Biomineralization: Self-Assembly Processes
Shu-Hong Yu
University of Science and Technology of China, Hefei, People's Republic of China
Search for more papers by this authorShaofeng Chen
University of Science and Technology of China, Hefei, People's Republic of China
Search for more papers by this authorShu-Hong Yu
University of Science and Technology of China, Hefei, People's Republic of China
Search for more papers by this authorShaofeng Chen
University of Science and Technology of China, Hefei, People's Republic of China
Search for more papers by this authorAbstract
This article focuses on biomineralization processing involving nanoparticle self-assembly. Biomineralization is a process of depositing inorganic or inorganic–organic hybrid materials as complex shapes or as hierarchical structures on various size scales having unique properties. Emerging nonclassical crystallization methods of self-assembly are summarized, including oriented attachment, mesocrystal growth from amorphous precursors, and polymer particle assembly from polymer-induced liquid precursors. Recent progress in understanding biomineralization in nature and biomimetic mineralization via nanoparticle self-assembly directed by organic molecules is summarized. Crystallization in organisms commonly involves biopolymer-induced nucleation and growth, self-assembly of nanobuilding blocks, and organization of amorphous precursors. A better understanding of biomineralization in organisms and self-assembly process, in general, will lead to the rational design and synthesis of functional materials having well-defined hierarchical structures, controlled length scales, and desired properties under environment-friendly conditions.
References
- 1 S. Mann, Biomineralization—Principles and Concepts in Bioinorganic Materials Chemistry, Oxford University Press, Oxford, 2001.
- 2 R. A. Wood, J. R. Grotzinger, and J. A. D. Dickson, Science, 2002, 296, 2383.
- 3 H. Cölfen and S. H. Yu, MRS Bull., 2005, 30, 727.
- 4 S. H. Yu and H. Cölfen, J. Mater. Chem., 2004, 14, 2124.
- 5 A. W. Xu, Y. R. Ma, and H. Cölfen, J. Mater. Chem., 2007, 17, 415.
- 6 H. Cölfen, Top. Curr. Chem., 2007, 271, 1.
- 7 S. H. Yu, Top. Curr. Chem., 2007, 271, 79.
- 8 H. Imai, Top. Curr. Chem., 2006, 270, 43.
- 9 N. Gehrke, N. Nassif, N. Pinna, M. Antonietti, H. S. Gupta, and H. Cölfen, Chem. Mater., 2005, 17, 6514.
- 10 Y. Oaki and H. Imai, Angew. Chem., Int. Ed. Engl., 2005, 44, 6571.
- 11 Y. Oaki and H. Imai, Small, 2006, 2, 66.
- 12 G. Wulff, Z. Kristallogr., 1901, 34, 449.
- 13 H. Cölfen and S. Mann, Angew. Chem., Int. Ed. Engl., 2003, 42, 2350.
- 14 H. Cölfen and M. Antonietti, Angew. Chem., Int. Ed. Engl., 2005, 44, 5576.
- 15 T. X. Wang, H. Cölfen, and M. Antonietti, J. Am. Chem. Soc., 2005, 127, 3246.
- 16 S. Raz, P. Hamiltion, F. Wilt, S. Weiner, and L. Addadi, Adv. Funct. Mater., 2003, 13, 480.
- 17 Y. Politi, Y. Levi-Kalisman, S. Raz, F. Wilt, L. Addadi, S. Weiner, and I. Sagi, Adv. Funct. Mater., 2006, 16, 1289.
- 18 L. A. Gower and D. A. Tirrell, J. Cryst. Growth, 1998, 191, 153.
- 19 R. L. Penn and J. F. Banfield, Geochim Cosmochim Acta, 1999, 63, 1549.
- 20 R. L. Penn, J. Phys. Chem., B., 2004, 108, 12707.
- 21 N. Gehrke, H. Cölfen, N. Pinna, M. Antonietti, and N. Nassif, Cryst. Growth Design, 2005, 5, 1317.
- 22 H. G. Yang and H. C. Zeng, Angew. Chem., Int. Ed. Engl., 2004, 43, 5930.
- 23
C. Pacholski,
A. Kornowski,
H. Weller,
Angew. Chem.,
2002,
114,
1234.
