Actinides: Electronic Structure of the Oxides
Lindsay E. Roy
Savannah River National Laboratory, Aiken, SC, USA
Search for more papers by this authorLindsay E. Roy
Savannah River National Laboratory, Aiken, SC, USA
Search for more papers by this authorAbstract
This article outlines the recent work in using density functional methods to describe the structure and properties of the actinide oxides. The area represents a rich research history of using various methods such as local-density approximation/generalized gradient approximation (LDA/GGA), modified density functional theory (DFT+U), self-interaction correction methods (SIC), density functional theory + dynamic mean field theory (DFT+DMFT), and hybrid density functional theory (HSE) to assess the accuracy of predicting the properties of the oxides. Herein, the methods are assessed with respect to their accuracy in predicting the lattice constants, bulk moduli, band gap, and volumes based on experiment. Of the oxides, the dioxides represent the most complete analysis of the actinide series; of the elements, the most comprehensive study of structure–property relationships has been performed for the uranium oxides; and of the methods, DFT+U has been able to accurately reproduce the known properties of the actinide oxides at a reasonable computational cost. While the issues associated with theoretical methods remain challenging, it is clear that the field will continue to push the bounds and ultimately lead to a predictive science for development of new nuclear materials.
References
- 1H. Eccles, Solvent Extr. Ion Exch, 2000, 18(4), 633.
- 2C. Brown, Nucl. Eng. (Inst. Nucl. Eng.), 1996, 37(6), 166.
- 3R. J. M. Konings, J. Nucl. Mater., 2001, 298(3), 255.
10.1016/S0022-3115(01)00652-3 Google Scholar
- 4 International Atomic Energy Agency, ‘ Advanced Reactor Technology Options for Utilization and Transmutation of Actinides in Spent Nuclear Fuel’, International Atomic Energy Agency, Vienna, 2009.
- 5R. M. Orr, H. E. Sims and R. J. Taylor, J. Nucl. Mater., 2015, 465, 756.
10.1016/j.jnucmat.2015.06.058 Google Scholar
- 6J.-F. Vigier, D. Freis, P. Pöml, D. Prieur, P. Lajarge, S. Gardeur, A. Guiot, D. Bouëxière and R. J. M. Konings, Inorg. Chem., 2018, 57(8), 4317.
- 7Z. R. Ismagilov and S. V. Lazareva, Catal. Rev., 2013, 55(2), 135.
10.1080/01614940.2013.776858 Google Scholar
- 8G. J. Hutchings, C. S. Heneghan, I. D. Hudson and S. H. Taylor, Nature, 1996, 384, 341.
- 9S. D. Pollington, A. F. Lee, T. L. Overton, P. J. Sears, P. B. Wells, S. E. Hawley, I. D. Hudson, D. F. Lee and V. Ruddock, Chem. Commun., 1999, 8, 725.
- 10C.-C. Chang, Inorg. Chim. Acta, 1984, 94(5), 259.
- 11R. K. Grasselli and J. L. Callahan, J. Catal., 1969, 14(1), 93.
- 12H. Ramanantoanina, G. Kuri, C. Daul and J. Bertsch, Phys. Chem. Chem. Phys., 2016, 18(28), 19020.
10.1039/C6CP01395C Google Scholar
- 13T. Nishi, M. Nakada, A. Itoh, C. Suzuki, M. Hirata and M. Akabori, J. Nucl. Mater., 2008, 374(3), 339.
- 14T. Nishi, M. Nakada, C. Suzuki, H. Shibata, A. Itoh, M. Akabori and M. Hirata, J. Nucl. Mater., 2010, 401(1–3), 138.
- 15D. Prieur, P. M. Martin, A. Jankowiak, E. Gavilan, A. C. Scheinost, N. Herlet, P. Dehaudt and P. Blanchart, Inorg. Chem., 2011, 50(24), 12437.
- 16J. P. Perdew and A. Zunger, Phys. Rev. B, 1981, 23(10), 5048.
- 17V. I. Anisimov, Strong Coulomb Correlations in Electronic Structure Calculations: Beyond the Local Density Approximation, Gordon and Breach Science Publishers, Amsterdam, 2000.
- 18A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Rev. Mod. Phys., 1996, 68(1), 13.
