Silicon-Based Anodes for Advanced Lithium-Ion Batteries
Junhua Song
Pacific Northwest National Laboratory, Richland, WA, USA
Search for more papers by this authorXiaolin Li
Pacific Northwest National Laboratory, Richland, WA, USA
Search for more papers by this authorJi-Guang Zhang
Pacific Northwest National Laboratory, Richland, WA, USA
Search for more papers by this authorJunhua Song
Pacific Northwest National Laboratory, Richland, WA, USA
Search for more papers by this authorXiaolin Li
Pacific Northwest National Laboratory, Richland, WA, USA
Search for more papers by this authorJi-Guang Zhang
Pacific Northwest National Laboratory, Richland, WA, USA
Search for more papers by this authorAbstract
The society's growing demand on long-range electrical vehicles and long-life consumer electronics put urgent requirement on the development of advanced lithium-ion batteries (LIBs) of high energy and low cost. Si, with top abundance and highest theoretical capacity to lithium, is expected to bump the LIB's energy density to above 300 Wh kg−1 at a relatively low cost. Over the past 2 decades, tremendous effort has been made in bringing Si-based anode materials to the battery market. In this book article, we review the progress from three fundamental aspects: (i) Si nanostructure design; (ii) binder study; and (iii) electrolyte optimization and interphase engineering. We address the practical aspects of Si-based anode materials and remaining challenges with a special focus on the full cell configuration. We hope the short walkthrough of the Si technology will help the readers have a quick grasp of the efforts made in improving the performance of Si-based anodes and appreciate the outcomes of the fundamental research brought to the development of practical LIBs.
References
- 1 S. Megahed and B. Scrosati, J. Power Sources, 1994, 51, 79.
- 2 K. Ozawa, Solid State Ion., 1994, 69, 212.
- 3 T. N. K. Tazawa, Prog. Batter. Sol. Cells, 1991, 9, 209.
- 4 M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maca, D. Gerber and J. Tubke, Adv. Energy Mater., 2015, 5, 1401986.
- 5 K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull., 1980, 15, 783.
- 6 M. Winter, J. O. Besenhard, M. E. Spahr and P. Novak, Adv. Mater., 1998, 10, 725.
- 7 M. Li, J. Lu, Z. Chen and K. Amine, Adv. Mater., 2018, 30, e1800561.
- 8 J. Tarascon, Electrochem. Soc. Interface, 2016, 25, 79.
- 9 J. Graetz, C. C. Ahn, R. Yazami and B. Fultz, Electrochem Solid State, 2003, 6, A194.
- 10 W. J. Zhang, J. Power Sources, 2011, 196, 13.
- 11 V. P. Nikolaev, A. G. Morachevskii, A. I. Demidov and E. V. Bairachnyi, J. Appl. Chem. USSR, 1980, 53, 1549.
- 12 B. A. Boukamp, G. C. Lesh and R. A. Huggins, J. Electrochem. Soc., 1981, 128, 725.
- 13 A. M. Wilson, G. Zank, K. Eguchi, W. Xing and J. R. Dahn, J. Power Sources, 1997, 68, 195.
- 14 S. Bourderau, T. Brousse and D. M. Schleich, J. Power Sources, 1999, 81, 233.
- 15 H. Dong, X. P. Ai and H. X. Yang, Electrochem. Commun., 2003, 5, 952.
- 16 H. Dong, R. X. Feng, X. P. Ai, Y. L. Cao and H. X. Yang, Electrochim. Acta, 2004, 49, 5217.
- 17 M. S. Park, Y. J. Lee, S. Rajendran, M. S. Song, H. S. Kim and J. Y. Lee, Electrochim. Acta, 2005, 50, 5561.
- 18 M. Holzapfel, H. Buqa, W. Scheifele, P. Novak and F. M. Petrat, Chem. Commun., 2005, 28, 1566.
- 19 L. Y. Beaulieu, K. W. Eberman, R. L. Turner, L. J. Krause and J. R. Dahn, Electrochem. Solid State, 2001, 4, A137.
- 20 J. W. Choi and D. Aurbach, Nat. Rev. Mater., 2016, 1, 1.
- 21 C. Lee, X. D. Wei, J. W. Kysar and J. Hone, Science, 2008, 321, 385.
- 22 J. T. Hu, T. W. Odom and C. M. Lieber, Acc. Chem. Res., 1999, 32, 435.
- 23 X. L. Li, X. R. Wang, L. Zhang, S. W. Lee and H. J. Dai, Science, 2008, 319, 1229.
- 24 X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu and J. Y. Huang, ACS Nano, 2012, 6, 1522.
- 25 M. T. McDowell, I. Ryu, S. W. Lee, C. M. Wang, W. D. Nix and Y. Cui, Adv. Mater., 2012, 24, 6034.
- 26 Y. Yao, M. T. McDowell, I. Ryu, H. Wu, N. A. Liu, L. B. Hu, W. D. Nix and Y. Cui, Nano Lett., 2011, 11, 2949.
- 27 C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotechnol., 2008, 3, 31.
- 28 H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, S. W. Lee, A. Jackson, Y. Yang, L. B. Hu and Y. Cui, Nat. Nanotechnol., 2012, 7, 309.
- 29 N. Liu, Z. D. Lu, J. Zhao, M. T. McDowell, H. W. Lee, W. T. Zhao and Y. Cui, Nat. Nanotechnol., 2014, 9, 187.
- 30 X. L. Li, M. Gu, S. Y. Hu, R. Kennard, P. F. Yan, X. L. Chen, C. M. Wang, M. J. Sailor, J. G. Zhang and J. Liu, Nat. Commun., 2014, 5, 4105.
