Biomineralization: Peptide-Mediated Synthesis of Materials
Abstract
Biomineralization provides many examples of the ambient synthesis of materials. Often associated with these systems are peptide templates. Synthetically, these templates offer tunable entities that can be altered in ways that affect the resulting composition, size, and morphology of the desired material. The development of peptide-display methods has aided in the expansion of this approach to include many types of abiological substances. Accordingly, this review focuses on the identification and use of peptides involved in the syntheses of a number of different types of materials (metal oxides, calcium carbonate, metallic nanostructures). Covering only the most recent of advances (2004–2007), we examine the control exhibited by peptides free in solution and the ability of researchers to address and alter that control. The effects demonstrated as a result of immobilizing the peptide on a nanostructured or biological surface are discussed. Finally, the future of biomimetic synthesis of nanomaterials is considered in an attempt to gauge where biomineralization is headed and what possibilities it might offer down the road.
References
- 1 H. A. Lowenstam, Science, 1981, 211, 1126.
- 2
S. Mann,
Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry,
Oxford University Press,
Oxford,
2001.
10.1093/oso/9780198508823.001.0001 Google Scholar
- 3 S. Mann, Nature, 1988, 332, 119.
- 4 S. Mann, J. Chem. Soc., Dalton Trans., 1993, 1.
- 5 C. C. Koch, Nanostructured Materials, Noyes Publications, New York, 2002.
- 6 A. G. Walton, The Formation and Properties of Precipitates, John Wiley & Sons, New York, 1967.
- 7
R. Tacke,
Angew. Chem., Int. Ed.,
1999,
38,
3015.
10.1002/(SICI)1521-3773(19991018)38:20<3015::AID-ANIE3015>3.0.CO;2-X CAS PubMed Web of Science® Google Scholar
- 8 D. M. Swift and A. P. Wheeler, J. Phycol., 1992, 28, 202.
- 9 N. Kroger, R. Deutzmann, and M. Sumper, Science, 1999, 286, 1129.
- 10 M. Sumper and N. Kroger, J. Mater. Chem., 2004, 14, 2059.
- 11 M. R. Knecht and D. W. Wright, Chem. Commun., 2003, 3038.
- 12 R. R. Naik, P. W. Whitlock, F. Rodriguez, L. L. Brott, D. D. Glawe, S. J. Clarson, and M. O. Stone, Chem. Commun., 2003, 238.
- 13 S. L. Sewell and D. W. Wright, Chem. Mater., 2006, 18, 3108.
- 14 K. E. Cole, A. N. Ortiz, M. A. Schoonen, and A. M. Valentine, Chem. Mater., 2006, 18, 4592.
- 15 S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, and A. M. Belcher, Nature, 2000, 405, 665.
- 16 S. Brown, Proc. Natl. Acad. Sci. U.S.A., 1992, 89, 8651.
- 17 S. Brown, Nat. Biotechnol., 1997, 15, 269.
- 18 S. F. Parmley and G. P. Smith, Gene, 1988, 73, 305.
- 19 R. R. Naik, S. J. Stringer, G. Agarwal, S. E. Jones, and M. O. Stone, Nat. Mater., 2002, 1, 169.
- 20 M. B. Dickerson, R. R. Naik, M. O. Stone, Y. Cai, and K. H. Sandhage, Chem. Commun., 2004, 1776.
- 21 C. Mao, D. J. Solis, B. D. Reiss, S. T. Kottmann, R. Y. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson, and A. M. Belcher, Science, 2004, 303, 213.
- 22 S. Wang, E. S. Humphreys, S.-Y. Chung, D. F. Delduco, S. R. Lustig, H. Wang, K. N. Parker, N. W. Rizzo, S. Subramoney, Y.-M. Chiang, and A. Jagota, Nat. Mater., 2004, 2, 196.
- 23 M. Sarikaya, C. Tamerler, A. K. Y. Jen, K. Schulten, and F. Baneyx, Nat. Mater., 2003, 2, 577.
- 24 M. T. Klem, M. Young, and T. Douglas, Mater. Today, 2005, 8, 28.
