymuthu, E. M. Kenny, I. Shrivastava, Y. Y. Tyurina, Z. E. Hier, H.-C. Ting, H. H. Dar, V. A. Tyurin, A. Nesterova, A. A. Amoscato, K. Mikulska-Ruminska, J. C. Rosenbaum, G. Mao, J. Zhao, M. Conrad, J. A. Kellum, S. E. Wenzel, A. P. VanDemark, I. Bahar, V. E. Kagan and H. Bayir, J. Am. Chem. Soc., 2018, 140, 17835.
- 143Y. Kim, F. Bertagna, E. M. D'Souza, D. J. Heyes, L. O. Johannissen, E. T. Nery, A. Pantelias, A. S.-P. Jimenez, L. Slocombe, M. G. Spencer, J. Al-Kalili, G. S. Engel, S. Hay, S. M. Hingley-Wilson, K. Jeevaratnam, A. R. Jones, D. R. Kattnig, R. Lewis, M. Sacchi, N. S. Scrutton, S. R. P. Silva and J. McFadden, Qauntum Rep., 3, 80.
- 144W. Zhu, A. T. Iavarone and J. P. Klinman, ACS Cent. Sci., 2024, 10, 251.