Lithium Metal Anode
Abstract
Lithium metal batteries (LMBs) are among the most sought-after battery chemistries for high-energy storage devices. However, LMBs always undergo uncontrollable lithium deposition, relatively lower Coulombic efficiency (CE), severe side reactions, and limited power output, which impede their practical applications. In the last 40 years, numerous efforts have been made to solve these issues, ranging from theoretically modeling the lithium dendrite growth behavior to experimentally modifying the lithium metal anode. This article provides an overview of LMBs and its main challenge—dendritic lithium growth. First, the advantages and disadvantages of LMBs are discussed compared with the state-of-the-art lithium-ion batteries, in which the lithium dendrite growth and fast CE decay are extensively considered. Specific characterization techniques are also summarized to understand the growing behavior of dendritic lithium and anode surface chemistry. To understand the fading mechanisms of LMBs, numerous models and hypotheses are carried out to predict the solid electrolyte interphase (SEI) formation, ionic electromigration, and finally dendritic growth behavior. From the insights of the abovementioned theoretical basis, methods concerning on suppressing lithium dendrites and improving the cell CE are categorized as the electrolyte additives, structural electrolyte development, new battery operation mode, multidimensional composite electrode design, and so on. Finally, future directions are given that are expected to drive progress in the development of LMBs.
References
- 1 Y. Guo, H. Li and T. Zhai, Adv. Mater., 2017, 29, 1700007.
- 2 H. Kim, G. Jeong, Y.-U. Kim, J.-H. Kim, C.-M. Park and H.-J. Sohn, Chem. Soc. Rev., 2013, 42, 9011.
- 3 X. B. Cheng, R. Zhang, C. Z. Zhao and Q. Zhang, Chem. Rev., 2017, 117, 10403.
- 4 M. S. Whittingham, Chem. Rev., 2004, 104, 4271.
- 5 L. Li, S. Li and Y. Lu, Chem. Commun., 2018, 54, 6648.
- 6 S. Chu, Y. Cui and N. Liu, Nat. Mater., 2016, 16, 16.
- 7 C. Yang, K. Fu, Y. Zhang, E. Hitz and L. Hu, Adv. Mater., 2017, 29, 1701169.
- 8 D. Lin, Y. Liu and Y. Cui, Nat. Nanotechnol., 2017, 12, 194.
- 9 M. Armand and J. M. Tarascon, Nature, 2008, 451, 652.
- 10 M. Li, J. Lu, Z. Chen and K. Amine, Adv. Mater., 2018, 30, e1800561.
- 11 I. Buchmann, ‘ Encyclopedia of Inorganic and Bioinorganic Chemistry’, John Wiley & Sons, Inc., New York, 2015.
- 12 S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia and J. Li, Adv. Mater., 2018, 30, 1706375.
- 13 M. D. Tikekar, S. Choudhury, Z. Tu and L. A. Archer, Nat. Energy, 2016, 1, 16114.
- 14 J. Steiger, D. Kramer and R. Mönig, J. Power Sources, 2014, 261, 112.
- 15 Q. Zhao, Z. Tu, S. Wei, K. Zhang, S. Choudhury, X. Liu and A. Archer Lynden, Angew. Chem. Int. Ed., 2017, 57, 992.
- 16 H. Ghassemi, M. Au, N. Chen, P. A. Heiden and R. S. Yassar, Appl. Phys. Lett., 2011, 99, 123113.
- 17 Y. S. Cohen, Y. Cohen and D. Aurbach, J. Phys. Chem. B, 2000, 104, 12282.
- 18 A. N. Dey, Electrochim. Acta, 1976, 21, 377.
- 19 C. Brissot, M. Rosso, J. N. Chazalviel, P. Baudry and S. Lascaud, Electrochim. Acta, 1998, 43, 1569.
- 20 J. K. Stark, Y. Ding and P. A. Kohl, J. Electrochem. Soc., 2013, 160, D337.
- 21 P. C. Howlett, D. R. MacFarlane and A. F. Hollenkamp, J. Power Sources, 2003, 114, 277.
- 22 J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima and J. Li, Science, 2010, 330, 1515.
- 23 S. Shiraishi and K. Kanamura, Langmuir, 1998, 14, 7082.
