Actinides: Computational Chemistry
Abstract
Relativistic quantum chemical ab initio methods for calculations of the electronic structures of actinide and transactinide atoms and molecules are briefly reviewed. The importance of relativistic and electron correlation effects for heavy-element quantum chemical investigations is emphasized. In addition, the need to go beyond the Dirac one-electron relativity and to include, for example, the Breit interaction for the relativistic two-electron interaction or even low-order contributions from quantum electrodynamics is shown for specific examples. The possible entries on the three axes of the coordinate system of ab initio quantum chemical calculations—Hamiltonian axis, one-, and many-particle basis set axes—are summarized. Several choices for relativistic Hamiltonians at the all-electron and valence-only level are introduced and compared, and the principal strategies to account for relativistic effects, including spin–orbit interaction and electron correlation effects in calculations, are discussed. Some remarks on problems when applying density functional theory to actinide and transactinide systems are made. Finally, a few selected examples show the range of applicability of the currently available methods for theoretical investigations of the heaviest known elements and their chemistry.
References
- 1K. S. Pitzer, Acc. Chem. Res., 1979, 12, 272.
- 2P. Pyykkö and J. P. Desclaux, Acc. Chem. Res., 1979, 12, 276.
- 3 W. Liu ed., ‘Handbook of Relativistic Quantum Chemistry’, Springer, Berlin, 2017.
- 4 B. A. Hess ed., ‘Relativistic Effects in Heavy-element Chemistry and Physics. Wiley Series in Theoretical Chemistry’, Wiley, Chichester, 2002, Vol. 12.
- 5 P. Schwerdtfeger ed., ‘Relativistic Electronic Structure Theory. Part 1: Fundamentals. Theoretical and Computational Chemistry’, Elsevier, Amsterdam, 2002, Vol. 11.
- 6 P. Schwerdtfeger ed., ‘Relativistic Electronic Structure Theory. Part 2: Applications. Theoretical and Computational Chemistry’, Elsevier, Amsterdam, 2004, Vol. 14.
- 7 M. Barysz and Y. Ishikawa eds, ‘Relativistic Methods for Chemists, Challenges and Advances in Computational Physics’, Springer, Berlin, 2010, Vol. 10.
- 8 M. Dolg ed., ‘Computational Methods in Lanthanide and Actinide Chemistry’, Wiley, Chichester, 2015.
10.1002/9781118688304 Google Scholar
- 9I. P. Grant, ‘Relativistic Quantum Theory of Atoms and Molecules. Theory and Computations’, Springer, New York, 2007.
- 10K. G. Dyall and K. Faegri Jr, ‘Introduction to Relativistic Quantum Chemistry’, Oxford University Press, Oxford, 2007.
- 11M. Reiher and A. Wolf, ‘Relativistic Quantum Chemistry’, Wiley-VCH, Weinheim, 2009.
10.1002/9783527627486 Google Scholar
- 12P. Pyykkö, Adv. Quant. Chem., 1978, 11, 353.
- 13P. Pyykkö, Chem. Rev., 1988, 88, 563.
- 14W. H. E. Schwarz, ‘Relativistic Methods for Chemists. Challenges and Advances in Computational Physics’, eds M. Barysz and Y. Ishikawa, Springer, London, 2010, Vol. 10, p. 1.
- 15P. Pyykkö, Inorg. Chim. Acta, 1987, 139, 243.
- 16M. Pepper and B. Bursten, Chem. Rev., 1991, 91, 719.
- 17V. G. Pershina, Chem. Rev., 1996, 96, 1977.
- 18V. Pershina, Nucl. Phys. A, 2015, 944, 578.
- 19G. Schreckenbach, P. J. Hay and R. L. Martin, J. Comput. Chem., 1999, 20, 70.
- 20G. Schreckenbach and G. A. Shamov, Acc. Chem. Res., 2010, 43, 19.
- 21N. Kaltsoyannis, Chem. Soc. Rev., 2003, 32, 9.
- 22M. Dolg and X. Cao, ‘Recent Advances in Computational Chemistry’, eds K. Hirao and Y. Ishikawa, World Scientific, New Jersey, 2004, p. 1.
- 23X. Cao and M. Dolg, Coord. Chem. Rev., 2006, 250, 900.