- 25 T. Mizutani, H. Nagase, N. Fujiwara, and H. Ogoshi, Bull. Chem. Soc. Jpn., 1998, 71, 2017.
- 26 M. M. Tomczak, D. D. Glawe, L. F. Drummy, C. G. Lawrence, M. O. Stone, C. C. Perry, D. J. Pochan, T. J. Deming, and R. R. Naik, J. Am. Chem. Soc., 2005, 127, 12577.
- 27 S. V. Patwardhan, R. Mahestwari, N. Mukherjee, K. L. Kiick, and S. J. Clarson, Biomacromolecules, 2006, 7, 491.
- 28 K. M. Hawkins, S. S.-S. Wang, D. M. Ford, and D. F. Shantz, J. Am. Chem. Soc., 2004, 126, 9112.
- 29 F. Rodriguez, D. D. Glawe, R. R. Naik, K. P. Hallinan, and M. O. Stone, Biomacromolecules, 2004, 5, 261.
- 30 S. V. Patwardhan and S. J. Clarson, Polymer, 2005, 46, 4474.
- 31 Y. Liu, Z. Shen, L. Li, P. Sun, X. Zhou, B. Li, Q. Jin, D. Ding, and T. Chen, Microporous Mesoporous Mater., 2006, 92, 189.
- 32 M. R. Regan and I. A. Banerjee, Mater. Lett., 2007, 61, 71.
- 33 M. Umetsu, M. Mizuta, K. Tsumoto, S. Ohara, S. Takami, H. Watanabe, I. Kumagai, and T. Adschiri, Adv. Mater., 2005, 17, 2571.
- 34 C. K. Thai, H. Dai, M. S. R. Sastry, M. Sarikaya, D. Schwartz, and F. Baneyx, Biotechnol. Bioeng., 2004, 87, 129.
- 35 G. Ahmad, M. B. Dickerson, B. C. Church, Y. Cai, S. E. Jones, R. R. Naik, J. S. King, C. J. Summers, N. Kroger, and K. H. Sandhage, Adv. Mater., 2006, 18, 1759.
- 36 N. Kroger, S. Lorenz, E. Brunner, and M. Sumper, Science, 2002, 298, 584.
- 37 J. F. J. Padden, H. D. Keith, and G. Giannoni, Biopolymers, 1969, 7, 793.
- 38 R. Tamaki, K. Samura, and Y. Chujo, Chem. Commun., 1998, 1131.
- 39 R. Djalali, J. Samson, and H. Matsui, J. Am. Chem. Soc., 2004, 126, 7935.
- 40 S.-Y. Lee, X. Gao, and H. Matsui, J. Am. Chem. Soc., 2007, 129, 2954.
- 41 C. A. Trieber, R. A. Rothery, and J. H. Weiner, J. Biol. Chem., 1996, 271, 27339.
- 42 H. R. Luckarift, J. C. Spain, R. R. Naik, and M. O. Stone, Nat. Biotechnol., 2004, 22, 211.
- 43 R. R. Naik, M. M. Tomczak, H. R. Luckarift, J. C. Spain, and M. O. Stone, Chem. Commun., 2004, 1684.
- 44 S. Rajam and S. Mann J. Chem. Soc., Chem. Commun., 1990, 1789.
- 45 S. Mann, J. M. Didymus, N. P. Sanderson, B. R. Heywood, and E. J. A. Samper, J. Chem. Soc., Faraday Trans., 1990, 86, 1873.
- 46 D. B. DeOliveira and R. A. Laursen, J. Am. Chem. Soc., 1997, 119, 10627.
- 47 L. Addadi and S. Weiner, Proc. Natl. Acad. Sci. U.S.A., 1985, 82, 4110.
- 48 J. Aizenberg, S. Albeck, S. Weiner, and L. Addadi, J. Cryst. Growth, 1994, 142, 156.
- 49 C. Li, G. D. Botsaris, and D. L. Kaplan, Cryst. Growth Des., 2002, 2, 387.
- 50 D. Volkmer, M. Fricke, T. Huber, and N. Sewald, Chem. Commun., 2004, 1872.
- 51 M. A. Pavla Ksaparova and Helmut. Colfen, Colloids Surf., A, 2004, 250, 153.
