Aluminum: Organometallic Chemistry
Based in part on the article Aluminum: Organometallic Chemistry by Gregory H. Robinson which appeared in the Encyclopedia of Inorganic Chemistry, First Edition.
This is not the most recent version, view other versions
Aluminum: Organometallic Chemistry
Abstract
The synthesis, reactivity, structures, and applications of the organometallic compounds of aluminum are reviewed. The chapter starts with a discussion of traditional synthetic approaches to aluminum alkyls, aryls, hydrides, and halides and continues with a discussion of their structures and reactivity. The following section focuses on the emerging organometallic chemistry of Al(0), Al(I), and Al(II) and specifically highlights recent developments in aluminum–aluminum bonding, insertions of small molecules and elements into AlAl bonds, and the isolation of large metalloid clusters such as . Organoaluminum heterocycles and cage compounds are the subjects of the next section. This section briefly describes common structural motifs and has separate subsections devoted to cage iminoalanes, alkylaluminoxanes, and alkylaluminophosphinates, -phosphates, -phosphonates, and -arsonates. Structural relationships amongst these groups of compounds and comparisons to secondary building units in aluminophosphate molecular sieves are presented. The importance of alkylaluminoxanes to catalytic activity is also discussed. This chapter includes an independent section on cationic organoaluminum complexes. Although this includes more traditional cationic complexes ligated by crown ether and neutral nitrogen-donor ligands, the section emphasizes recent developments in generating two- and three-coordinate cationic complexes. Alkide and hydride abstractions by trityl salts of weakly coordinating anions and tris(pentafluorophenyl)borane are described. Common anion decomposition pathways and successful cationic systems for oligomerizing and polymerizing alkenes are discussed. Two additional sections describe the applications of organoaluminum compounds to organic synthesis and applications in industry. Readers are referred to leading works that more adequately describe the extensive use of organoaluminum reagents in organic synthesis. Current and past applications of organoaluminum compounds for the production of long-chain alkenes and alcohols, as cocatalysts for Ziegler–Natta and metallocene-catalyzed polymerization of alkenes and dienes, and catalysts for propene dimerization and epoxide polymerization are summarized. Safety issues regarding the handling and disposal of pyrophoric organoaluminum reagents and waste are also discussed. One hundred and twenty-six reviews and original works are cited.
References
- 1 D. A. Atwood and B. C. Yearwood, J. Organomet. Chem., 2000, 600, 186.
- 2 H. W. Roesky, Inorg. Chem., 2004, 43, 7284.
- 3 A. H. Cowley, J. Organomet. Chem., 2004, 689, 3866.
- 4
P. J. Shapiro and
D. A. Atwood,
Group 13 Chemistry: From Fundamentals to Applications,
ACS Symposium Series 822,
American Chemical Society,
Washington, DC,
2002.
10.1021/bk-2002-0822 Google Scholar
- 5 G. Wilke, Angew. Chem. Int. Ed. Engl., 2003, 42, 5000.
- 6 E. J. Vandenberg, Catalysis: A Key to Advances in Applied Polymer Chemistry, in Catalysis in Polymer Synthesis, ACS Symposium Series 496, eds. E. J. Vandenberg and J. C. Salamone, American Chemical Society, Washington, DC, 1992, p. 2.
- 7 T. Mole and E. A. Jeffery, Organoaluminum Compounds, Elsevier, New York, 1972.
- 8 J. J. Eisch, in Comprehensive Organometallic Chemistry II, eds. E. W. Abel, F. G. A. Stone, and G. Wilkinson, Elsevier, New York, 1995, Vol. 1, Chap. 10.
- 9 J. J. Eisch, in Comprehensive Organometallic Chemistry II, eds. E. W. Abel, F. G. A. Stone, and G. Wilkinson, Elsevier, New York, 1995, Vol. 11, Chap. 6.
- 10 G. H. Robinson, Coordination Chemistry of Aluminum, VCH Publishers, New York, 1993.
- 11
G. H. Robinson,
Aluminum and Gallium, in
Comprehensive Coordination Chemistry II, eds.
J. A. McCleverty,
T. J. Meyer, and
G. F. R. Parkin,
Elsevier,
Amsterdam,
2004, p.
347.
