How to Maximize the Potential of Zn–Air Battery: Toward Acceptable Rechargeable Technology with or without Electricity
Joohyuk Park
Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorJang-Soo Lee
Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorJaephil Cho
Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorJoohyuk Park
Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorJang-Soo Lee
Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorJaephil Cho
Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
Search for more papers by this authorAbstract
Owing to its high potential, Zn–air battery with a century old technology has been drawing attention recently. However, it is still under research and development stage so that its maximum application has been significantly limited to small portable devices such as just hearing aids. In this article, we briefly introduce possible degradation mechanism of each zinc anode and air cathode and then discuss efforts to address these issues. Furthermore, for making Zn–air battery technology more commercialized, we also discuss the efforts that should be more emphasized and the strategy that can be possible and an alternative for future Zn–air battery technology.
References
- 1 J.-S. Lee, S. Tai Kim, R. Cao, N.-S. Choi, M. Liu, K. T. Lee and J. Cho, Adv. Energy Mater., 2011, 1, 34.
- 2 P. G. Bruce, S. A. Freunberger, L. J. Hardwick and J.-M. Tarascon, Nat. Mater., 2012, 11, 172.
- 3 S. Evers and L. F. Nazar, Acc. Chem. Res., 2012, 46, 1135.
- 4 J. Dahn, Scalable Energy Storage: Beyond Lithium Ion, 2009.
- 5 W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J.-G. Zhang, Energy Environ. Sci., 2014, 7, 513.
- 6 G. Zheng, S. W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu and Y. Cui, Nat. Nanotechnol., 2014, 9, 618.
- 7 N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H.-W. Lee, W. Zhao and Y. Cui, Nat. Nanotechnol., 2014, 9, 187.
- 8 Y. Li and H. Dai, Chem. Soc. Rev., 2014, 43, 5257.
- 9 P. Pei, K. Wang and Z. Ma, Appl. Energy, 2014, 128, 315.
- 10
V. Caramia and B. Bozzini, Mater. Renew. Sustain. Energy, 2014, 3, 1.
10.1007/s40243-014-0028-3 Google Scholar
- 11
R. A. Huggins, Materials for Lithium-Ion Batteries, Springer, Netherlands, 2000, Vol. 85, p. 21.
10.1007/978-94-011-4333-2_2 Google Scholar
- 12 M. Geng and D. O. Northwood, Int. J. Hydrog. Energy, 2003, 28, 633.
- 13 T. Arlt, D. Schroder, U. Krewer and I. Manke, Phys. Chem. Chem. Phys., 2014, 16, 22273.
- 14 S. Siahrostami, V. Tripkovic, K. T. Lundgaard, K. E. Jensen, H. A. Hansen, J. S. Hummelshoj, J. S. G. Myrdal, T. Vegge, J. K. Norskov and J. Rossmeisl, Phys. Chem. Chem. Phys., 2013, 15, 6416.
- 15 K. E. Gubbins and R. D. Walker, J. Electrochem. Soc., 1965, 112, 469.
- 16 J. F. Parker, C. N. Chervin, E. S. Nelson, D. R. Rolison and J. W. Long, Energy Environ. Sci., 2014, 7, 1117.
- 17 P. Pei, Z. Ma, K. Wang, X. Wang, M. Song and H. Xu, J. Power Sources, 2014, 249, 13.
- 18 F. R. McLarnon and E. J. Cairns, J. Electrochem. Soc., 1991, 138, 645.
- 19 E. L. Dewi, K. Oyaizu, H. Nishide and E. Tsuchida, J. Power Sources, 2003, 115, 149.
- 20 Y. Kiros, J. Power Sources, 1996, 62, 117.
- 21 Y.-D. Cho and G. T.-K. Fey, J. Power Sources, 2008, 184, 610.
- 22 S.-M. Lee, Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim and S.-B. Cho, J. Power Sources, 2013, 227, 177.
- 23 C. W. Lee, K. Sathiyanarayanan, S. W. Eom, H. S. Kim and M. S. Yun, J. Power Sources, 2006, 160, 161.
- 24 M. Yano, S. Fujitani, K. Nishio, Y. Akai and M. Kurimura, J. Power Sources, 1998, 74, 129.
- 25 C. W. Lee, K. Sathiyanarayanan, S. W. Eom and M. S. Yun, J. Power Sources, 2006, 160, 1436.
- 26 N. Ramaswamy and S. Mukerjee, J. Phys. Chem. C, 2011, 115, 18015.
- 27 J. S. Spendelow and A. Wieckowski, Phys. Chem. Chem. Phys., 2007, 9, 2654.
- 28 R. Cao, J.-S. Lee, M. Liu and J. Cho, Adv. Energy Mater., 2012, 2, 816.
- 29 F. Cheng and J. Chen, Chem. Soc. Rev., 2012, 41, 2172.
- 30 V. Neburchilov, H. Wang, J. J. Martin and W. Qu, J. Power Sources, 2010, 195, 1271.
- 31 J. Suntivich, H. A. Gasteiger, N. Yabuuchi and Y. Shao-Horn, J. Electrochem. Soc., 2010, 157, B1263.
- 32 Y. Garsany, I. L. Singer and K. E. Swider-Lyons, J. Electroanal. Chem., 2011, 662, 396.
- 33
S. S. Kocha, J. W. Zack, S. M. Alia, K. C. Neyerlin and B. S. Pivovar, ECS Trans., 2013, 50, 1475.
10.1149/05002.1475ecst Google Scholar
- 34 L. Jörissen, J. Power Sources, 2006, 155, 23.
- 35 Y. Xu, X. Xu, G. Li, Z. Zhang, G. Hu and Y. Zheng, Int. J. Electrochem. Sci., 2013, 8, 11805.
- 36 M. Balaish, A. Kraytsberg and Y. Ein-Eli, ChemElectroChem, 2014, 1, 90.
- 37 J. F. Drillet, F. Holzer, T. Kallis, S. Muller and V. M. Schmidt, Phys. Chem. Chem. Phys., 2001, 3, 368.
- 38
C. Wieckert, M. Epstein, G. Olalde, S. Santén and A. Steinfeld, Encycl. Electrochem. Power Sources, 2009, 5, 469.
10.1016/B978-044452745-5.00170-2 Google Scholar
- 39 K. R. Kelty, V. H. Mehta and J. B. Straubel, Google Patents, 2012.
- 40 D. U. Lee, J.-Y. Choi, K. Feng, H. W. Park and Z. Chen, Adv. Energy Mater., 2014, 4, 1301389.
- 41 J. W. D. Ng, M. Tang and T. F. Jaramillo, Energy Environ. Sci., 2014.
- 42 Y. Li, M. Gong, Y. Liang, J. Feng, J.-E. Kim, H. Wang, G. Hong, B. Zhang and H. Dai, Nat. Commun., 2013, 4, 1805.
- 43 X. Wang, W. Li, Z. Chen, M. Waje and Y. Yan, J. Power Sources, 2006, 158, 154.
- 44 G. Toussaint, P. Stevens, L. Akrour, R. Rouget and F. Fourgeot, ECS Trans., 2010, 28, 25.