Recent Advances in the Chemistry of Germanium(II) Cationic Compounds
Nilanjana Mukherjee
Indian Institute of Science Education and Research, Pune, Maharashtra, India
Search for more papers by this authorSouvik Khan
Indian Institute of Science Education and Research, Pune, Maharashtra, India
Search for more papers by this authorHritwik Haldar
Indian Institute of Science Education and Research, Pune, Maharashtra, India
Search for more papers by this authorMoumita Majumdar
Indian Institute of Science Education and Research, Pune, Maharashtra, India
Search for more papers by this authorNilanjana Mukherjee
Indian Institute of Science Education and Research, Pune, Maharashtra, India
Search for more papers by this authorSouvik Khan
Indian Institute of Science Education and Research, Pune, Maharashtra, India
Search for more papers by this authorHritwik Haldar
Indian Institute of Science Education and Research, Pune, Maharashtra, India
Search for more papers by this authorMoumita Majumdar
Indian Institute of Science Education and Research, Pune, Maharashtra, India
Search for more papers by this authorAbstract
The syntheses and stabilizations of germanium(II) cationic compounds have been known for long. Contemporary research have been engaged in tailoring the germanium(II) cationic species for applications in small-molecule activation and catalysis. This article comprises the discussion on the three major types of germanium(II) cationic compounds: (1) germanium(II) monocation or germyliumylidene, (2) bis(germyliumylidene), and (3) germanium(II) dication. Herein, earlier reports on the stabilization of germanium(II) mono- and dications have been briefly mentioned. The article includes the latest findings on the stabilization of the germanium(II) cationic species. The major focus of the article has been on discussing how the choice of the supporting ligands becomes the determining factor for tuning the frontier electronics and hence the applicability of the cationic germanium(II) compounds. Examples of bond activation at the ambiphilic germanium(II) monocationic sites and their catalytic applications, element–ligand cooperative bond activations, transition metal-main group cooperative catalysis, reverse polarization at the germanium(II) cationic site, cooperative interactions between two germanium(II) cationic sites, leading to organic transformations, etc., which are some of the remarkable findings, have been discussed. This overview on the advancements made in this field will provide a background knowledge for further explorations.
References
- 1Selected reviews: (a) E. Peris, Chem. Rev., 2018, 118, 9988. (b) H. D. Velazquez and F. Verpoort, Chem. Soc. Rev., 2012, 41, 7032. (c) S. Diez-Gonzalez, N. Marion and S. P. Nolan, Chem. Rev., 2009, 109, 3612. (d) S. P. Nolan, Acc. Chem. Res., 2011, 44, 91.
- 2Selected reviews: (a) F. Nahra, N. V. Tzouras, A. Collado and S. P. Nolan, Nat. Protoc., 2021, 16, 1476.
(b) C. Romain, S. Bellemin-Laponnaz and S. Dagorne, Coord. Chem. Rev., 2020, 422, 213411.
(c) T. Scattolin and S. P. Nolan, Trends Chem., 2020, 2, 721.
(d) M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius, Nature, 2014, 510, 485.
(e) V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt and S. Inoue, Chem. Rev., 2018, 118, 96.
10.1021/acs.chemrev.8b00079 Google Scholar
- 3Selected reviews: (a) M. Soleihavoup and G. Bertrand, Acc. Chem. Res., 2015, 48, 256.
(b) M. Melaimi, R. Jazzar, M. Soleihavoup and G. Bertrand, Angew. Chem. Int. Ed., 2017, 56, 10046.
(c) S. K. Kushvaha, A. Mishra, H. W. Roesky and K. C. Mondal, Chem. Asian J., 2021, 17, e202101301.
