Standard Article
Lattice-Strained Materials and Catalytic Applications
Anand S. Burange,
Anand S. Burange
John Wilson Education Society's, Wilson College (Autonomous), Mumbai, Maharashtra, India
Search for more papers by this authorAnand S. Burange,
Anand S. Burange
John Wilson Education Society's, Wilson College (Autonomous), Mumbai, Maharashtra, India
Search for more papers by this authorFirst published: 26 June 2024
Abstract
Strain plays a crucial role in lattice compression and expansion, as well as in modifying the d-band structure, among other effects. In certain classes of materials, strain can significantly influence catalytic activity. This article primarily focuses on strain, including its types, methods of measurement, and applications to catalysis, with a particular emphasis on ORR reactions.
References
- 1A. K. Geim and K. S. Novoselov, Nanosci. Nanotechnol., 2009, 11.
- 2A. A. Ismail and D. F. Bahnemann, Sol. Energy Mater. Sol. Cells, 2014, 128, 85.
- 3S. J. Kim, K. Choi, B. Lee, Y. Kim and B. H. Hong, Annu. Rev. Mater. Res., 2015, 45, 63.
- 4A. S. Burange and M. B. Gawande, EIBC, 2016. DOI: 10.1002/9781119951438.eibc2458.
10.1002/9781119951438.eibc2458 Google Scholar
- 5J. Weitkamp, Solid State Ionics, 2000, 131, 175.
- 6M. B. Gawande, R. K. Pande and R. V. Catal, Sci. Technol., 2012, 2, 1113.
- 7I. E. Titkov, L. A. Delimova, A. S. Zubrilov, N. V. Seredova, I. A. Liniichuk and I. V. Grekhov, J. Mod. Opt., 2009, 56, 653.
- 8 ‘LIGHT EMITTING DIODE AND LASER DIODE USING N-FACE GaN, InN, AND AlN AND THEIR ALLOYS’, US20080111144A1, United States.
- 9D. J. Rogers, F. Hosseini Teherani, V. E. Sandana, M. Razeghi, ‘Proceedings of the SPIE 7605’, Optoelectronic Integrated Circuits XII, 76050K (2010); doi:10.1117/12.862634.
- 10M. Mata, C. Magen, J. Gazquez, M. Utama, M. Heiss, S. Lopatin, F. Furtmayr, C. J. Fernández-Rojas, B. Peng, J. R. Morante, R. Rurali, M. Eickhoff, A. Fontcuberta, I. Morral, Q. Xiong and J. Arbiol, Nano Lett., 2012, 12, 2579.
- 11S. Hingorani, V. Pillai, P. Kumar, M. S. Muntai and D. O. Shah, Mater. Res. Bull., 1993, 28, 1303.
- 12S. Sakohara, M. Ishida and M. A. Anderson, J. Phys. Chem. B, 1998, 102, 10169.
- 13X. Zhao, S. C. Zhang, C. Li, B. Zheng and H. Gu, J. Mater. Synth. Process., 1997, 5, 227.
- 14K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa and H. Sugimoto, Ceram. Int., 2010, 36, 497.
- 15H. W. Kang, J. Yeo, J. Ok, H. Hong, P. Lee, S. Y. Han, J. H. Lee, Y. S. Rho, S. O. Kim, S. H. Ko and H. J. Sung, J. Phys. Chem. C, 2011, 115, 11435.
- 16P. Bindu and S. Thomas, J. Theor. Appl. Phys., 2014, 8, 123.
10.1007/s40094-014-0141-9 Google Scholar
- 17K. V. Aswathy, ‘Nano ZnO: A Novel Modifier for Thermoplastics’, PhD. Thesis, Cochin University of Science & Technology, Kochi-22, Kerala, India (2008)
- 18M. Mavrikakis, B. Hammer and J. K. NØrslov, Phys. Rev. Lett., 1998, 81, 2819.
- 19J. A. Rodriguez and D. W. Goodman, Science, 1992, 257, 897.
- 20E. Kampshoff, E. Hahn and K. Kern, Phys. Rev. Lett., 1994, 73, 704.
- 21J. H. Larsen and I. Chorkendorff, Surf. Sci., 1998, 405, 62.
- 22M. Lindroos, H. Pfnur, G. Held and D. Menzel, Surf. Sci., 1989, 222, 451.
- 23M. Lindroos, H. Pfnur, G. Held and D. Menzel, Surf. Sci., 1983, 129, 92.
- 24H. Over, W. Moritz and G. Ertl, Phys. Rev. Lett., 1993, 70, 315.