10.1002/1521-3757(20020402)114:7<1234::AID-ANGE1234>3.0.CO;2-D Google Scholar
- 24 B. Liu and H. C. Zeng, J. Am. Chem. Soc., 2003, 125, 4430.
- 25
C. Pacholski,
A. Kornowski,
H. Weller,
Angew. Chem., Int. Ed. Engl.,
2002,
41,
1188.
10.1002/1521-3773(20020402)41:7<1188::AID-ANIE1188>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 26 B. Liu and H. C. Zeng, J. Am. Chem. Soc., 2004, 126, 8124.
- 27 B. Liu, S. H. Yu, L. J. Li, Q. Zhang, F. Zhang, and K. Jiang, Angew. Chem., Int. Ed. Engl., 2004, 43, 4745.
- 28 B. Liu, S. H. Yu, F. Zhang, L. J. Li, Q. Zhang, L. Ren, and K. Jiang, J. Phys. Chem., B., 2004, 107, 4338.
- 29 M. Rousseau, E. Lopez, P. Stempfle, M. Brendle, L. Franke, A. Guette, R. Naslain, and X. Bourrat, Biomaterials, 2005, 26, 6254.
- 30 O. Pujol, P. Bowen, P. A. Stadelmann, and H. Hofmann, J. Phys. Chem., B, 2004, 108, 13128.
- 31 S. W. Yang and L. Gao, J. Am. Chem. Soc., 2006, 128, 9330.
- 32 S. Weiner, I. Sagi, and L. Addadi, Science, 2005, 309, 1027.
- 33 R. Gueta, A. Natan, L. Addadi, S. Weiner, K. Refson, and L. Kronik, Angew. Chem., Int. Ed. Engl., 2007, 46, 291.
- 34 Y. Politi, T. Arad, E. Klein, S. Weiner, and L. Addadi, Science, 2004, 306, 1161.
- 35 N. Nassif, N. Pinna, N. Gehrke, M. Antonietti, C. Jager, and H. Cölfen, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 12653.
- 36 J. Aizenberg, D. A. Muller, J. L. Grazul, and D. R. Hamann, Science, 2003, 299, 1205.
- 37 W. J. Lan, S. H. Yu, H. S. Qian, and Y. Wan, Langmuir, 2007, 23, 3409.
- 38 J. M. Song, J. H. Zhu, and S. H. Yu, J. Phys. Chem., B., 2006, 110, 23790.
- 39 M. Fraatz, F. Gröhn, and G. Wegner, Adv. Mater., 2004, 16, 996.
- 40 M. J. Olszta, S. Gajjeraman, M. Kaufman, and L. B. Gower, Chem. Mater., 2004, 16, 2355.
- 41 X. G. Cheng and L. B. Gower, Biotechnol. Prog., 2006, 22, 141.
- 42 Y. Y. Kim, E. P. Douglas, and L. B. Gower, Langmuir, 2007, 23, 4862.
- 43 Y. J. Han and J. Aizenberg, Angew. Chem., Int. Ed. Engl., 2003, 42, 3668.
- 44 Y. J. Han and J. Aizenberg, J. Am. Chem. Soc., 2003, 125, 4032.
- 45 A. Kotachi and H. Imai, Chem. Lett., 2006, 35, 204.
- 46 H. K. Park, I. Lee, K. Kim, Chem. Commun., 2004, 24.
- 47 G. Falini, S. Albeck, S. Weiner, and L. Addadi, Science, 1996, 271, 67.
- 48 S. Weiner and L. Addadi, Trends Biochem. Sci., 1991, 16, 252.
- 49 A. M. Belcheer, H. X. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, and D. E. Morse, Nature, 1996, 381, 56.
- 50 J. Aizenberg, M. Ilan, S. Weiner, and L. Addadi, Connect Tissue Res., 1996, 35, 17.
- 51 A. Berman, J. Hanson, L. Leiserowitz, T. F. Koetzle, S. Weiner, and L. Addadi, Science, 1993, 259, 776.
- 52 E. Beniash, L. Addadi, and S. Weiner, J. Struct. Biol., 1999, 125, 50.
- 53 J. Aizenberg, Adv. Mater., 2004, 16, 1295.
- 54 L. Addadi, D. Joester, F. Nudelman, and S. Weiner, Chem. Eur. J., 2006, 12, 980.