10.1016/B0-08-043748-6/02002-8 Google Scholar
- 12 H. Lehmkuhl, O. Olbrysch, and H. Nehl, Liebigs Ann. Chem., 1973, 708.
- 13 O. T. Beachley Jr and L. Victoriano, Organometallics, 1988, 7, 63.
- 14 W. Uhl, Z. Anorg. Allg. Chem., 1989, 579, 75.
- 15 C. J. Harlan, E. G. Gillan, S. G. Bott, and A. R. Barron, Organometallics, 1996, 15, 5479.
- 16 C. A. Tolman, Chem. Rev., 1977, 77, 313.
- 17 B. Neumüller, Coord. Chem. Rev., 1997, 158, 69.
- 18 J. Müller, Coord. Chem. Rev., 2002, 235, 105.
- 19 S. Aldridge and A. J. Downs, Chem. Rev., 2001, 101, 3305.
- 20 W. Zheng and H. W. Roesky, J. Chem. Soc., Dalton Trans., 2002, 2787.
- 21 M. Schiefer, N. D. Reddy, H.-J. Ahn, A. Stasch, H. W. Roesky, A. C. Schlicker, H.-G. Schmidt, M. Noltemeyer, and D. Vidovic, Inorg. Chem., 2003, 42, 4970.
- 22 P. J. Shapiro, Coord. Chem. Rev., 1999, 189, 1.
- 23 P. Jutzi and N. Burford, Chem. Rev., 1999, 99, 969.
- 24 L. O. Schebaum and P. Jutzi, Pentamethylcyclopentadienyl Complexes of the Monovalent Group 13 Elements, in Group 13 Chemistry: From Fundamentals to Applications, ACS Symposium Series 822, eds. P. J. Shapiro and D. A. Atwood, American Chemical Society, Washington, DC, 2002, p. 16.
- 25
P. J. Shapiro,
A Comparison of the Structural and Chemical Properties of Cyclopentadienyl Compounds of B(III), Al(III), Ga(III), In(III), and Tl(III), in
Group 13 Chemistry: From Fundamentals to Applications,
ACS Symposium Series 822, eds.
P. J. Shapiro and
D. A. Atwood,
American Chemical Society,
Washington, DC,
2002, p.
31.
10.1021/bk-2002-0822.ch003 Google Scholar
- 26 B. Thiyagarajan, R. F. Jordan, and V. G. Young Jr, Organometallics, 1999, 18, 5347.
- 27 J. J. Jerius, J. M. Hahn, A. F. M. M. Rahman, O. Mols, W. H. Ilsley, and J. P. Oliver, Organometallics, 1986, 5, 1812.
- 28 V. S. J. De Mel and J. P. Oliver, Organometallics, 1989, 8, 827.
- 29 M. S. Lalama, J. Kampf, D. G. Dick, and J. P. Oliver, Organometallics, 1995, 14, 495.
- 30 J. K. Vohs, L. E. Downs, J. Stasalovich, M. Barfield, and G. H. Robinson, J. Cluster Sci., 2002, 13, 601.
- 31 J. A. C. Clyburne and N. McMullen, Coord. Chem. Rev., 2000, 210, 73.
- 32 J. D. Young, M. A. Khan, and R. J. Wehmschulte, Organometallics, 2004, 23, 1965.
- 33 E. Y.-X. Chen and T. J. Marks, Chem. Rev., 2000, 100, 1391.
- 34 S. Feng, G. R. Roof, and E. Y.-X. Chen, Organometallics, 2002, 21, 832.
- 35 T. Belgardt, J. Storre, H. W. Roesky, M. Noltemeyer, and H.-G. Schmidt, Inorg. Chem., 1995, 34, 3821.
- 36 J. Klosin, G. R. Roof, E. Y.-X. Chen, and K. A. Abboud, Organometallics, 2000, 19, 4684.
- 37 M. Bochmann and M. J. Sarsfield, Organometallics, 1998, 17, 5908.
- 38 J. S. Kim, L. M. Wojcinski II, S. Liu, J. C. Sworen, and A. Sen, J. Am. Chem. Soc., 2000, 122, 5668.
- 39 D. Chakraborty and E. Y.-X. Chen, Inorg. Chem. Commun., 2002, 5, 698.
- 40 Y.-X. Chen, M. V. Metz, L. Li, C. L. Stern, and T. J. Marks, J. Am. Chem. Soc., 1998, 120, 6287.