- 19J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 2003, 118(18), 8207.
- 20J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 2006, 124(21), 219906.
- 21T. D. Chikalla and L. Eyring, J. Inorg. Nucl. Chem., 1968, 30(1), 133.
- 22J. A. Fahey, R. P. Turcotte and T. D. Chikalla, Inorg. Nucl. Chem. Lett., 1974, 10(6), 459.
- 23M. Idiri, T. Le Bihan, S. Heathman and J. Rebizant, Phys. Rev. B, 2004, 70(1), 014113.
- 24J. M. Fournier, A. Blaise, G. Amoretti, R. Caciuffo, J. Larroque, M. T. Hutchings, R. Osborn and A. D. Taylor, Phys. Rev. B, 1991, 43(1), 1142.
- 25I. D. Prodan, ‘Hybrid Density Functional Studies of Bulk Actinide Oxides’, Dissertation, Rice University, Houston, TX, USA, 2006.
- 26X.-D. Wen, R. L. Martin, L. E. Roy, G. E. Scuseria, S. P. Rudin, E. R. Batista, T. M. McCleskey, B. L. Scott, E. Bauer, J. J. Joyce and T. Durakiewicz, J. Chem. Phys., 2012, 137(15), 154707.
- 27J. T. Pegg, X. Aparicio-Anglès, M. Storr and N. H. de Leeuw, J. Nucl. Mater., 2017, 492, 269.
- 28T. Yamashita, N. Nitani, T. Tsuji and H. Inagaki, J. Nucl. Mater., 1997, 245(1), 72.
- 29T. R. Griffiths and J. Dixon, Inorg. Chim. Acta, 2000, 300–302, 305.
- 30P. A. Sellers, S. Fried, R. E. Elson and W. H. Zachariasen, J. Am. Chem. Soc., 1954, 76(23), 5935.
- 31L. Petit, A. Svane, Z. Szotek, W. M. Temmerman and G. M. Stocks, Phys. Rev. B, 2010, 81(4), 045108.
- 32Q. Yin, A. Kutepov, K. Haule, G. Kotliar, S. Y. Savrasov and W. E. Pickett, Phys. Rev. B, 2011, 84(19), 195111.
- 33T. T. Meek, B. von Roedern, P. G. Clem and R. J. Hanrahan, Mater. Lett., 2005, 59(8), 1085.
- 34C. Suzuki, T. Nishi, M. Nakada, M. Akabori, M. Hirata and Y. Kaji, J. Phys. Chem. Solids, 2012, 73(2), 209.
10.1016/j.jpcs.2011.10.043 Google Scholar
- 35T. M. McCleskey, E. Bauer, Q. Jia, A. K. Burrell, B. L. Scott, S. D. Conradson, A. Mueller, L. Roy, X. Wen, G. E. Scuseria and R. L. Martin, J. Appl. Phys., 2013, 113(1), 013515.
- 36L. B. Asprey, F. H. Ellinger, S. Fried and W. H. Zachariasen, J. Am. Chem. Soc., 1955, 77(6), 1707.
- 37J. P. Dancausse, R. G. Haire, S. Heathman and U. Benedict, J. Nucl. Sci. Technol., 2002, 39(Suppl. 3), 136.
- 38W. C. Mosley, J. Inorg. Nucl. Chem., 1972, 34(2), 539.
- 39R. D. Baybarz, J. Inorg. Nucl. Chem., 1968, 30(7), 1769.
- 40R. D. Baybarz, R. G. Haire and J. A. Fahey, J. Inorg. Nucl. Chem., 1972, 34(2), 557.
- 41Y. Q. An, A. J. Taylor, S. D. Conradson, S. A. Trugman, T. Durakiewicz and G. Rodriguez, Phys. Rev. Lett., 2011, 106(20), 207402.
- 42J. Zaanen, G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett., 1985, 55(4), 418.
- 43B. T. M. Willis and R. I. Taylor, Phys. Lett., 1965, 17(3), 188.
- 44S. Carretta, P. Santini, R. Caciuffo and G. Amoretti, Phys. Rev. Lett., 2010, 105(16), 167201.
- 45S. B. Wilkins, R. Caciuffo, C. Detlefs, J. Rebizant, E. Colineau, F. Wastin and G. H. Lander, Phys. Rev. B, 2006, 73(6), 060406.