- 24M. Dolg and X. Cao, ‘Computational Inorganic and Bioinorganic Chemistry’, eds E. I. Solomon, R. A. Scott and R. B. King, Wiley, Chichester, 2009, p. 503.
- 25L. Gagliardi and B. O. Roos, Chem. Soc. Rev., 2007, 36, 893.
- 26P. Indelicato, J. P. Santos, S. Boucard and J.-P. Desclaux, Eur. Phys. J D, 2007, 45, 155.
- 27E. Eliav, S. Fritzsche and U. Kaldor, Nucl. Phys. A, 2015, 944, 518.
10.1016/j.nuclphysa.2015.06.017 Google Scholar
- 28P. Schwerdtfeger, L. F. Pasteka, A. Punnett and P. O. Bowman, Nucl. Phys. A, 2015, 944, 551.
- 29V. Vallet, P. Macak, U. Wahlgren and I. Grenthe, Theor. Chem. Acc., 2006, 115, 145.
- 30 GRASP. A Relativistic AB Initio Atomic Structure Program, main authors K. G. Dyall and I. P. Grant; http://nlte.nist.gov/MCHF/ (accessed July 2018).
- 31D. Andrae, Phys. Rep., 2000, 336, 413.
- 32T. Saue, ChemPhysChem, 2011, 12, 3077.
- 33M. Dolg and X. Cao, Chem. Rev., 2012, 112, 403.
- 34P. A. M. Dirac, Proc. Roy. Soc. London A, 1928, 117, 610.
- 35G. Breit, Phys. Rev., 1929, 34, 553.
- 36J. Sucher, Phys. Rev. A, 1980, 22, 348.
- 37J. H. Wood and A. M. Boring, Phys. Rev. B, 1978, 18, 2701.
- 38L. L. Foldy and S. A. Wouthuysen, Phys. Rev., 1950, 78, 29.
- 39C. Chang, M. Pélissier and P. Durand, Phys. Scr., 1986, 34, 394.
- 40E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1993, 101, 4597.
- 41E. van Lenthe, E. J. Baerends and J. G. Snijders, J. Chem. Phys., 1994, 101, 9783.
- 42M. Douglas and N. M. Kroll, Ann. Phys., 1974, 82, 89.
- 43B. A. Hess, Phys. Rev., 1986, 33, 3742.
- 44G. Jansen and B. A. Hess, Phys. Rev. A, 1989, 39, 6016.
- 45M. Reiher, Theor. Chem. Acc., 2006, 116, 241.
- 46L. Seijo and Z. Barandiarán, in ‘Computational Chemistry: Reviews of Current Trends’, ed., J. Leszczynski, World Scientific, Singapore, 1999, Vol. 4, p. 55.
- 47L. Seijo, Z. Barandiáran and E. Harguindey, J. Chem. Phys., 2001, 114, 118.
- 48W. C. Ermler, R. B. Ross and P. A. Christiansen, Int. J. Quant. Chem., 1991, 40, 829.
- 49C. S. Nash, B. E. Bursten and W. C. Ermler, J. Chem. Phys., 1997, 106, 5133.
- 50N. S. Mosyagin, A. V. Zaitsevskii, L. V. Skripnikov and A. V. Titov, Int. J. Quant. Chem., 2016, 116, 301.
- 51W. Küchle, M. Dolg, H. Stoll and H. Preuß, J. Chem. Phys., 1994, 100, 7535.
- 52X. Cao and M. Dolg, J. Phys. Chem. A, 2009, 113, 12573.
- 53A. Weigand, X. Cao, T. Hangele and M. Dolg, J. Phys. Chem. A, 2014, 118, 2519.
- 54T. Hangele, M. Dolg, M. Hanrath, X. Cao and P. Schwerdtfeger, J. Chem. Phys., 2012, 136, 214105.
- 55T. Hangele, M. Dolg and P. Schwerdtfeger, J. Chem. Phys., 2013, 138, 174113.
- 56A. Weigand, X. Cao, J. Yang and M. Dolg, Theor. Chem. Acc., 2010, 126, 117.
- 57G. L. Malli, A. B. F. da Silva and Y. Ishikawa, Phys. Rev. A, 1993, 47, 143.