- 55 A. G. Checa, T. Okamoto, and J. Ramirez, Proc. R. Soc. London, Ser. B, 2006, 273, 1329.
- 56 E. Bäuerlein, Angew. Chem., Int. Ed. Engl., 2003, 42, 614.
- 57
C. M. Niemeyer,
Angew. Chem., Int. Ed. Engl.,
2001,
40,
4128.
10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S CAS PubMed Web of Science® Google Scholar
- 58 J. L. Arias and M. S. Fernandez, Mater. Charact., 2003, 50, 189.
- 59 F. Xu, Y. Wang, X. Wang, Y. Zhang, Y. Tang, and P. Yang, Adv. Mater., 2003, 15, 1751.
- 60 M. G. Ryadnov and D. N. Woolfson, J. Am. Chem. Soc., 2004, 126, 7454.
- 61 Y. Cao, Y. M. Zhou, Y. Shan, X. J. Huang, X. J. Xue, and Z. H. Wu, Adv. Mater., 2004, 16, 1189.
- 62 C. Mao, D. J. Solis, B. D. Reiss, S. T. Kottmann, R. Y. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson, and A. M. Belcher, Science, 2004, 303, 213.
- 63 T. Prozorov, S. K. Mallapragada, B. Narasimhan, L. J. Wang, P. Palo, M. Nilsen-Hamilton, T. J. Williams, D. A. Bazylinski, R. Prozorov, and P. C. Canfield, Adv. Funct. Mater., 2007, 17, 951.
- 64 A. Singh, S. Hede, and M. Sastry, Small, 2007, 3, 466.
- 65 S. Balci, K. Noda, A. M. Bittner, A. Kadri, C. Wege, H. Jeske, and K. Kern, Angew. Chem., Int. Ed. Engl., 2007, 26, 3149.
- 66 V. V. Hardikar and E. Matijević, Colloids Surf., A, 2001, 186, 23.
- 67 D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, and S. Mann, Nat. Mater., 2003, 2, 386.
- 68 J. H. Yang, L. M. Qi, D. B. Zhang, J. M. Ma, and H. M. Cheng, Cryst. Growth Des., 2004, 4, 1371.
- 69 J. H. Yang, L. M. Qi, C. H. Lu, J. M. Ma, and H. M. Cheng, Angew. Chem., Int. Ed. Engl., 2005, 44, 598.
- 70 X. J. Cui, M. Antonietti, and S. H. Yu, Small, 2006, 2, 756.
- 71 S. H. Yu, X. J. Cui, L. L. Li, K. Li, B. Yu, M. Antonietti, and H. Cölfen, Adv. Mater., 2004, 16, 1636.
- 72 D. A. Bazylinski and R. B. Frankel, Nat. Rev. Microbiol., 2004, 2, 217.
- 73 D. A. Bazylinski and B. M. Moskowitz, Rev. Mineral., 1997, 35, 181.
- 74 D. A. Bazylinski and B. M. Moskowitz, Microbial Biomineralization of Magnetic Iron Minerals: Microbiology, Magnetism and Environmental Significance, in Geomicrobiology: Interactions between Microbes and Minerals, eds. J. F. Banfield and K. H. Nealson, Mineralogical Society of America, Washington, DC, 1997, p. 181.
- 75 H. Vali, B. Weiss, Y. L. Li, S. K. Sears, S. S. Kim, J. L. Kirschvink, and C. L. Zhang, Proc. Natl. Acad. Sci. U.S.A., 2004, 101, 16121.
- 76 A. Bharde, A. Wani, Y. Shouche, P. A. Joy, B. L. V. Prasad, and M. Sastry, J. Am. Chem. Soc., 2005, 127, 9326.
- 77 A. Bharde, D. Rautaray, V. Bansal, A. Ahmad, I. Sarkar, S. M. Yusuf, M. Sanyal, and M. Sastry, Small, 2006, 2, 135.
- 78 J. W. Moon, L. W. Yeary, A. J. Rondinone, C. J. Rawn, M. J. Kirkham, Y. Roh, L. J. Love, and T. J. Phelps, J. Magn. Magn. Mater., 2007, 313, 283.
- 79 T. Matsunaga, T. Suzuki, M. Tanaka, and A. Arakaki, Trends Biotechnol., 2007, 25, 182.