- 24 Y. Zhang, J. Qian, W. Xu, S. M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M. H. Engelhard, D. Mei, R. Cao, F. Ding, A. V. Cresce, K. Xu and J.-G. Zhang, Nano Lett., 2014, 14, 6889.
- 25 D. Aurbach, I. Weissman, A. Zaban and O. Chusid, Electrochim. Acta, 1994, 39, 51.
- 26 S. Wenzel, T. Leichtweiss, D. Krüger, J. Sann and J. Janek, Solid State Ion., 2015, 278, 98.
- 27 S.-P. Kim, A. C. T. v. Duin and V. B. Shenoy, J. Power Sources, 2011, 196, 8590.
- 28 M. R. Palacin and A. de Guibert, Science, 2016, 351, 1253292.
- 29 D. Aurbach, E. Zinigrad, Y. Cohen and H. Teller, Solid State Ion., 2002, 148, 405.
- 30 A. N. Dey, J. Electrochem. Soc., 1970, 117, C248.
- 31 E. Peled, J. Electrochem. Soc., 1979, 126, 2047.
- 32 E. Peled, D. Golodnitsky and G. Ardel, J. Electrochem. Soc., 1997, 144, L208.
- 33 D. Aurbach, J. Power Sources, 2000, 89, 206.
- 34 S. Shi, P. Lu, Z. Liu, Y. Qi, L. G. Hector Jr H. Li and S. J. Harris, J. Am. Chem. Soc., 2012, 134, 15476.
- 35 D. Aurbach, A. Zaban, A. Schechter, Y. Ein-Eli, E. Zinigrad and B. Markovsky, J. Electrochem. Soc., 1995, 142, 2873.
- 36 N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater. Today, 2015, 18, 252.
- 37 K. Ushirogata, K. Sodeyama, Z. Futera, Y. Tateyama and Y. Okuno, J. Electrochem. Soc., 2015, 162, A2670.
- 38 L. Fan, L. Zhuang Houlong, W. Zhang, Y. Fu, Z. Liao and Y. Lu, Adv. Energy Mater., 2018, 8, 1703360.
- 39 D. Aurbach and Y. Cohen, J. Electrochem. Soc., 1996, 143, 3525.
- 40 Z. Tu, S. Choudhury, M. J. Zachman, S. Wei, K. Zhang, L. F. Kourkoutis and L. A. Archer, Nat. Energy, 2018, 3, 310.
- 41 W. Zhang, H. L. Zhuang, L. Fan, L. Gao and Y. Lu, Sci. Adv., 2018, 4, eaar4410.
- 42 Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu and Y. Cui, Science, 2017, 358, 506.
- 43 M. Jäckle and A. Groß, J. Chem. Phys., 2014, 141, 174710.
- 44 D. R. Ely and R. E. García, J. Electrochem. Soc., 2013, 160, A662.
- 45 R. Selim and P. Bro, J. Electrochem. Soc., 1974, 121, 1457.
- 46 I. Yoshimatsu, T. Hirai and J. i. Yamaki, J. Electrochem. Soc., 1988, 135, 2422.
- 47 M. Arakawa, S.-i. Tobishima, Y. Nemoto, M. Ichimura and J.-i. Yamaki, J. Power Sources, 1993, 43, 27.
- 48 J. Steiger, D. Kramer and R. Mönig, Electrochim. Acta, 2014, 136, 529.
- 49 D. Lu, Y. Shao, T. Lozano, W. D. Bennett, G. L. Graff, B. Polzin, J. Zhang, M. H. Engelhard, N. T. Saenz, W. A. Henderson, P. Bhattacharya, J. Liu and J. Xiao, Adv. Energy Mater., 2015, 5, 1400993.
- 50 W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J.-G. Zhang, Energy Environ. Sci., 2014, 7, 513.
- 51 Z. Li, J. Huang, B. Yann Liaw, V. Metzler and J. Zhang, J. Power Sources, 2014, 254, 168.
- 52 C. Brissot, M. Rosso, J. N. Chazalviel and S. Lascaud, J. Power Sources, 1999, 81–82, 925.
- 53 J. N. Chazalviel, Phys. Rev. A, 1990, 42, 7355.
- 54 C. Monroe and J. Newman, J. Electrochem. Soc., 2003, 150, A1377.