- 46R. Laskowski, G. K. H. Madsen, P. Blaha and K. Schwarz, Phys. Rev. B, 2004, 69(14), 140408.
- 47F. Zhou and V. Ozoliņš, Phys. Rev. B, 2011, 83(8), 085106.
- 48H. Yasuoka, G. Koutroulakis, H. Chudo, S. Richmond, D. K. Veirs, A. I. Smith, E. D. Bauer, J. D. Thompson, G. D. Jarvinen and D. L. Clark, Science, 2012, 336(6083), 901.
- 49G. Raphael and R. Lallement, Solid State Commun., 1968, 6(6), 383.
10.1016/0038-1098(68)90162-2 Google Scholar
- 50O. Sakai, R. Shiina and H. Shiba, J. Phys. Soc. Jpn., 2003, 72(6), 1534.
- 51Y. Tokunaga, D. Aoki, Y. Homma, S. Kambe, H. Sakai, S. Ikeda, T. Fujimoto, R. E. Walstedt, H. Yasuoka, E. Yamamoto, A. Nakamura and Y. Shiokawa, Phys. Rev. Lett., 2006, 97(25), 257601.
- 52Y. Tokunaga, D. Aoki, Y. Homma, S. Kambe, H. Sakai, S. Ikeda, T. Fujimoto, R. E. Walstedt, H. Yasuoka, Y. Shiokawa, E. Yamamoto and A. Nakamura, J. Magn. Magn. Mater., 2007, 310(2, Part 1), 735.
- 53D. G. Karraker, J. Chem. Phys., 1975, 63(7), 3174.
- 54M. M. Abraham, L. A. Boatner, C. B. Finch and R. W. Reynolds, B, 1971, 3(9), 2864.
- 55W. Kolbe, N. Edelstein, C. B. Finch and M. M. Abraham, J. Chem. Phys., 1974, 60(2), 607.
- 56T. Hotta, Phys. Rev. B, 2009, 80(2), 024408.
- 57Y. Tokunaga, T. Nishi, S. Kambe, M. Nakada, A. Itoh, Y. Homma, H. Sakai and H. Chudo, J. Phys. Soc. Jpn., 2010, 79(5), 053705.
- 58Y. Tokunaga, T. Nishi, S. Kambe, M. Nakada, Y. Homma, H. Sakai and H. Chudo, J. Phys. Soc. Jpn., 2011, 80(Suppl. A), SA110.
- 59J. C. Boettger, Eur. Phys. J. B, 2003, 36(1), 15.
- 60M. T. Suzuki, N. Magnani and P. M. Oppeneer, Phys. Rev. B, 2013, 88(19), 195146.
- 61H. Nakamura, M. Machida and M. Kato, Phys. Rev. B: Condens. Mat. Mater. Phys., 2010, 82(15), 155131/1.
- 62X.-D. Wen, R. L. Martin, T. M. Henderson and G. E. Scuseria, Chem. Rev., 2013, 113(2), 1063.
10.1021/cr300374y Google Scholar
- 63M. E. Hoover, R. Atta-Fynn and A. K. Ray, J. Nucl. Mater., 2014, 452(1), 479.
- 64W. H. Zachariasen, Acta Crystallogr., 1949, 2, 388.
- 65M. Wulff and G. H. Lander, J. Chem. Phys., 1988, 89(5), 3295.
- 66T. D. Chikalla, C. E. McNeilly and R. E. Skavdahl, J. Nucl. Mater., 1964, 12(2), 131.
- 67D. H. Templeton and C. H. Dauben, J. Am. Chem. Soc., 1953, 75, 4560.
- 68S. E. Nave, R. G. Haire and P. G. Huray, Phys. Rev. B: Condens. Mat., 1983, 28(5), 2317.
10.1103/PhysRevB.28.2317 Google Scholar
- 69M. Noe, J. Fuger and G. Duyckaerts, Inorg. Nucl. Chem. Lett., 1970, 6(1), 111.
- 70R. D. Baybarz, J. Inorg. Nucl. Chem., 1973, 35(12), 4149.
- 71R. G. Haire and R. D. Baybarz, J. Inorg. Nucl. Chem., 1973, 35(2), 489.