- 52 P. K. Ajikumar, S. Vivekanandan, R. Lakshminarayanan, S. D. S. Jois, R. M. Kini, and S. Valiyaveettil, Angew. Chem., Int. Ed., 2005, 44, 5476.
- 53 S. Weiner, Biochemistry, 1893, 22, 4139.
- 54 G. Falini, S. Albeck, S. Weiner, and L. Addadi, Science, 1996, 271, 67.
- 55 A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, and D. E. Morse, Nature, 1996, 381, 56.
- 56 R. Lakshminarayanan, S. Valiyaveettil, V. S. Rao, and R. M. Kini, J. Biol. Chem., 2003, 278, 2928.
- 57 B.-A. Gotliv, L. Addadi, and S. Weiner, ChemBioChem, 2003, 4, 522.
- 58 D. Tsukamoto, I. Sarashina, and K. Endo, Biochem. Biophys. Res. Commun., 2004, 320, 1175.
- 59 Y. Suwa, S. Hayashi, T. Saugawara, K. Ohkawa, and H. Yamamoto, Polym. Prepr. Jpn., 2004, 53, 5234.
- 60 S. Hayashi, K. Ohkawa, and H. Yamamoto, Macromol. Biosci., 2006, 6, 228.
- 61 S.-W. Lee, C. Mao, C. E. Flynn, and A. M. Belcher, Science, 2002, 296, 892.
- 62 Y. Morita, T. Ohsugi, Y. Iwasa, and E. Tamiya, J. Mol. Catal. B: Enzym., 2004, 28, 185.
- 63 J. M. Slocik, M. O. Stone, and R. R. Naik, Small, 2005, 1, 1048.
- 64 J. L. Kulp III, M. Sarikaya, and J. S. Evans, J. Mater. Chem., 2004, 14, 2325.
- 65 M. T. Zin, H. Ma, M. Sarikaya, and A. K.-Y. Jen, Small, 2005, 1, 698.
- 66 K.-I. Sano, H. Sasaki, and K. Shiba, Langmuir, 2005, 21, 3090.
- 67 K.-I. Sano and K. Shiba, J. Am. Chem. Soc., 2003, 125, 14234.
- 68 R. R. Naik, S. E. Jones, C. J. Murray, J. C. McAuliffe, R. A. Vaia, and M. O. Stone, Adv. Funct. Mater., 2004, 14, 25.
- 69 M. G. Ryadnov, Angew. Chem., Int. Ed. Engl., 2007, 46, 969.
- 70 L. Lenoci and P. J. Camp, J. Am. Chem. Soc., 2006, 128, 10111.
- 71 N. Kantarci, C. Tamerler, M. Sarikaya, T. Jaliloglu, and P. Doruker, Polymer, 2005, 46, 4307.
- 72 U. O. S. Seker, B. Wilson, S. Dincer, I. W. Kim, E. E. Oren, J. S. Evans, C. Tamerler, and M. Sarikaya, Langmuir, 2007, 23, 7895.
- 73 E. E. Oren, C. Tamerler, and M. Sarikaya, Nano Lett., 2005, 5, 415.
- 74 J. M. Slocik and R. R. Naik, Adv. Mater., 2006, 18, 1988.
- 75 M. M. Stevens, N. T. Flynn, C. Wang, D. A. Tirrell, and R. Langer, Adv. Mater., 2004, 16, 915.
- 76 J. M. Slocik, F. Tam, N. J. Halas, and R. R. Naik, Nano Lett., 2007, 7, 1054.
- 77 D. Aili, K. Enander, J. Rydberg, I. Lundstrom, L. Baltzer, and B. Liedberg, J. Am. Chem. Soc., 2006, 128, 2194.
- 78 L. Yu, I. A. Banerjee, and H. Matsui, J. Mater. Chem., 2004, 14, 739.
- 79 L. Yu, I. A. Banerjee, M. Shima, K. Rajan, and H. Matsui, Adv. Mater., 2004, 16, 709.
- 80 I. A. Banerjee, L. Yu, and H. Matsui, J. Am. Chem. Soc., 2005, 127, 16002.