10.1002/asia.202101301 Google Scholar
- 4Selected reviews: (a) J. A. Cabeza, P. Garcia-Alvarez and C. J. Laglera-Gandara, Eur. J. Inorg. Chem., 2020, 2020, 784. (b) L. Alvarez-Rodriguez, J. A. Cabeza, P. Garcia-Alvarez and D. Polo, Coord. Chem. Rev., 2015, 300, 1. (c) J. Baumgartner and C. Marschner, Rev. Inorg. Chem., 2014, 34, 119. (d) M. Asay, C. Jones and M. Driess, Chem. Rev., 2011, 111, 354. (e) Y. Mizuhata, T. Sasamori and N. Tokitoh, Chem. Rev., 2009, 109, 3479. (f) A. V. Zabula and F. E. Hahn, Eur. J. Inorg. Chem., 2008, 2008, 5165. (g) M. F. Lappert and R. S. Rowe, Coord. Chem. Rev., 1990, 100, 267. (h) W. Petz, Chem. Rev., 1986, 86, 1019.
- 5(a) V. Y. Lee and A. Sekiguchi, Organometallic Compounds of Low-Coordinate Si, Ge, Sn and Pb: from Phantom Species to Stable Compounds, John Wiley & Sons Ltd, West Sussex, United Kingdom, 2010.
10.1002/9780470669266 Google Scholar(b) D. Scheschkewitz, Functional Molecular Silicon Compounds II: Low Oxidation States, Springer International Publishing, Switzerland, 2014.10.1007/978-3-319-03734-9 Google Scholar
- 6Selected reviews: (a) M. J. Krahfuss and U. Radius, Dalton Trans., 2021, 50, 6752. (b) B. Blom, D. Gallego and M. Driess, Inorg. Chem. Front., 2014, 1, 134. (c) B. Blom, M. Stoelzel and M. Driess, Chem. Eur. J., 2013, 19, 40. selected recent examples: (d) M. J. Krahfuss and U. Radius, Inorg. Chem., 2020, 59, 10976. (e) X. Qi, T. Zheng, J. Zhou, Y. Dong, X. Zuo, X. Li, H. Sun, O. Fuhr and D. Fenske, Organometallics, 2019, 38, 268. (f) T. J. Hadlington, T. Szilvási and M. Driess, Angew. Chem. Int. Ed., 2017, 56, 7470; Angew. Chem. 2017, 129, 7578. (g) D. Gallego, A. Brück, E. Irran, F. Meier, M. Kaupp, M. Driess and J. F. Hartwig, J. Am. Chem. Soc., 2013, 135, 15617. (h) W. Wang, S. Inoue, S. Enthaler and M. Driess, Angew. Chem. Int. Ed., 2012, 51, 6167; Angew. Chem. 2012, 124, 6271.
- 7Recent examples: (a) A. Arauzo, J. A. Cabeza, I. Fernandez, P. GarcíaÁlvarez, I. García-Rubio and C. J. Laglera-Gándara, Chem. Eur. J., 2021, 27, 4985. (b) P. M. Keil, T. Szilvási and T. J. Hadlington, Chem. Sci., 2021, 12, 5582. (c) J. A. Cabeza, P. García-Álvarez, C. J. Laglera-Gándara and E. Pérez-Carreňo, Chem. Commun., 2020, 56, 14095. (d) S. Yadav, R. Kumar, K. V. Raj, P. Yadav, K. Vanka and S. S. Sen, Chem. Asian J., 2020, 15, 3116. (e) T. Watanabe, Y. Kasai and H. Tobita, Chem. Eur. J., 2019, 25, 13491. (f) L. Álvarez-Rodríguez, J. A. Cabeza, J. M. FernándezColinas, P. García-Álvarez and D. Polo, Organometallics, 2016, 35, 2516. (g) L. Álvarez-Rodríguez, J. A. Cabeza, P. García-Álvarez, E. Pérez-Carreňo and D. Polo, Inorg. Chem., 2015, 54, 2983.