- 55 M. Rosso, C. Brissot, A. Teyssot, M. Dollé, L. Sannier, J.-M. Tarascon, R. Bouchet and S. Lascaud, Electrochim. Acta, 2006, 51, 5334.
- 56 I. W. Seong, C. H. Hong, B. K. Kim and W. Y. Yoon, J. Power Sources, 2008, 178, 769.
- 57 C. Monroe and J. Newman, J. Electrochem. Soc., 2005, 152, A396.
- 58 C. Monroe and J. Newman, J. Electrochem. Soc., 2004, 151, A880.
- 59 M. Z. Mayers, J. W. Kaminski and T. F. Miller, J. Phys. Chem. C, 2012, 116, 26214.
- 60 A. Aryanfar, D. Brooks, B. V. Merinov, W. A. Goddard, A. J. Colussi and M. R. Hoffmann, J. Phys. Chem. Lett., 2014, 5, 1721.
- 61 R. Tao, X. X. Bi, S. Li, Y. Yao, F. Wu, Q. Wang, C. Z. Zhang and J. Lu, ACS Appl. Mater. Interfaces, 2017, 9, 7003.
- 62 J. L. Wang, F. J. Lin, H. Jia, J. Yang, C. W. Monroe and Y. N. NuLi, Angew. Chem. Int. Ed., 2014, 53, 10099.
- 63 F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu and J. G. Zhang, J. Am. Chem. Soc., 2013, 135, 4450.
- 64 W. S. Jia, C. Fan, L. P. Wang, Q. J. Wang, M. J. Zhao, A. J. Zhou and J. Z. Li, ACS Appl. Mater. Interfaces, 2016, 8, 15399.
- 65 J. K. S. Goodman and P. A. Kohl, J. Electrochem. Soc., 2014, 161, D418.
- 66 B. R. Wu, Q. Liu, D. B. Mu, H. L. Xu, L. Wang, L. L. Shi, L. Gai and F. Wu, RSC Adv., 2016, 6, 51738.
- 67 Y. Y. Lu, Z. Y. Tu and L. A. Archer, Nat. Mater., 2014, 13, 961.
- 68 Y. Y. Lu, Z. Y. Tu, J. Shu and L. A. Archer, J. Power Sources, 2015, 279, 413.
- 69 Y. Ozhabes, D. Gunceler and T. A. Arias, Physics, 2015, arXiv:1504.05799.
- 70 S. S. Zhang, Electrochim. Acta, 2012, 70, 344.
- 71 W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y. M. Chiang and Y. Cui, Nat. Commun., 2015, 6, 7436.
- 72 Y. Malik, D. Aurbach, P. Dan and A. Meitav, J. Electroanal. Chem. Interfac. Electrochem., 1991, 282, 73.
- 73 T. Momma, H. Nara, S. Yamagami, C. Tatsumi and T. Osaka, J. Power Sources, 2011, 196, 6483.
- 74 Y. Ein-Eli and D. Aurbach, J. Power Sources, 1995, 54, 281.
- 75 R. D. Rauh and S. B. Brummer, Electrochim. Acta, 1977, 22, 75.
- 76 M. Uchiyama, S. Slane, E. Plichta and M. Salomon, J. Power Sources, 1987, 20, 279.
- 77 P. Dan, E. Mengeritsky, D. Aurbach, I. Weissman and E. Zinigrad, J. Power Sources, 1997, 68, 443.
- 78 K. M. Abraham, J. Power Sources, 1985, 14, 179.
- 79 J. K. Stark, Y. Ding and P. A. Kohl, J. Electrochem. Soc., 2011, 158, A1100.
- 80 X. Q. Zhang, X. B. Cheng, X. Chen, C. Yan and Q. Zhang, Adv. Funct. Mater., 2017, 27, 1605989.
- 81 M. Morita, S. Aoki and Y. Matsuda, Electrochim. Acta, 1992, 37, 119.
- 82 G. B. Han, J. N. Lee, J. L. Dong, H. Lee, J. Song, H. Lee, M. H. Ryou, J. K. Park and M. L. Yong, Electrochim. Acta, 2014, 115, 525.
- 83 J. Jeong, J. N. Lee, J. K. Park, M. H. Ryou and M. L. Yong, Electrochim. Acta, 2015, 170, 353.