- 25M. Chen, D. Kumar, C.-W. Yi and D. W. Goodman, Science, 2005, 310, 291.
- 26V. R. Stamenkovic, B. Fowler, B. Simonmun, G. Wang, P. N. Ross, C. A. Lucas and N. M. Marković, Science, 2007, 315, 493.
- 27V. Stamenkovic, B. Simon Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Marković, J. Rossmeisl, J. Greeley and J. K. Nørskov, Angew. Chem. Int. Ed., 2006, 45, 2897.
- 28L. A. Kibler, A. M. El-Aziz, R. Hoyer and D. M. Kolb, Angew. Chem. Int. Ed., 2005, 44, 2080.
- 29J. Zhang, M. B. Vukmiovic, Y. Xu, M. Mavrikakis and R. R. Adzic, Angew. Chem. Int. Ed., 2005, 44, 2132.
- 30P. Stonehart, Appl. Electrochem., 1992, 22, 995.
- 31S. Mukerjee and S. Srinivasan, in ‘ Handbook of Fuel Cells-Fundamentals, Technology and Applications’, eds. W. Vielstich, H. A. Gasteiger and A. Lamm, John Wiley, 2003, Vol. 2, p. 502.
- 32J. A. Rodriguez and D. W. Goodman, Science, 1992, 257, 897.
- 33P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney and A. Nilsson, Nat. Chem., 2010, 2, 454.
- 34R. Srivastava, P. Mani, N. Hahn and P. Strasser, Angew. Chem. Int. Ed., 2007, 46, 8988.
- 35S. Koh and P. Strasser, J. Am. Chem. Soc., 2007, 129, 12624.
- 36P. Strasser, in ‘ Handbook of Fuel Cells: Advances in Electrocatalysis, Materials, Diagnostics and Durability’, eds. W. Vielstich, H. A. Gasteiger and H. Yokokawa, Wiley, 2009, Vol. 5 & 6, p. 30.
- 37P. Strasser, S. Koh and J. Greeley, Phys. Chem. Chem. Phys., 2008, 10, 3670.
- 38S. Koh, N. Hahn, C. Yu and P. Strasser, J. Electrochem. Soc., 2008, 155, B1281.
- 39P. R. Subramanian and D. E. Laughlin, in ‘ Binary Alloy Phase Diagrams’, 2nd edition, ed. T. B. Massalski, ASM International, 1990, Vol. 2, p. 1460.
- 40B. Hammer and J. K. Nørskov, Nature, 1995, 376, 238.
- 41Y. Li, Q. Li, H. Wang, L. Zhang, D. P. Wilkinson and J. Zhang, Electrochem. Energy Rev., 2019, 2, 518.
- 42Y. Suo and L. Zhuang, J. Lu Angew. Chem. Int. Ed., 2007, 46, 2862.
- 43A. D. Smigelakas and E. O. Kirkendall, AIME, 1947, 171, 130.
- 44J. X. Wang, C. Ma, Y. Choi, D. Su, Y. Zhu, P. Liu, R. Si, M. B. Vukmirovic, Y. Zhang and R. R. Adzic, J. Am. Chem. Soc., 2011, 133, 13551.
- 45H. M. Chen, R. S. Liu, M. Y. Lo, S. C. Chang, L. D. Tsai, Y. M. Peng and J. F. Lee, J. Phys. Chem. C, 2008, 112, 7522.
- 46Z. M. Peng, J. B. Wu and H. Yang, Chem. Mater., 2010, 22, 1098.
- 47B. Richter, H. Kuhlenbeck, H. -J. Freund and P. S. Bagus, Phys. Rev. Lett., 2004, 93, 026805-1.
- 48L. Gan, R. Yu, J. Luo, Z. Cheng and J. Zhu, J. Phys. Chem. Lett., 2012, 3, 934.
- 49J. Wu, L. Qi, H. You, A. Gross, J. Li and H. Yang, J. Am. Chem. Soc., 2012, 134, 11880.
- 50J. Yang, J. Yang and J. Y. Ying, ACS Nano, 2012, 6, 9373.
- 51A.-X. Yin, X.-Q. Min, W. Zhu, H.-S. Wu, Y.-W. Zhang and C.-H. Yan, Chem. Commun., 2012, 48, 543.
- 52J. Wu, P. Li, Y.-T. Pan, S. Warren, X. Yin and H. Yang, Chem. Soc. Rev., 2012, 41, 8066.