- 8(a) M. Aman, L. Dostál, Z. Růžičková, S. Mebs, J. Beckmann and R. Jambor, Organometallics, 2019, 38, 816. (b) K. M. Krebs, S. Freitag, J.-J. Maudrich, H. Schubert, P. Sirsch and L. Wesemann, Dalton Trans., 2018, 47, 83. (c) K. M. Krebs, S. Freitag, H. Schubert, B. Gerke, R. Pöttgen and L. Wesemann, Chem. Eur. J., 2015, 21, 4628. (d) S. Freitag, K. M. Krebs, J. Henning, J. Hirdler, H. Schubert and L. Wesemann, Organometallics, 2013, 32, 6785. (e) R. Jambor, L. Dostál, M. Erben, Z. Růžičková, R. Jirásko and A. Hoffmann, Organometallics, 2021, 40, 783.
- 9(a) R. Guthardt, H. L. Jacob, D. Herle, M. Leibold, C. Bruhn, M. Heinz, M. C. Holthausen and U. Siemeling, Chem. Asian J., 2023, 18, e202300266. (b) R. Guthardt, L. Oetzel, T. Lang, C. Bruhn and U. Siemeling, Chem. Eur. J., 2022, 28, e202200996. (c) R. Guthardt, C. Bruhn, C. Färber and U. Siemeling, Organometallics, 2020, 39, 4174. (d) R. Guthardt, J. Oetzel, J. I. Schweizer, C. Bruhn, R. Langer, M. Maurer, J. Vícha, P. Shestakova, M. C. Holthausen and U. Siemeling, Angew. Chem. Int. Ed., 2019, 58, 1387.
- 10S. Biswas, N. Patel, R. Deb and M. Majumdar, Chem. Rec., 2022, 22, e202200003.
- 11(a) V. S. V. S. N. Swamy, S. Pal, S. Khan and S. S. Sen, Dalton Trans., 2015, 44, 12903. (b) T. A. Engesser, M. R. Lichtenthaler, M. Schleep and I. Krossing, Chem. Soc. Rev., 2016, 45, 789.
- 12P. Jutzi, F. Kohl, P. Hofman, C. Krüger and Y. -H. Tsay, Chem. Ber., 1980, 113, 757.
- 13H. V. Rasika Dias and Z. Wang, J. Am. Chem. Soc., 1997, 119, 4650.
- 14T. Probst, O. Steigelmann, J. Riede and H. Schmidbaur, Angew. Chem. Int. Ed., 1990, 29, 1397.
- 15M. Stender, A. D. Phillips and P. P. Power, Inorg. Chem., 2001, 40, 5314.
- 16J. Li, C. Schenk, F. Winter, H. Scherer, N. Trapp, A. Higelin, S. Keller, R. Pöttgen, I. Krossing and C. Jones, Angew. Chem. Int. Ed., 2012, 51, 9557.
- 17(a) P. A. Rupar, V. N. Staroverov, P. J. Roagogna and K. M. Baines, J. Am. Chem. Soc., 2007, 129, 15138. (b) Y. Xiong, T. Szilvási, S. Yao, G. Tan and M. Driess, J. Am. Chem. Soc., 2014, 136, 11300.
- 18S. Khan, G. Gopakumar, W. Thiel and M. Alcarazo, Angew. Chem. Int. Ed., 2013, 52, 5644.
- 19J. L. Dutton and P. J. Ragogna, Coord. Chem. Rev., 2011, 255, 1414.
- 20A. C. Filippou, A. I. Philippopoulos, P. Portius and G. Schnakenburg, Organometallics, 2004, 23, 4503.
- 21P. A. Gray, K. D. Krause, N. Burford and B. O. Patrick, Dalton Trans., 2017, 46, 8363.
- 22R. K. Raut and M. Majumdar, Chem. Commun., 2017, 53, 1467.
- 23D. Maurya, J. Karmakar, P. Sahoo, R. K. Raut and M. Majumdar, Inorg. Chim. Acta, 2020, 503, 119380.
- 24F. S. Tschernuth, F. Hanusch, T. Szilvási and S. Inoue, Organometallics, 2020, 39, 4265.
- 25C. Seow, M. L. B. Ismail, H. W. Xi, Y. Li, K. H. Lim and C. W. So, Organometallics, 2018, 37, 1368.