- 84 R. Miao, J. Yang, X. Feng, H. Jia, J. Wang and Y. Nuli, J. Power Sources, 2014, 271, 291.
- 85 H. Xiang, P. Shi, P. Bhattacharya, X. Chen, D. Mei, M. E. Bowden, J. Zheng, J. G. Zhang and W. Xu, J. Power Sources, 2016, 318, 170.
- 86 F. Wu, J. Qian, R. Chen, J. Lu, L. Li, H. Wu, J. Chen, T. Zhao, Y. Ye and K. Amine, ACS Appl. Mater. Interfaces, 2014, 6, 15542.
- 87 N. W. Li, Y. X. Yin, J. Y. Li, C. H. Zhang and Y. G. Guo, Adv. Sci., 2016, 4, 1600400.
- 88 F. Zheng, M. Qiang, P. Liu, M. Jie, Y. S. Hu, Z. Zhou, L. Hong, X. Huang and L. Chen, ACS Appl. Mater. Interfaces, 2016, 9, 4282.
- 89 R. Miao, J. Yang, Z. Xu, J. Wang, Y. Nuli and L. Sun, Sci. Rep., 2016, 6, 21771.
- 90 S. Choudhury, C. T. Wan, W. I. Al Sadat, Z. Tu, S. Lau, M. J. Zachman, L. F. Kourkoutis and L. A. Archer, Sci. Adv., 2017, 3, e1602809.
- 91 H. Wu, Y. Cao, L. Geng and C. Wang, Chem. Mater., 2017, 29, 3572.
- 92 Z. Hu, S. Zhang, S. Dong, W. Li, H. Li, G. Cui and L. Chen, Chem. Mater., 2017, 29, 4682.
- 93 H. Ye, Y. X. Yin, S. F. Zhang, Y. Shi, L. Liu, X. X. Zeng, R. Wen, Y. G. Guo and L. J. Wan, Nano Energy, 2017, 36, 411.
- 94 S. Liu, G. R. Li and X. P. Gao, ACS Appl. Mater. Interfaces, 2016, 8, 7783.
- 95 S. Shiraishi, K. Kanamura and Z. Takehara, J. Electrochem. Soc., 1999, 146, 1633.
- 96 J. Qian, W. Xu, P. Bhattacharya, M. Engelhard, W. A. Henderson, Y. Zhang and J. G. Zhang, Nano Energy, 2015, 15, 135.
- 97 S. A. Freunberger, Y. Chen, Z. Peng, J. M. Griffin, L. J. Hardwick, F. Bardé, P. Novák and P. G. Bruce, J. Am. Chem. Soc., 2011, 133, 8040.
- 98 Q. Ma, Z. Fang, P. Liu, J. Ma, X. Qi, W. Feng, J. Nie, Y. S. Hu, H. Li and X. Huang, ChemElectroChem, 2016, 3, 531.
- 99 S.-K. Jeong, H.-Y. Seo, D.-H. Kim, H.-K. Han, J.-G. Kim, Y. B. Lee, Y. Iriyama, T. Abe and Z. Ogumi, Electrochem. Commun., 2008, 10, 635.
- 100 L. Suo, Y. S. Hu, H. Li, M. Armand and L. Chen, Nat. Commun., 2013, 4, 1481.
- 101 Y. Lu, S. K. Das, S. S. Moganty and L. A. Archer, Adv. Mater., 2012, 24, 4430.
- 102 Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama and A. Yamada, J. Am. Chem. Soc., 2014, 136, 5039.
- 103 J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin and J. G. Zhang, Nat. Commun., 2015, 6, 6362.
- 104 N. Togasaki, T. Momma and T. Osaka, J. Power Sources, 2016, 307, 98.
- 105 H. Zheng, J. Qin, Y. Zhao, T. Abe and Z. Ogumi, Solid State Ion., 2005, 176, 2219.
- 106 M. D. Tikekar, L. A. Archer and D. L. Koch, Sci. Adv., 2016, 2, e1600320.
- 107 M. D. Tikekar, L. A. Archer and D. L. Koch, J. Electrochem. Soc., 2014, 161, A847.