- 81 M. J. Pender, L. A. Sowards, J. D. Hartgerink, M. O. Stone, and R. R. Naik, Nano Lett., 2006, 6, 40.
- 82 Z. Xu, C. Jinchun, Y. Peng, and Y. Wantai, J. Inorg. Biochem., 2005, 99, 1692.
- 83 M. T. Zin, A. M. Munro, M. Gungormus, N.-Y. Wong, H. Ma, C. Tamerler, D. S. Ginger, M. Sarikaya, and A. K.-Y. Jen, J. Mater. Chem., 2007, 17, 866.
- 84 D. D. Glawe, F. Rodriguez, M. O. Stone, and R. R. Naik, Langmuir, 2005, 21, 717.
- 85 S. Si and T. K. Mandal, Langmuir, 2007, 23, 190.
- 86 B. D. Reiss, C. Mao, D. J. Solis, K. S. Ryan, T. Thompson, and A. Belcher, Nano Lett., 2004, 4, 1127.
- 87 S.-K. Lee, D. S. Yun, and A. Belcher, Biomacromolecules, 2006, 7, 14.
- 88 Y. Huang, C.-Y. Chiang, S. K. lee, Y. Gao, E. L. Hu, J. D. Yoreo, and A. M. Belcher, Nano Lett., 2005, 5, 1429.
- 89 K. T. Nam, B. R. Peelle, S.-W. Lee, and A. M. Belcher, Nano Lett., 2004, 4, 23.
- 90 K. T. Nam, Dong-Wan, P. J. Yoo, C.-Y. Chiang, N. Meethong, P. T. Hammond, Y.-M. Chiang, and A. M. Belcher, Science, 2006, 312, 885.
- 91 B. R. Peelle, E. M. Krauland, K. D. Wittrup, and A. M. Belcher, Acta Biomater., 2005, 1, 145.
- 92 B. R. Peelle, E. M. Krauland, K. D. Wittrup, and A. M. Belcher, Langmuir, 2005, 21, 6929.
- 93 A. B. Sanghvi, K. P.-H. Miller, A. M. Belcher, and C. E. Schmidt, Nat. Mater., 2005, 4, 496.
- 94 R. M. Kramer, C. Li, D. C. Carter, M. O. Stone, and R. R. Naik, J. Am. Chem. Soc., 2004, 126, 13282.
- 95 K.-I. Sano, K. Ajima, K. Iwahori, M. Yudasaka, S. Iijima, I. Yahashita, and K. Shiba, Small, 2005, 1, 826.
- 96 M. Uchida, M. L. Flenniken, M. Allen, D. A. Willits, B. E. Crowley, S. Brumfield, A. F. Willis, L. Jackiw, M. Jutila, M. J. Young, and T. Douglas, J. Am. Chem. Soc., 2006, 128, 16626.
- 97 M. T. Klem, D. Willits, D. J. Solis, A. M. Belcher, M. Young, and T. Douglas, Adv. Funct. Mater., 2005, 15, 1489.
- 98 T. Douglas and M. Young, Adv. Mater., 1999, 11, 679.
- 99 C. E. Flynn, S.-W. Lee, B. R. Peelle, and A. M. Belcher, Acta Mater., 2003, 51, 5867.
- 100 G. Georgiou, C. Stathopoulos, P. S. Daugherty, A. R. Nayak, B. L. Iverson, and R. Curtiss III, Nat. Biotechnol., 1997, 15, 29.
- 101 K. D. Wittrup, Curr. Opin. Biotechnol., 2001, 12, 395.
- 102 T. Xu, N. Zhang, H. L. Nichols, D. Shi, and X. Wen, Mater. Sci. Eng., A, 2007, 27, 579.
- 103 M. D. Pierschbacher and E. Ruoslahti, Nature, 1984, 309, 30.
- 104 S. H. Banyard, D. K. Stammers, and P. M. Harrison, Nature, 1978, 271, 282.
- 105 N. D. Chasteen and P. M. Harrison, J. Struct. Biol., 1999, 126, 182.
- 106 K. K. Kim, R. Kim, and S.-H. Kim, Nature, 1998, 394, 595.