- 80 C. Lang, D. Schuler, and D. Faivre, Macromol. Biosci., 2007, 7, 144.
- 81 S. Mann, N. H. C. Sparks, R. B. Frankel, D. A. Bazylinskida, and H. W. Jannasch, Nature, 1990, 343, 258.
- 82 D. Rautaray, A. Ahmad, and M. Sastry, J. Am. Chem. Soc., 2003, 125, 14656.
- 83 D. Rautaray, A. Ahmad, and M. Sastry, J. Mater. Chem., 2004, 14, 2333.
- 84 D. Rautaray, A. Sanyal, S. D. Adyanthaya, A. Ahmad, and M. Sastry, Langmuir, 2004, 20, 6827.
- 85 A. Ahmad, D. Rautaray, and M. Sastry, Adv. Funct. Mater., 2004, 14, 1075.
- 86 V. Bansal, A. Sanyal, D. Rautaray, A. Ahmad, and M. Sastry, Adv. Mater., 2005, 17, 889.
- 87 S. Senapati, A. Ahmad, M. I. Khan, M. Sastry, and R. Kumar, Small, 2005, 1, 517.
- 88 S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry, J. Colloid Interface Sci., 2004, 275, 496.
- 89 S. S. Shankar, A. Rai, B. Ankamwar, A. Singh, A. Ahmad, and M. Sastry, Nat. Mater., 2004, 3, 482.
- 90 B. Liu and H. C. Zeng, J. Phys. Chem., B., 2004, 108, 5867.
- 91 S. Raz, S. Weiner, and L. Addadi, Adv. Mater., 2004, 12, 38.
- 92 Z. P. Zhang, X. Q. Shao, H. D. Yu, Y. B. Wang, and M. Y. Han, Chem. Mater., 2005, 17, 332.
- 93 T. R. Zhang, W. J. Dong, M. Keeter-Brewer, S. Konar, R. N. Njabon, and Z. R. Tian, J. Am. Chem. Soc., 2006, 128, 10960.
- 94 T. L. Sounart, J. Liu, J. A. Voigt, J. W. P. Hsu, E. D. Spoerke, Z. Tian, and Y. B. Jiang, Adv. Funct. Mater., 2006, 16, 335.
- 95 Z. R. R. Tian, J. A. Voigt, J. Liu, B. McKenzie, M. J. McDermott, M. A. Rodriguez, H. Konishi, and H. F. Xu, Nat. Mater., 2003, 2, 821.
- 96 Y. Chang and H. C. Zeng, Cryst. Growth Des., 2004, 4, 273.
- 97 F. Jones, H. Cölfen, and M. Antonietti, Biomacromolecules, 2000, 1, 556.
- 98 A. Peytcheva, H. Cölfen, and M. Antonietti, Colloid Polym. Sci., 2002, 280, 218.
- 99 L. B. Gower and D. J. Odom, J. Cryst. Growth, 2000, 210, 719.
- 100 A. W. Xu, Q. Yu, W. F. Dong, M. Antonietti, and H. Cölfen, Adv. Mater., 2005, 17, 2217.
- 101 S. H. Yu, H. Cölfen, A. W. Xu, and W. F. Dong, Cryst. Growth Des., 2004, 4, 33.
- 102
A. Bigi,
E. Boanini,
D. Walsh, and
S. Mann,
Angew. Chem., Int. Ed. Engl.,
2002,
41,
2163.
10.1002/1521-3773(20020617)41:12<2163::AID-ANIE2163>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 103 S. H. Yu, M. Antonietti, H. Cölfen, and J. Hartmann, Nano Lett., 2003, 3, 379.
- 104 D. B. Zhang, L. M. Qi, J. H. Yang, J. M. Ma, H. M. Cheng, and L. Huang, Chem. Mater., 2004, 16, 872.
- 105 T. Sugawara, Y. Suwa, K. Ohkawa, and H. Yamamoto, Macromol. Rapid Commun., 2003, 24, 847.
- 106 F. F. Amos, D. M. Sharbaugh, D. R. Talham, L. B. Gower, M. Fricke, and D. Volkmer, Langmuir, 2007, 23, 1988.