- 31 H. Kim, M. Seo, M. H. Park and J. Cho, Angew. Chem. Int. Ed., 2010, 49, 2146.
- 32 N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang and Y. Cui, Nano Lett., 2012, 12, 3315.
- 33 X. L. Li, P. Meduri, X. L. Chen, W. Qi, M. H. Engelhard, W. Xu, F. Ding, J. Xiao, W. Wang, C. M. Wang, J. G. Zhang and J. Liu, J. Mater. Chem., 2012, 22, 11014.
- 34 R. Yi, F. Dai, M. L. Gordin, S. R. Chen and D. H. Wang, Adv. Energy Mater., 2013, 3, 295.
- 35 J. S. Bridel, T. Azais, M. Morcrette, J. M. Tarascon and D. Larcher, Chem. Mater., 2010, 22, 1229.
- 36 A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov and G. Yushin, ACS Appl. Mater. Interfaces, 2010, 2, 3004.
- 37 I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, Science, 2011, 334, 75.
- 38 S. Choi, T. W. Kwon, A. Coskun and J. W. Choi, Science, 2017, 357, 279.
- 39 H. Wu, G. Yu, L. Pan, N. Liu, M. T. McDowell, Z. Bao and Y. Cui, Nat. Commun., 2013, 4, 1943.
- 40 C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui and Z. A. Bao, Nat. Chem., 2013, 5, 1042.
- 41 L. L. Luo, P. Zhao, H. Yang, B. R. Liu, J. G. Zhang, Y. Cui, G. H. Yu, S. L. Zhang and C. M. Wang, Nano Lett., 2015, 15, 7016.
- 42 T. M. Higgins, S. H. Park, P. J. King, C. Zhang, N. MoEvoy, N. C. Berner, D. Daly, A. Shmeliov, U. Khan, G. Duesberg, V. Nicolosi and J. N. Coleman, ACS Nano, 2016, 10, 3702.
- 43 G. Liu, S. D. Xun, N. Vukmirovic, X. Y. Song, P. Olalde-Velasco, H. H. Zheng, V. S. Battaglia, L. W. Wang and W. L. Yang, Adv. Mater., 2011, 23, 4679.
- 44 J. H. Song, B. W. Xiao, Y. H. Lin, K. Xu and X. L. Li, Adv. Energy Mater., 2018, 8.
- 45 C. Xu, F. Lindgren, B. Philippe, M. Gorgoi, F. Bjorefors, K. Edstrom and T. Gustafsson, Chem. Mater., 2015, 27, 2591.
- 46 M. Ulldemolins, F. Le Cras, B. Pecquenard, V. P. Phan, L. Martin and H. Martinez, J. Power Sources, 2012, 206, 245.
- 47 I. A. Profatilova, C. Stock, A. Schmitz, S. Passerini and M. Winter, J. Power Sources, 2013, 222, 140.
- 48 C. C. Nguyen and B. L. Lucht, J. Electrochem. Soc., 2014, 161, A1933.
- 49 Y. B. Yohannes, S. D. Lin and N. L. Wu, J. Electrochem. Soc., 2017, 164, A3641.
- 50 A. Rezqita, M. Sauer, A. Foelske, H. Kronberger and A. Trifonova, Electrochim. Acta, 2017, 247, 600.
- 51 S. Dalavi, P. Guduru and B. L. Lucht, J. Electrochem. Soc., 2012, 159, A642.
- 52 V. Baranchugov, E. Markevich, E. Pollak, G. Salitra and D. Aurbach, Electrochem. Commun., 2007, 9, 796.
- 53 D. M. Piper, T. Evans, K. Leung, T. Watkins, J. Olson, S. C. Kim, S. S. Han, V. Bhat, K. H. Oh, D. A. Buttry and S. H. Lee, Nat. Commun., 2015, 6, 6230.
- 54 Y. Jin, S. Li, A. Kushima, X. Q. Zheng, Y. M. Sun, J. Xie, J. Sun, W. J. Xue, G. M. Zhou, J. Wu, F. F. Shi, R. F. Zhang, Z. Zhu, K. P. So, Y. Cui and J. Li, Energy Environ. Sci., 2017, 10, 580.
- 55 A. Kohandehghan, P. Kalisvaart, K. Cui, M. Kupsta, E. Memarzadeh and D. Mitlin, J. Mater. Chem. A, 2013, 1(41), 12850.
- 56 J. I. Lee, Y. Ko, M. Shin, H. K. Song, N. S. Choi, M. G. Kim and S. Park, Energy Environ. Sci., 2015, 8, 2075.
- 57 X. L. Li, P. F. Yan, X. C. Xiao, J. H. Woo, C. M. Wang, J. Liua and J. G. Zhang, Energy Environ. Sci., 2017, 10, 1427.
- 58 M. Ko, S. Chae, J. Ma, N. Kim, H. W. Lee, Y. Cui and J. Cho, Nat. Energy, 2016, 1(9), 16113.
- 59 I. H. Son, J. H. Park, S. Kwon, S. Park, M. H. Rümmeli, A. Bachmatiuk, H. J. Song, J. Ku, J. W. Choi and J.-m. Choi, Nat. Commun., 2015, 6, 8393.
- 60 I. C. Stefan, Amprius. Inc, 2018 DOE Vehicle Technologies Office Annual Merit Review, 2018.
- 61 T. Placke, R. Kloepsch, S. Duhnen and M. Winter, J. Solid. State. Electr., 2017, 21, 1939.
- 62 S. A. Freunberger, Nat. Energy, 2017, 2, 27091.