- 72I. D. Prodan, G. E. Scuseria and R. L. Martin, Phys. Rev. B: Condens. Mat. Mater. Phys., 2006, 73(4), 045104/1.
- 73I. D. Prodan, G. E. Scuseria and R. L. Martin, Phys. Rev. B: Condens. Mat. Mater. Phys., 2007, 76(3), 033101/1.
- 74N. Kaltsoyannis, Inorg. Chem., 2013, 52(7), 3407.
10.1021/ic3006025 Google Scholar
- 75W. Moffitt, Proc. Roy. Soc. London, Ser. A, 1951, 210, 245.
- 76C. Gueneau, A. Chartier and L. Van Brutzel ‘ Thermodynamic and Thermophysical Properties of the Actinide Oxides’, Elsevier B.V., 2012, pp. 21–59.
- 77J. M. Haschke, T. H. Allen and L. A. Morales, Los Alamos Sci., 2000, 26(1), 252.
- 78I. D. Prodan, G. E. Scuseria, J. A. Sordo, K. N. Kudin and R. L. Martin, J. Chem. Phys., 2005, 123(1), 014703.
10.1063/1.1953427 Google Scholar
- 79G. Jomard, B. Amadon, F. Bottin and M. Torrent, Phys. Rev. B: Condens. Mat. Mater. Phys., 2008, 78(7), 075125/1.
- 80R. Atta-Fynn and A. K. Ray, Chem. Phys. Lett., 2013, 583, 42.
10.1016/j.cplett.2013.07.059 Google Scholar
- 81B. Amadon, J. Phys.: Condens. Mat., 2012, 24(7), 075604/1.
- 82Y. Lu, Y. Yang, F. Zheng and P. ZhangarXiv.org, e-Print Arch., Condens. Matter, 2012, 1, arXiv:1208.3746v1 [cond-mat.mtrl-sci].
- 83B. Sun, H. Liu, H. Song, G. Zhang, H. Zheng, X. Zhao and P. Zhang, Phys. Lett. A, 2012, 376(40–41), 2672.
10.1016/j.physleta.2012.07.030 Google Scholar
- 84Y. Yang, Y. Lu and P. Zhang, J. Nucl. Mater., 2014, 452(1–3), 414.
10.1016/j.jnucmat.2014.05.070 Google Scholar
- 85W. H. Zachariasen, ‘ CK-1367’, 1944.
- 86B. Ao, R. Qiu, H. Lu and P. Chen, Comput. Mater. Sci., 2016, 122, 263.
- 87B. Sun, P. Zhang and X.-G. Zhao, J. Chem. Phys., 2008, 128(8), 084705/1.
- 88B. Sun, P. Zhang and X.-G. Zhao, J. Chem. Phys., 2009, 131(16), 169903/1.
- 89C. Suzuki, T. Nishi, M. Nakada, T. Tsuru, M. Akabori, M. Hirata and Y. Kaji, J. Phys. Chem. Solids, 2013, 74(12), 1769.
10.1016/j.jpcs.2013.07.006 Google Scholar
- 90X.-D. Wen, R. L. Martin, G. E. Scuseria, S. P. Rudin and E. R. Batista, J. Phys. Chem. C, 2013, 117(25), 13122.
10.1021/jp403141t Google Scholar
- 91L. Desgranges, G. Baldinozzi, D. Simeone and H. E. Fischer, Inorg. Chem., 2011, 50(13), 6146.
- 92L. Desgranges, G. Baldinozzi, G. Rousseau, J.-C. Niepce and G. Calvarin, Inorg. Chem., 2009, 48(16), 7585.
- 93F. Garrido, R. M. Ibberson, L. Nowicki and B. T. M. Willis, J. Nucl. Mater., 2003, 322(1), 87.
- 94H. R. Hoekstra, S. Siegel and F. X. Gallagher, J. Inorg. Nucl. Chem., 1970, 32(10), 3237.
- 95H. Hoekstra, S. Siegel and P. Charpin, J. Inorg. Nucl. Chem., 1968, 30(2), 519.
- 96T. Z. Forbes, P. C. Burns, S. Skanthakumar and L. Soderholm, J. Am. Chem. Soc., 2007, 129(10), 2760.