- 58K. Faegri, Chem. Phys., 2005, 311, 25.
- 59K. G. Dyall, Theor. Chem. Acc., 2007, 117, 491.
- 60K. G. Dyall, J. Phys. Chem. A, 2009, 113, 12638.
- 61K. G. Dyall, Theor. Chem. Acc., 2011, 129, 603.
- 62K. G. Dyall, Theor. Chem. Acc., 2012, 131, 1172.
- 63T. Q. Teodore, L. Visscher, A. B. F. da Silva and R. L. A. Haiduke, J. Chem. Theor. Comput., 2012, 13, 1094.
- 64T. Tsuchiya, M. Abe, T. Nakajima and K. Hirao, J. Chem. Phys., 2001, 115, 4463.
- 65K. A. Peterson, J. Chem. Phys., 2015, 142, 074105.
- 66R. Feng and K. A. Peterson, J. Chem. Phys., 2017, 147, 084108.
- 67D. Pantazis and F. Neese, J. Chem. Theor. Comput., 2011, 7, 677.
- 68X. Cao and M. Dolg, J. Molec. Struct. (Theochem), 2004, 673, 203.
- 69X. Cao, M. Dolg and H. Stoll, J. Chem. Phys., 2003, 118, 487.
- 70A. Szabo and N. Ostlund, ‘Modern Quantum Chemistry. An Introduction to Advanced Electronic Structure Theory’, McGraw-Hill, New York, 1982.
- 71T. Helgaker, P. Jorgensen and J. Olsen, ‘Molecular Electronic Structure Theory’, Wiley, Chichester, 2000.
10.1002/9781119019572 Google Scholar
- 72K. Boguslawski, F. Réal, A. S. P. Gomes, V. Vallet, P. Tecmer, C. Duperrouzel, O. Legeza and P. W. Ayers, Phys. Chem. Chem. Phys., 2017, 19, 4317.
- 73R. G. Parr and W. Yang, ‘Density Functional Theory of Atoms and Molecules’, Oxford University Press, New York, 1989.
- 74E. Engel and R. M. Dreizler, ‘Density Functional Theory’, Springer, Heidelberg, 2011.
- 75W. Liu, W. Küchle and M. Dolg, Phys. Rev. A, 1998, 58, 1103.
- 76C. Clavaguéra-Sarrio, V. Vallet, D. Maynau and C. Marsden, J. Chem. Phys., 2004, 121, 5312.
- 77B. B. Averkiev, M. Mantina, R. Valero, I. Infante, A. Kovacs, D. G. Truhlar and L. Gagliardi, Theor. Chem. Acc., 2011, 129, 657.
- 78P. Tecmer, N. Govind, K. Kowalski, W. de Jong and L. Visscher, J. Chem. Phys., 2013, 139, 034301.
- 79W. Ding, W. Fang, Z. Chai and D. Wang, Acta Phys. Chim. Sin., 2015, 31, 1283.
- 80 DIRAC. A Relativistic AB Initio Electronic Structure Program, main authors H. J. Aa. Jensen, R. Bast, T. Saue and L. Visscher; http://www.diracprogram.org/ (accessed July 2018).
- 81K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia and E. P. Plummer, Comput. Phys. Commun., 1989, 55, 425.
- 82I. Infante, E. Eliav, M. J. Vilkas, Y. Ishikawa, U. Kaldor and L. Visscher, J. Chem. Phys., 2007, 127, 124308.
- 83A. Weigand, X. Cao, V. Vallet, J.-P. Flament and M. Dolg, J. Phys. Chem. A, 2009, 113, 11509.
- 84J. Lan, W. Shi, L. Yuan, J. Li, Y. Zhao and Z. Chai, Coord. Chem. Rev., 2012, 256, 1406.
- 85X. Cao, D. Heidelberg, J. Ciupka and M. Dolg, Inorg. Chem., 2010, 49, 10307.
- 86X. Cao, J. Zhang, D. Weissmann, M. Dolg and X. Chen, Phys. Chem. Chem. Phys., 2015, 17, 20605.
- 87A. Shee, S. Knecht and T. Saue, Phys. Chem. Chem. Phys., 2015, 17, 10978.