- 26D. C. H. Do, A. V. Protchenko, M. A. Fuentes, J. Hicks, P. Vasko and S. Aldridge, Chem. Commun., 2020, 56, 4684.
- 27S. Sinhababu, D. Singh, M. K. Sharma, R. K. Siwatch, P. Mahawar and S. Nagendran, Dalton Trans., 2019, 48, 4094.
- 28A. Rit, R. Tirfoin and S. Aldridge, Angew. Chem. Int. Ed., 2016, 55, 378.
- 29R. J. Mangan, A. Rit, C. P. Sindlinger, R. Tirfoin, J. Campos, J. Hicks, K. E. Christensen, H. Niu and S. Aldridge, Chem. Eur. J., 2020, 26, 306.
- 30R. J. Mangan, A. R. Davies, J. Hicks, C. P. Sindlinger, A. L. Thompson and S. Aldridge, Polyhedron, 2021, 196, 115006.
- 31M. M. D. Roy, P. A. Lummis, M. J. Ferguson, R. McDonald and E. Rivard, Chem. Eur. J., 2017, 23, 11249.
- 32D. Sarkar, S. Dutta, C. Weetman, E. Schubert, D. Koley and S. Inoue, Chem. Eur. J., 2021, 27, 13072.
- 33D. Sarkar, C. Weetman, S. Dutta, E. Schubert, C. Jandl, D. Koley and S. Inoue, J. Am. Chem. Soc., 2020, 142, 15403.
- 34X. Zhou, P. Vasko, J. Hicks, M. Á. Fuentes, A. Heilmann, E. L. Kolychev and S. Aldridge, Dalton Trans., 2020, 49, 9495.
- 35B. Su, R. Ganguly, Y. Li and R. Kinjo, Angew. Chem. Int. Ed., 2014, 53, 13106.
- 36Y.-P. Zhou, M. Karni, S. Yao, Y. Apeloig and M. Driess, Angew. Chem. Int. Ed., 2016, 55, 15096.
- 37P. M. Keil, T. J. Hadlington and Z. Anorg, Allg. Chem., 2022, 648, e202200141.
- 38P. M. Keil and T. J. Hadlington, Angew. Chem. Int. Ed., 2022, 61, e202114143.
- 39L. Greb, Chem. Eur. J., 2018, 24, 17881.
- 40A. Schulz, T. L. Kalkuhl, P. M. Keil and T. J. Hadlington, Angew. Chem. Int. Ed., 2023, 62, e202305996.
- 41P. M. Keil, A. Soyemi, K. Weisser, T. Szilvási, C. Limberg and T. J. Hadlington, Angew. Chem. Int. Ed., 2023, 62, e202218141.
- 42M. Auer, J. Bolten, K. Eichele, H. Schubert, C. P. Sindlinger and L. Wesemann, Chem. Sci., 2023, 14, 514.
- 43L. Greb, F. Ebner, Y. Ginzburg and L. M. Sigmund, Eur. J. Inorg. Chem., 2020, 3030.
- 44Y. N. Lebedev, U. Das, G. Schnakenburg and A. C. Fillipou, Organometallics, 2017, 36, 1530.
- 45C. Mohapatra, H. Darmandeh, H. Steinart, B. Mallick, K. S. Feichtner and V. H. Gessner, Chem. Eur. J., 2020, 26, 15145.
- 46A. M. Borys and E. Hevia, Trends Chem., 2021, 3, 803.
- 47T. Ochiai, T. Szilvasi, D. Franz, E. Irran and S. Inoue, Angew. Chem. Int. Ed., 2016, 55, 11619.
- 48Y. Xiong, S. Yao, T. Szilvási, E. B. Martínez, H. Grützmacher and M. Driess, Angew. Chem. Int. Ed., 2017, 56, 4333.
- 49K. Inomata, T. Watanabe and H. Tobita, J. Am. Chem. Soc., 2014, 136, 14341.