- 108 Y. Li, K. W. Wong, Q. Dou and K. M. Ng, J. Mater. Chem. A, 2016, 4, 18543.
- 109 L. Fan, S. Wei, S. Li, Q. Li and Y. Lu, Adv. Energy Mater., 2018, 8, 1702657.
- 110 Q. Li, S. Tan, L. Li, Y. Lu and Y. He, Sci. Adv., 2017, 3, e1701246.
- 111 A. Kirchev, A. Delaille, M. Perrin, E. Lemaire and F. Mattera, J. Power Sources, 2007, 170, 495.
- 112 M. A. Monem, K. Trad, N. Omar, O. Hegazy, B. Mantels, G. Mulder, P. V. D. Bossche and J. V. Mierlo, Appl. Energy, 2015, 152, 143.
- 113 M. S. Chandrasekar and M. Pushpavanam, Electrochim. Acta, 2008, 53, 3313.
- 114 H. Yang, E. O. Fey, B. D. Trimm, N. Dimitrov and M. S. Whittingham, J. Power Sources, 2014, 272, 900.
- 115 A. Pei, G. Zheng, F. Shi, Y. Li and Y. Cui, Nano Lett., 2017, 17, 1132.
- 116 L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar, B. Wang, J. Shi, Y. Shi, S. Narayanan and N. Koratkar, Science, 2018, 359, 1513.
- 117 M. Gauthier, T. J. Carney, A. Grimaud, L. Giordano, N. Pour, H. H. Chang, D. P. Fenning, S. F. Lux, O. Paschos and C. Bauer, J. Phys. Chem. Lett., 2016, 6, 4653.
- 118 S. L. Koch, B. J. Morgan, S. Passerini and G. Teobaldi, J. Power Sources, 2015, 296, 150.
- 119 N. W. Li, Y. X. Yin, C. P. Yang and Y. G. Guo, Adv. Mater., 2016, 28, 1853.
- 120 X. B. Cheng, C. Yan, X. Chen, C. Guan, J. Q. Huang, H. J. Peng, R. Zhang, S. T. Yang and Q. Zhang, Chemistry, 2017, 2, 258.
- 121 Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt and Y. Cui, Adv. Mater., 2017, 29, 1605531.
- 122 G. Zheng, S. W. Lee, Z. Liang, H. W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu and Y. Cui, Nat. Nanotechnol., 2014, 9, 618.
- 123 A. C. Kozen, C. F. Lin, A. J. Pearse, M. A. Schroeder, X. Han, L. Hu, S. B. Lee, G. W. Rubloff and M. Noked, ACS Nano, 2015, 9, 5884.
- 124 J. Song, H. Lee, M. J. Choo, J. K. Park and H. T. Kim, Sci. Rep., 2015, 5, 14458.
- 125 K. I. Chung, J. D. Lee, E. J. Kim, W. S. Kim, J. H. Cho and Y. K. Choi, Microchem. J., 2003, 75, 71.
- 126 S. M. Choi, I. S. Kang, Y. K. Sun, J. H. Song, S. M. Chung and D. W. Kim, J. Power Sources, 2013, 244, 363.
- 127 D. J. Lee, H. Lee, Y. J. Kim, J. K. Park and H. T. Kim, Adv. Mater., 2016, 28, 857.
- 128 H. Lee, J. L. Dong, Y. J. Kim, J. K. Park and H. T. Kim, J. Power Sources, 2015, 284, 103.
- 129 L. Fan, H. L. Zhuang, L. Gao, Y. Lu and L. A. Archer, J. Mater. Chem. A, 2017, 5, 3483.
- 130 L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao and J. Li, J. Power Sources, 2017, 342, 175.
- 131 B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang and J. Zhu, Adv. Mater., 2017, 29, 1603755.
- 132 B. Baretzky, W. Eckstein and R. P. Schorn, J. Nucl. Mater., 1995, 224, 50.
- 133 R. D. Armstrong, O. R. Brown, R. P. Ram and C. D. Tuck, J. Power Sources, 1989, 28, 259.
- 134
B. Predel, ‘ Li–Ni (Lithium–Nickel)’, Springer, Berlin Heidelberg, 1997.
10.1007/10522884_1911 Google Scholar
- 135
A. D. Pelton, Bull. Alloy Phase Diagr., 1986, 7, 223.
10.1007/BF02868992 Google Scholar
- 136 C. J. Wen and R. A. Huggins, J. Solid State Chem., 1980, 35, 376.