- 107 D. Volkmer, M. Harms, L. Gower, and A. Ziegler, Angew. Chem., Int. Ed. Engl., 2005, 44, 639.
- 108 J. Jada and A. Verraes, Colloids Surf. A, 2003, 219, 7.
- 109 D. G. Shchukin, G. B. Sukhorukov, and H. Möhwald, Chem. Mater., 2003, 15, 3947.
- 110 G. B. Sukhorukov, D. V. Volodkin, A. M. Gunther, A. I. Petrov, D. B. Shenoy, and H. Möhwald, J. Mater. Chem., 2004, 14, 2073.
- 111 D. V. Volodkin, N. I. Larionova, and G. B. Sukhorukov, Biomacromolecules, 2004, 5, 1962.
- 112 S. Förster and T. Plantenberg, Angew. Chem., Int. Ed. Engl., 2002, 41, 689.
- 113 J. W. Kriesel, M. S. Sander, and T. D. Tilley, Chem. Mater., 2001, 13, 3554.
- 114 H. Cölfen, Macromol. Rapid Commun., 2001, 22, 219.
- 115 L. M. Qi, H. Cölfen, and M. Antonietti, Nano Lett., 2001, 1, 61.
- 116 S. H. Yu, H. Cölfen, and M. Antonietti, J. Phys. Chem., B., 2003, 107, 7396.
- 117 D. B. Zhang, L. M. Qi, J. M. Ma, and H. M. Cheng, Chem. Mater., 2002, 14, 2450.
- 118 H. Cölfen, L. M. Qi, Y. Mastai, and L. Börger, Cryst. Growth Des., 2002, 2, 191.
- 119
L. M. Qi,
H. Cölfen,
M. Antonietti,
M. Li,
J. D. Hopwood,
A. J. Ashley, and
S. Mann,
Chem. Eur. J.,
2001,
7,
3526.
10.1002/1521-3765(20010817)7:16<3526::AID-CHEM3526>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 120
L. M. Qi,
H. Cölfen, and
M. Antonietti,
Angew. Chem., Int. Ed. Engl.,
2000,
39,
604.
10.1002/(SICI)1521-3773(20000204)39:3<604::AID-ANIE604>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 121
S. H. Yu,
H. Cölfen, and
M. Antonietti,
Chem. Eur. J.,
2002,
8,
2937.
10.1002/1521-3765(20020703)8:13<2937::AID-CHEM2937>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 122 S. F. Chen, S. H. Yu, T. X. Wang, J. Jiang, H. Cölfen, B. Hu, and B. Yu, Adv. Mater., 2005, 17, 1461.
- 123 S. H. Yu, H. Cölfen, K. Tauer, and M. Antonietti, Nature Mater., 2005, 4, 51.
- 124 T. X. Wang, A. W. Xu, and H. Cölfen, Angew. Chem., Int. Ed. Engl., 2006, 45, 4451.
- 125
M. Antonietti,
M. Breulmann,
C. G. Goltner,
H. Cölfen,
K. K. W. Wong,
D. Walsh, and
S. Mann,
Chem. Eur. J.,
1998,
4,
2493.
10.1002/(SICI)1521-3765(19981204)4:12<2493::AID-CHEM2493>3.0.CO;2-V CAS Web of Science® Google Scholar
- 126 Y. X. Gao, S. H. Yu, H. P. Cong, J. Jiang, A. W. Xu, W. F. Dong, and H. Cölfen, J. Phys. Chem., B., 2006, 110, 6342.
- 127 N. Nassif, N. Gehrke, N. Pinna, N. Shirshova, K. Tauer, M. Antonietti, and H. Cölfen, Angew. Chem., Int. Ed. Engl., 2005, 44, 6004.
- 128 C. H. Lu, L. M. Qi, H. L. Cong, X. Y. Wang, J. H. Yang, L. L. Yang, D. Y. Zhang, J. M. Ma, and W. X. Cao, Chem. Mater., 2005, 17, 5218.
- 129 L. M. Qi, J. Li, and J. M. Ma, Adv. Mater., 2002, 14, 300.
- 130 D. Zhang, L. M. Qi, J. Ma, and H. Cheng, Adv. Mater., 2002, 14, 1499.