- 50A. Jana, V. Huch, H. S. Rzepa and D. Scheschkewitz, Organometallics, 2015, 34, 2130.
- 51S. Yao, A. Kostenko, Y. Xiong, C. Lorent, A. Ruzicka and M. Driess, Angew. Chem. Int. Ed., 2021, 60, 14864.
- 52Y. Xiong, D. Chen, S. Yao, J. Zhu, A. Ruzicka and M. Driess, J. Am. Chem. Soc., 2021, 143, 6229.
- 53M. Majumdar, R. K. Raut, P. Sahoo and V. Kumar, Chem. Commun., 2018, 54, 10839.
- 54(a) M. E. Jung and J. C. Rohloff, J. Org. Chem., 1985, 50, 4909. (b) F. Y. Miyake, K. Yakushijin and D. A. Horne, Org. Lett., 2000, 2, 3185. (c) G. J. Mercer and M. S. Sigman, Org. Lett., 2003, 5, 1591. (d) N. Kise, H. Oike, E. Okazaki, M. Yoshimoto and T. Shono, J. Org. Chem., 1995, 60, 3980. (e) T. Shono, N. Kise, E. Shirakawa, H. Matsumoto and E. Okazaki, J. Org. Chem., 1991, 56, 3063.
- 55(a) P. Sahoo and M. Majumdar, Dalton Trans., 2021, 51, 1281. (b) H. Tsurugi and K. Mashima, Acc. Chem. Res., 2019, 52, 769.
- 56P. Sahoo, R. K. Raut, D. Maurya, V. Kumar, P. Rani, R. G. Gonnade and M. Majumdar, Dalton Trans., 2019, 48, 7344.
- 57P. A. Rupar, V. N. Staroverov and K. M. Baines, Science, 2008, 322, 1360.
- 58(a) P. A. Rupar, R. Bandyopadhyay, B. F. T. Cooper, M. R. Stinchcombe, P. J. Ragogna, C. L. B. Macdonald and K. M. Baines, Angew. Chem. Int. Ed., 2009, 121, 5257.
10.1002/ange.200901351 Google Scholar(b) R. Bandyopadhyay, J. H. Nguyen, A. Swidan and C. L. B. Macdonald, Angew. Chem. Int. Ed., 2013, 125, 3553.10.1002/ange.201209067 Google Scholar
- 59(a) F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Angew. Chem. Int. Ed., 2009, 48, 5152. (b) M. Everett, A. Jolleys, W. Levason, M. E. Light, D. Pugh and G. Reid, Dalton Trans., 2015, 44, 20898.
- 60V. S. V. S. N. Swamy, S. Yadav, S. Pal, T. Das, K. Vanka and S. S. Sen, Chem. Commun., 2016, 52, 7890.
- 61R. P. King, J. M. Herniman, W. Levason and G. Reid, Inorg. Chem., 2023, 62, 853.
- 62R. P. King, V. K. Greenacre, W. Levason, J. M. Dyke and G. Reid, Inorg. Chem., 2021, 60, 12100.
- 63F. Cheng, A. L. Hector, W. Levason, G. Reid, M. Webster and W. Zhang, Inorg. Chem., 2010, 49, 752.
- 64(a) J. Petuškova, H. Bruns and M. Alcarazo, Angew. Chem. Int. Ed., 2011, 50, 3799. (b) J. Carreras, M. Patil, W. Thiel and M. Alcarazo, J. Am. Chem. Soc., 2012, 134, 16753. (c) M. Alcarazo, Chem. Eur. J., 2014, 20, 7868. (d) M. Alcarazo, Acc. Chem. Res., 2016, 49, 1797.
- 65R. Suter, A. Swidan, C. L. B. Macdonald and N. Burford, Chem. Commun., 2018, 54, 4140.
- 66R. Suter, A. Swidan, C. L. B. Macdonald, N. Burford and M. J. Ferguson, Inorg. Chem., 2019, 58, 6238.