- 41 J. J. Eisch, P. O. Otieno, K. Mackenzie, and B. W. Kotowicz, Electronic and Steric Design of Novel Group 13 Lewis Acids and Their Synthesis via Metal-Tin Exchange Reactions (1): Toward the Ideal Olefin Polymerization Catalyst, in Group 13 Chemistry: From Fundamentals to Applications, ACS Symposium Series 822, eds. P. J. Shapiro and D. A. Atwood, American Chemical Society, Washington, DC, 2002, p. 88.
- 42 J. P. Oliver, Adv. Organomet. Chem., 1977, 16, 111.
- 43 M. B. Smith, J. Phys. Chem., 1967, 71, 364.
- 44 W. Uhl, L. Cuypers, R. Graupner, J. Molter, A. Vester, and B. Neumüller, Z. Anorg. Allg. Chem., 2001, 627, 607.
- 45 H. Hatop, M. Schiefer, H. W. Roesky, H.-G. Schmidt, and M. Noltemeyer, J. Fluorine Chem., 2001, 112, 219.
- 46 G. S. Hair, A. H. Cowley, R. A. Jones, B. G. McBurnett, and A. Voigt, J. Am. Chem. Soc., 1999, 121, 4922.
- 47 J. W. Akitt, Aluminum, Gallium, Indium, and Thallium, in Multinuclear NMR Spectroscopy, ed. J. Mason, Plenum Press, New York, 1987, p. 259.
- 48 C. E. Holloway and M. Melnik, J. Organomet. Chem., 1997, 543, 1.
- 49
A. McKillop,
J. D. Smith, and
I. J. Worrall eds,
Organometallic Compounds of Aluminum, Gallium, Indium and Thallium,
Chapman and Hall,
New York,
1985.
10.1007/978-1-4899-7172-2 Google Scholar
- 50 I. Haiduc, Organometallics, 2004, 23, 3.
- 51 Ch. Elschenbroich and A. Salzer, Organometallics, A Concise Introduction, 2nd edn., VCH, Weinheim, 1992, p. 11.
- 52 A. R. Barron, Chem. Soc. Rev., 1993, 93.
- 53 J. Lewinski, J. Zachara, and E. Grabska, J. Am. Chem. Soc., 1996, 118, 6794.
- 54
J. Lewinski,
J. Zachara,
P. Gos,
E. Grabska,
T. Kopec,
I. Madura,
W. Marciniak, and
I. Prowotorow,
Chem. Eur. J.,
2000,
6,
3215.
10.1002/1521-3765(20000901)6:17<3215::AID-CHEM3215>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 55
A. R. Barron,
Comments Inorg. Chem.,
1993,
14,
123.
10.1080/02603599308048659 Google Scholar
- 56 P. J. Shapiro, A. Vij, G. P. A. Yap, and A. L. Rheingold, Polyhedron, 1995, 14, 203.
- 57 M. R. Mason, B. Song, and K. Kirschbaum, J. Am. Chem. Soc., 2004, 126, 11812.
- 58 I. Marek and J.-F. Normant, Chem. Rev., 1996, 96, 3241.
- 59 R. Sanchez, C. Arrington, and C. A. Arrington Jr, J. Am. Chem. Soc., 1989, 111, 9110.
- 60 X.-W. Li, J. Su, and G. H. Robinson, Chem. Commun., 1996, 2683.
- 61 G.-J. M. Gruter, G. P. M. van Klink, O. S. Akkerman, and F. Bickelhaupt, Chem. Rev., 1995, 95, 2405.
- 62 M. N. S. Rao, H. W. Roesky, and G. Anantharaman, J. Organomet. Chem., 2002, 646, 4.
- 63 A. J. Downs, H.-J. Himmel, and L. Manceron, Polyhedron, 2002, 21, 473.
- 64 W. Uhl, Coord. Chem. Rev., 1997, 163, 1.
- 65 G. Linti and H. Schnöckel, Coord. Chem. Rev., 2000, 206–207, 285.
- 66 H. Schnöckel and H. Köhnlein, Polyhedron, 2002, 21, 489.
- 67 P. P. Power, Chem. Rev., 2003, 103, 789.