- 131 S. G. Deng, J. M. Cao, J. Feng, J. Guo, B. Q. Fang, M. B. Zheng, and J. Tao, J. Phys. Chem., B., 2005, 109, 11473.
- 132 H. T. Shi, L. M. Qi, J. M. Ma, and H. Cheng, J. Am. Chem. Soc., 2003, 125, 3450.
- 133 H. T. Shi, L. M. Qi, J. M. Ma, and N. Z. Wu, Adv. Funct. Mater., 2005, 15, 442.
- 134 H. P. Cong and S. H. Yu, Adv. Funct. Mater., 2007, 17, 1814.
- 135 L. M. Qi, J. Li, and J. M. Ma, Chem. J. Chin. Univ., 2002, 23, 1595.
- 136 Q. Li, Y. Ding, F. Q. Li, B. Xie, and Y. T. Qian, J. Cryst. Growth, 2002, 236, 357.
- 137 F. Manoli and E. Dalas, J. Cryst. Growth, 2000, 218, 359.
- 138 S. R. Dickinson and K. M. Mcgrath, J Mater. Chem., 2003, 13, 928.
- 139 G. Falini, M. Gazzano, A. Ripamonti, Chem. Commun., 1996, 1037.
- 140 K. S. Seo, C. Han, J. H. Wee, J. K. Park, and J. W. Ahn, J. Cryst. Growth, 2005, 276, 680.
- 141 S. F. Chen, S. H. Yu, J. Jiang, F. Q. Li, and Y. K. Liu, Chem. Mater., 2006, 18, 115.
- 142 K. Naka, Y. Tanaka, and Y. Chujo, Langmuir, 2002, 18, 3655.
- 143 P. Kašparová, M. Antonietti, and H. Cölfen, Colloids Surf., A, 2004, 250, 153.
- 144 X. H. Guo, S. H. Yu, and G. B. Cai, Angew. Chem., Int. Ed. Engl., 2006, 45, 3977.
- 145 V. A. Bogoyavlenskiy and N. A. Chernova, Phys. Rev. E, 2000, 61, 1629.
- 146 H. Imai and Y. Oaki, Angew. Chem., Int. Ed. Engl., 2004, 43, 1363.
- 147 Y. Oaki and H. Imai, Cryst. Growth Des., 2003, 3, 711.
- 148 Y. Takezawa and H. Imai, Small, 2006, 2, 390.
- 149 Y. Oaki, S. Hayashi, H. Imai, Chem. Commun., 2007, 2841.
- 150 S. Busch, Selbstorganisation und Morphogenese von Apatit-Gelatine-Kompositen unter biomimetischen Bedingungen, Dissertation, Technische Universität Darmstadt (Germany), 1998, (CB78294) 264.
- 151
S. Busch,
A. Dolhaine,
A. Duchesne,
S. Heinz,
O. Hochrein,
F. Laeri,
O. Podebrad,
U. Vietze,
T. Weiland, and
R. Kniep,
Eur. J. Inorg. Chem.,
1999,
10,
1643.
10.1002/(SICI)1099-0682(199910)1999:10<1643::AID-EJIC1643>3.0.CO;2-J Google Scholar
- 152 A. Putnis, M. Prieto, and L. Fernandez-Diaz, Geol. Mag., 1995, 132, 1.
- 153 J. H. Zhan, H. P. Lin, and C. Y. Mou, Adv. Mater., 2003, 15, 621.
- 154 K. Furuichi, Y. Oaki, and H. Imai, Chem. Mater., 2006, 18, 229.
- 155 A. Sugawara, T. Ishii, and T. Kato, Angew. Chem., Int. Ed. Engl., 2003, 42, 5299.
- 156 T. Miura, A. Kotachi, Y. Oaki, and H. Imai, Cryst. Growth Des., 2006, 6, 612.
- 157 Y. Oaki and H. Imai, Adv. Funct. Mater., 2005, 15, 1407.
- 158 Y. Oaki, H. Imai, Chem. Commun., 2005, 6011.
- 159 T. Watanabe, H. Hayashi, and H. Imai, Sol. Energy Mater. Sol. Cells, 2006, 90, 640.
- 160 Y. Oaki and H. Imai, J. Am. Chem. Soc., 2004, 126, 9271.
- 161 Y. Oaki and H. Imai, Langmuir, 2005, 21, 863.