- 53M. G. Montes de Oca, D. Plana, V. Celorrio, M. J. Lazaro and D. J. Fermin, J. Phys. Chem. C, 2012, 116, 692.
- 54C.-H. Kuo, L. K. Lamontagne, C. N. Brodsky, L.-Y. Chou, J. Zhuang, B. T. Sneed, M. K. Sheehan and C.-K. Tsung, ChemSusChem, 1993, 2013, 6.
- 55B. T. Sneed, A. P. Young and C. Tsung, Nanoscale, 2015, 7, 12248.
- 56P. Scardi, A. Leonardi, L. Gelisio, M. R. Suchomel, B. T. Sneed, M. K. Sheehan and C. K. Tsung, Phys. Rev. B, 2015, 91, 155414.
- 57Y. Shiihara, M. Kohyama and S. Ishibashi, Phys. Rev. B, 2013, 87, 125430.
10.1103/PhysRevB.87.125430 Google Scholar
- 58H. J. Wasserman and J. S. Vermaak, Surf. Sci., 1972, 32, 168.
- 59C. T. Campbell, S. C. Parker and D. E. Starr, Science, 2002, 298, 811.
- 60S. I. Sanchez, M. W. Small, E. S. Bozin, J.-G. Wen, J.-M. Zuo and R. G. Nuzzo, ACS Nano, 2012, 7, 1542.
- 61W. H. Qi and M. P. Wang, J. Nanopart. Res., 2005, 7, 51.
- 62V. Petkov, B. N. Wanjala, R. Loukrakpam, J. Luo, L. Yang, C.-J. Zhong and S. Shastri, Nano Lett., 2012, 12, 4289.
- 63B. T. Sneed, A. P. Young and C. Tsunga, Nanoscale, 2015, 7, 12248.
- 64L. Grabow, Y. Xuz and M. Mavrikakis, Phys. Chem. Chem. Phys., 2006, 8, 3369.
- 65M. Chen, D. Kumar, C. Yi and D. W. Goodman, Science, 2005, 310, 291.
- 66K. Klier, Adv. Catal., 1982, 31, 243.
- 67V. Ponec, Surf. Sci., 1992, 272, 111.
- 68K. C. Waugh, Catal. Today, 1992, 15, 51.
- 69W. P. A. Jansen, J. Beckers, J. C. vd Heuvel, A. W. D. vd Gon, A. Bliek and H. H. Brongersma, J. Catal., 2002, 210, 229.
- 70M. M. GRnter, T. Ressler, B. Bems, C. BRscher, T. Genger, O. Hindrichsen, M. Muhler and R. SchlSgl, Catal. Lett., 2001, 71, 37.
- 71M. M. GRnter, T. Ressler, R. E. Jentoft and B. Bems, J. Catal., 2001, 203, 133.
- 72J. B. Wagner, P. L. Hansen, A. M. Molenbroek, H. Topsøe, B. S. Clausen and S. J. Helveg, J. Phys. Chem. B, 2003, 107, 7753.
- 73I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke and R. Schlögl, Angew. Chem. Int. Ed., 2007, 46, 7324.
- 74K. W. Urban, Science, 2008, 321, 506.
- 75Z. Hou, C. Cui, Y. Li, Y. Gao, D. Zhu, Y. Gu, G. Pan, Y. Zhu and T. Zhang, Adv. Mater., 2023, 35, 2209876.
- 76S. Zhang, X. Zhang, G. Jiang, H. Zhu, S. Guo, D. Su, G. Lu and S. Sun, J. Am. Chem. Soc., 2014, 136, 7734.
- 77I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke and R. Schlögl, Angew. Chem., 2007, 119, 7465.
10.1002/ange.200702600 Google Scholar
- 78M. Wang, Q. Sun, Z. Fan, W. Zhu, F. Liao, J. Wu, Y. Zhou, H. Yang, H. Huang, M. Ma, T. Cheng, Q. Shao, M. Shao and Z. Kang, J. Mater. Chem. A, 2023, 11, 4037.
- 79H. Kare, Y. Maswadeh, Z. Wu, A. C. Leff, H. Cheng, S. Shan, S. Wang, R. Robinson, D. Caracciolo, A. Langrock, D. M. Mackie, D. T. Tran, V. Petkov and C. Zhong, ACS Appl. Mater. Interfaces, 2022, 14, 11435.
- 80L. H. Hashim, A. Halilu, Y. B. Umar, M. R. B. Johan, M. K. Aroua, P. Koley and S. K. Bhargava, Catal. Sci. Technol., 2023, 13, 774.