- 68 R. J. Wright, A. D. Phillips, and P. P. Power, J. Am. Chem. Soc., 2003, 125, 10784.
- 69 W. Uhl and F. Breher, Eur. J. Inorg. Chem., 2000, 1.
- 70 J. Vollet, J. R. Hartig, and H. Schnöckel, Angew. Chem. Int. Ed. Engl., 2004, 43, 3186.
- 71 F. Thomas, S. Schulz, H. Mansikkamäki, and M. Nieger, Angew. Chem. Int. Ed. Engl., 2003, 42, 5641.
- 72 M.-A. Munoz-Hernandez, P. Wei, S. Liu, and D. A. Atwood, Coord. Chem. Rev., 2000, 210, 1.
- 73 B. Neumüller, Chem. Soc. Rev., 2003, 32, 50.
- 74 M. Veith, Chem. Rev., 1990, 90, 3.
- 75 A. H. Cowley, R. A. Jones, M. A. Mardones, J. L. Atwood, and S. G. Bott, Angew. Chem. Int. Ed. Engl., 1990, 29, 1409.
- 76 K. M. Waggoner and P. P. Power, J. Am. Chem. Soc., 1991, 113, 3385.
- 77 S. Pasynkiewicz, Polyhedron, 1990, 9, 429.
- 78 H. W. Roesky, M. G. Walawalkar, and R. Murugavel, Acc. Chem. Res., 2001, 34, 201.
- 79 D. Chakraborty and E. Y.-X. Chen, Organometallics, 2003, 22, 207.
- 80 M. R. Mason, J. M. Smith, S. G. Bott, and A. R. Barron, J. Am. Chem. Soc., 1993, 115, 4971.
- 81 C. J. Harlan, M. R. Mason, and A. R. Barron, Organometallics, 1994, 13, 2957.
- 82 A. R. Barron, Alkylalumoxanes: Synthesis, Structure, and Reactivity, in Metallocene-Based Polyolefins, eds. J. Scheirs and W. Kaminsky, John Wiley & Sons, Chichester, 2000, Vol. 1, p. 33.
- 83 C. J. Harlan, S. G. Bott, and A. R. Barron, J. Am. Chem. Soc., 1995, 117, 6465.
- 84
B. Richter,
A. Meetsma,
B. Hessen, and
J. H. Teuben,
Angew. Chem. Int. Ed. Engl.,
2002,
41,
2166.
10.1002/1521-3773(20020617)41:12<2166::AID-ANIE2166>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 85 R. J. Wehmschulte and P. P. Power, J. Am. Chem. Soc., 1997, 119, 8387.
- 86 S. S. Reddy and S. Sivaram, Prog. Polym. Sci., 1995, 20, 309.
- 87 J.-N. Pedeutour, K. Radhakrishnan, H. Cramail, and A. Deffieux, Macromol. Rapid Commun., 2001, 22, 1095.
- 88 H. Sinn and W. Kaminsky, Adv. Organomet. Chem., 1980, 18, 99.
- 89 M. Ystenes, J. L. Eilersten, J. Liu, M. Ott, E. Rytter, and J. A. Stovneng, J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 3106.
- 90 G. G. Hlatky, Chem. Rev., 2000, 100, 1347.
- 91 M. R. Mason, J. Cluster Sci., 1998, 9, 1.
- 92 M. G. Walawalkar, H. W. Roesky, and R. Murugavel, Acc. Chem. Res., 1999, 32, 117.
- 93 M. R. Mason and A. M. Perkins, J. Organomet. Chem., 2000, 599, 200.
- 94 C. G. Lugmair, T. D. Tilley, and A. L. Rheingold, Chem. Mater., 1999, 11, 1615.
- 95 J. Pinkas, D. Chakraborty, Y. Yang, R. Murugavel, M. Noltemeyer, and H. W. Roesky, Organometallics, 1999, 18, 523.
- 96 M. R. Mason, A. M. Perkins, V. V. Ponomarova, and A. Vij, Organometallics, 2001, 20, 4833.
- 97
M. R. Mason,
R. M. Matthews,
A. M. Perkins, and
V. V. Ponomarova,
Molecular Phosphates and Phosphonates of Aluminum and Gallium: Potential Applications in Materials Synthesis, in
Group 13 Chemistry: From Fundamentals to Applications,
ACS Symposium Series 822, eds.