- 137 W. A. Alexander, L. D. Calvert, R. H. Gamble and K. Schinzel, Can. J. Chem., 1976, 54, 1052.
- 138 J. Wang, P. King and R. A. Huggins, Solid State Ion., 1986, 20, 185.
- 139 J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li, L. Liao, Y. Jin, K. Liu, P. C. Hsu, J. Wang, H. M. Cheng and Y. Cui, Nat. Nanotechnol., 2017, 12, 993.
- 140 Q. Li, S. Zhu and Y. Lu, Adv. Funct. Mater., 2017, 27, 1606422.
- 141 D. Lin, Y. Liu, Z. Liang, H. W. Lee, J. Sun, H. Wang, K. Yan, J. Xie and Y. Cui, Nat. Nanotechnol., 2016, 11, 626.
- 142 X. Liang, Q. Pang, I. R. Kochetkov, M. S. Sempere, H. Huang, X. Sun and L. F. Nazar, Nat. Energy, 2017, 2, 17119.
- 143
J. Heine, S. Krüger, C. Hartnig, U. Wietelmann, M. Winter and P. Bieker, Adv. Energy Mater., 2014, 4, 288.
10.1002/aenm.201300815 Google Scholar
- 144 M. H. Ryou, Y. M. Lee, Y. Lee, M. Winter and P. Bieker, Adv. Funct. Mater., 2015, 25, 834.
- 145 C. P. Yang, Y. X. Yin, S. F. Zhang, N. W. Li and Y. G. Guo, Nat. Commun., 2015, 6, 8058.
- 146 L. L. Lu, J. Ge, J. N. Yang, S. M. Chen, H. B. Yao, F. Zhou and S. H. Yu, Nano Lett., 2016, 16, 4431.
- 147 S. Jin, S. Xin, L. Wang, Z. Du, L. Cao, J. Chen, X. Kong, M. Gong, J. Lu and Y. Zhu, Adv. Mater., 2016, 28, 9016.
- 148 R. Mukherjee, A. V. Thomas, D. Datta, E. Singh, J. Li, O. Eksik, V. B. Shenoy and N. Koratkar, Nat. Commun., 2014, 5, 3710.
- 149 T. T. Zuo, X. W. Wu, C. P. Yang, Y. X. Yin, H. Ye, N. W. Li and Y. G. Guo, Adv. Mater., 2017, 29, 1700389.
- 150 H. K. Kang, S. G. Woo, J. H. Kim, S. R. Lee and Y. J. Kim, Electrochim. Acta, 2015, 176, 172.
- 151 K. Xie, W. Wei, K. Yuan, W. Lu, M. Guo, Z. Li, Q. Song, X. R. Liu, J. G. Wang and C. Shen, ACS Appl. Mater. Interfaces, 2016, 8, 26091.
- 152 X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan, Z. Yu, J. Qiu and Y. Yang, J. Mater. Chem. A, 2014, 2, 11660.
- 153 H. Lee, J. Song, Y. J. Kim, J. K. Park and H. T. Kim, Sci. Rep., 2016, 6, 30830.
- 154 C. H. Chang, S. H. Chung and A. Manthiram, Adv. Sustain. Syst., 2017, 1, 1600034.
- 155 Z. Liang, G. Zheng, C. Liu, N. Liu, W. Li, K. Yan, H. Yao, P. C. Hsu, S. Chu and Y. Cui, Nano Lett., 2015, 15, 2910.
- 156 L. Wen, Y. Mi, W. Zhe, Y. Zhong, Z. Wu and H. Wang, Chem. Sci., 2017, 8, 4285.
- 157 R. Zhang, X. R. Chen, X. Chen, X. B. Cheng, X. Q. Zhang, C. Yan and Q. Zhang, Angew. Chem. Int. Ed., 2017, 56, 7764.
- 158 Y. Zhang, W. Luo, C. Wang, Y. Li, C. Chen, J. Song, J. Dai, E. M. Hitz, S. Xu, C. Yang, Y. Wang and L. Hu, Proc. Natl. Acad. Sci. USA, 2017, 114, 3584.