- 97A. F. Andersen, Acta Crystallogr., 1958, 11, 612.
- 98B. Chodura and J. Maly, ‘ Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy’, 2nd edition, United Nation, Geneva, 1958, Vol. 28, pp. 223–230.
- 99C. A. Colmenares, Prog. Solid State Chem., 1975, 9, 139.
- 100W. H. Zachariasen, Acta Crystallogr., 1948, 1, 265.
- 101B. O. Loopstra and E. H. P. Cordfunke, Recl. Trav. Chim. Pays-Bas, 1966, 85(2), 135.
10.1002/recl.19660850204 Google Scholar
- 102P. C. Debets, Acta Crystallogr., 1966, 21(4), 589.
10.1107/S0365110X66003505 Google Scholar
- 103B. O. Loopstra, J. C. Taylor and A. B. Waugh, J. Solid State Chem., 1977, 20(1), 9.
- 104M. T. Weller, P. G. Dickens and D. J. Penny, Polyhedron, 1988, 7(3), 243.
- 105S. Siegel, H. Hoekstra and E. Sherry, Acta Crystallogr., 1966, 20(2), 292.
10.1107/S0365110X66000562 Google Scholar
- 106D. A. Andersson, J. Lezama, B. P. Uberuaga, C. Deo and S. D. Conradson, Phys. Rev. B: Condens. Mat. Mater. Phys., 2009, 79(2), 024110/1.
- 107H. He, D. A. Andersson, D. D. Allred and K. D. Rector, J. Phys. Chem. C, 2013, 117(32), 16540.
10.1021/jp401149m Google Scholar
- 108D. A. Andersson, G. Baldinozzi, L. Desgranges, D. R. Conradson and S. D. Conradson, Inorg. Chem., 2013, 52(5), 2769.
10.1021/ic400118p Google Scholar
- 109N. A. Brincat, M. Molinari, S. C. Parker, G. C. Allen and M. T. Storr, J. Nucl. Mater., 2015, 456, 329.
- 110N. A. Brincat, M. Molinari, G. C. Allen, M. T. Storr and S. C. Parker, J. Nucl. Mater., 2015, 467, 724.
10.1016/j.jnucmat.2015.10.006 Google Scholar
- 111J. J. Pireaux, J. Riga, E. Thibaut, C. Tenret-Noel, R. Caudano and J. J. Verbist, Chem. Phys., 1977, 22(1), 113.
- 112Y. A. Teterin and A. Y. Teterin, Russ. Chem. Rev., 2004, 73(6), 541.
- 113N. A. Brincat, S. C. Parker, M. Molinari, G. C. Allen and M. T. Storr, Dalton Trans., 2015, 44(6), 2613.
10.1039/C4DT02493A Google Scholar
- 114M. Molinari, N. A. Brincat, G. C. Allen and S. C. Parker, Inorg. Chem., 2017, 56(8), 4468.
10.1021/acs.inorgchem.7b00014 Google Scholar
- 115Y. Yun, J. Rusz, M. T. Suzuki and P. M. Oppeneer, Phys. Rev. B, 2011, 83(7), 075109.
- 116W. Xiao-Dong, L. M. Richard, E. S. Gustavo, P. R. Sven, R. B. Enrique and K. B. Anthony, J. Phys.: Condens. Mat., 2013, 25(2), 025501.
- 117H. Y. Geng, H. X. Song, K. Jin, S. K. Xiang and Q. Wu, Phys. Rev. B, 2011, 84(17), 174115.
- 118N. A. Brincat, S. C. Parker, M. Molinari, G. C. Allen and M. T. Storr, Inorg. Chem., 2014, 53(23), 12253.
10.1021/ic500791m Google Scholar
- 119H. Idriss, Surf. Sci. Rep., 2010, 65(3), 67.
- 120B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary and C. Wolverton, Phys. Rev. B, 2014, 89(9), 094104.
- 121J. P. Allen and G. W. Watson, Phys. Chem. Chem. Phys., 2014, 16(39), 21016.
10.1039/C4CP01083C Google Scholar
- 122A. Claisse, M. Klipfel, N. Lindbom, M. Freyss and P. Olsson, J. Nucl. Mater., 2016, 478, 119.
10.1016/j.jnucmat.2016.06.007 Google Scholar