P. J. Shapiro and
D. A. Atwood,
American Chemical Society,
Washington, DC,
2002, p.
181.
10.1021/bk-2002-0822.ch013 Google Scholar
- 98 R. E. Morris, A. Burton, L. M. Bull, and S. I. Zones, Chem. Mater., 2004, 16, 2844.
- 99
Y. Yang,
J. Pinkas,
M. Schäfer, and
H. W. Roesky,
Angew. Chem. Int. Ed. Engl.,
1998,
37,
2650.
10.1002/(SICI)1521-3773(19981016)37:19<2650::AID-ANIE2650>3.0.CO;2-L CAS Web of Science® Google Scholar
- 100 R. Murugavel, A. Voigt, M. G. Walawalkar, and H. W. Roesky, Chem. Rev., 1996, 96, 2205.
- 101 D. A. Atwood, Coord. Chem. Rev., 1998, 176, 407.
- 102 O. Wrobel, F. Schaper, and H. H. Brintzinger, Organometallics, 2004, 23, 900.
- 103 M. P. Coles and R. F. Jordan, J. Am. Chem. Soc., 1997, 119, 8125.
- 104 C. E. Radzewich, I. A. Guzei, and R. F. Jordan, J. Am. Chem. Soc., 1999, 121, 8673.
- 105 E. Ihara, V. G. Young Jr, and R. F. Jordan, J. Am. Chem. Soc., 1998, 120, 8277.
- 106 A. V. Korolev, F. Delpech, S. Dagorne, I. A. Guzei, and R. F. Jordan, Organometallics, 2001, 20, 3367.
- 107 J. A. R. Schmidt and J. Arnold, Organometallics, 2002, 21, 2306.
- 108 S. K. Spitzmesser and V. C. Gibson, J. Organomet. Chem., 2003, 673, 95.
- 109 K.-C. Kim, C. A. Reed, G. S. Long, and A. Sen, J. Am. Chem. Soc., 2002, 124, 7662.
- 110 G. Talarico and P. H. M. Budzelaar, Organometallics, 2002, 21, 34.
- 111 V. C. Gibson and S. K. Spitzmesser, Chem. Rev., 2003, 103, 283.
- 112 D. J. Linton, P. Schooler, and A. E. H. Wheatley, Coord. Chem. Rev., 2001, 223, 53.
- 113 M. B. Smith and J. March, March's Advanced Organic Chemistry, 5th edn., John Wiley & Sons, New York, 2001.
- 114 R. C. Larock, Comprehensive Organic Transformations, 2nd edn., Wiley-VCH, New York, 1999.
- 115
I. Ojima,
Catalytic Asymmetric Synthesis,
2nd edn.,
John Wiley & Sons,
New York,
2000.
10.1002/0471721506 Google Scholar
- 116 G. W. Parshall and S. D. Ittel, Homogeneous Catalysis, 2nd edn., John Wiley & Sons, New York, 1992.
- 117 K. Owens and V. Kyllingstad, Kirk-Othmer Encyclopedia of Chemical Technology, 4th edn., Wiley, New York, 1993, Vol. 8, p. 1079.
- 118 D. Chakraborty, A. Rodriguez, and E. Y.-X. Chen, Macromolecules, 2003, 36, 5470.
- 119 T. Sarbu and E. J. Beckman, Macromolecules, 1999, 32, 6904.
- 120 H.-L. Chen, B.-T. Ko, B.-H. Huang, and C.-C. Lin, Organometallics, 2001, 20, 5076.
- 121 N. Nomura, R. Ishii, M. Akakura, and K. Aoi, J. Am. Chem. Soc., 2002, 124, 5938.
- 122 T. M. Ovitt and G. W. Coates, J. Am. Chem. Soc., 1999, 121, 4072.
- 123 J. A. Jegier and W. L. Gladfelter, Coord. Chem. Rev., 2000, 206–207, 631.
- 124 A. C. Jones, Chem. Soc. Rev., 1997, 101.
- 125 R. A. Fischer, A. Miehr, H. Sussek, H. Pritzkow, E. Herdtweck, J. Muller, O. Ambacher, and T. Metzger, Chem. Commun., 1996, 2685.
- 126 D. A. Neumayer and J. G. Ekerdt, Chem. Mater., 1996, 8, 9.