Alkali Metals: Organometallic Chemistry
Melanie J. Harvey
Johnson County Community College, Overland Park, KS, USA
Search for more papers by this authorMelanie J. Harvey
Johnson County Community College, Overland Park, KS, USA
Search for more papers by this authorUpdate based on the original article by Melanie J. Harvey, Encyclopedia of Inorganic Chemistry © 2005 John Wiley & Sons, Ltd.
Abstract
Organolithium complexes, such as the organomagnesium Grignard reagents, are important reactants in organic synthesis. The similarity in structure, bonding, and reactivity of organolithium and -magnesium compounds exemplifies the common chemistry exhibited by representative elements that appear in the same diagonal in the periodic table. Although much debate exists over the degree of covalency within lithium–carbon bonding interactions—the presence of some covalent characters in Li–C bonds of alkyllithium compounds is widely accepted. The bonding interactions within organoalkali metal complexes of the heavier alkali metals are generally considered to be strongly electrostatic or ionic in nature. This is supported by a large collection of evidence, consisting primarily of solution NMR data, single-crystal X-ray analyses, and gas-phase computational studies. Many of the organolithium compounds are soluble in hydrocarbons, but organometallic compounds of the heavier Group 1 metals generally require more polar media to dissolve. In general, the reactivity of the alkali metals and the reactivity of the organometallic compounds of these metals increase as the group descends. Although organoalkali metal compounds are similar to Grignard reagents, they are more reactive and are both air- and moisture-sensitive and sometimes pyrophoric. In addition, organoalkali metal compounds will react as Brønsted bases with protic reagents. Specific details regarding the synthesis, reactivity, and structures of various types of organoalkali metal compounds are discussed.
References
- 1J. D. Smith, Adv. Organomet. Chem., 1999, 43, 267.
- 2C. Elschenbroich, Organometallics 3rd edition, VCH, Weinheim, 2006.
- 3I. B. Gorrell, Annu. Rep. Prog. Chem., Sec. A, 2005, 101, 20.
- 4A. D. Hopkins, Annu. Rep. Prog. Chem., Sec. A, 2006, 102, 46.
- 5M. S. Hill, Annu. Rep. Prog. Chem., Sec. A, 2007, 103, 39.
- 6M. S. Hill, Annu. Rep. Prog. Chem., Sec. A, 2008, 104, 64.
- 7M. S. Hill, Annu. Rep. Prog. Chem., Sec. A, 2009, 105, 55.
- 8M. S. Hill, Annu. Rep. Prog. Chem., Sec. A, 2010, 106, 39.
- 9M. S. Hill, Annu. Rep. Prog. Chem., Sec. A, 2011, 107, 43.
- 10M. S. Hill, Annu. Rep. Prog. Chem., Sec. A, 2012, 108, 48.
- 11C. M. Lukehart, Encyclopedia of Inorganic Chemistry 1st edition, John Wiley & Sons, Chichester, 1994, Vol. 1, p. 54.
- 12M. J. Harvey, Encyclopedia of Inorganic Chemistry 2nd edition, John Wiley & Sons, Chichester, 2005, Vol. 1, p. 84.
- 13C. Lambert and P. von R. Schleyer, Angew. Chem., Int. Ed. Engl., 1994, 33, 1129.
- 14D. Seyferth, Organometallics, 2006, 25, 2.
- 15D. Seyferth, Organometallics, 2009, 28, 2.
- 16J. L. Luche, Ultrasonics, 1987, 25, 40.
- 17J. Einhorn and J. L. Luche, J. Org. Chem., 1987, 52, 4124.
- 18P. Boudjouk, Am. Chem. Soc. Symp. Ser., 1987, 333, 209.
- 19P. Boudjouk, R. Sooriyakumaran, and B. H. Han, J. Org. Chem., 1986, 51, 2818.
- 20M. Harvey and T. P. Hanusa, Organometallics, 2000, 19, 1556.
- 21C. G. Screttas and B. R. Steele, J. Organomet. Chem., 1993, 453, 163.
- 22J. Hart, D. H. O'Brien, and C. R. Russell, J. Organomet. Chem., 1974, 72, C19.
- 23M. Harvey, T. P. Hanusa, and V. G. Young Jr Angew. Chem., Int. Ed. Engl., 1999, 38, 217.
10.1002/(SICI)1521-3773(19990115)38:1/2<217::AID-ANIE217>3.0.CO;2-Q CAS Web of Science® Google Scholar
- 24D. Hoffmann, W. Bauer, F. Hampel, N. J. R. v. E. Hommes, P. von R. Schleyer, P. Otto, U. Pieper, D. Stalke, D. S. Wright, and R. Snaith, J. Am. Chem. Soc., 1994, 116, 528.
- 25A. Torvisco and K. Ruhlandt-Senge, Inorg. Chem., 2011, 50, 12223.
- 26M. Schlosser, Pure Appl. Chem., 1988, 60, 1627.
- 27H. Viebrock, U. Behrens, and E. Weiss, Chem. Ber., 1994, 127, 1399.
- 28J. S. Alexander, D. G. Allis, W. Teng, and K. Ruhlandt-Senge, Chem. –Eur. J., 2007, 13, 9899.
- 29J. S. Alexander, D. G. Allis, B. S. Hudson, and K. Ruhlandt-Senge, J. Am. Chem. Soc., 2003, 125, 15002.
- 30J. A. Gurak, J. W. Chinn Jr and R. J. Lagow, J. Am. Chem. Soc., 1982, 104, 2637.
- 31E. Weiss, Angew. Chem., Int. Ed. Engl, 1993, 32, 1501.
- 32G. Boche, Angew. Chem., Int. Ed. Engl., 1989, 28, 277.
- 33W. N. Setzer and P. von R. Schleyer, Adv. Organomet. Chem., 1985, 24, 353.
- 34P. von R. Schleyer, Pure Appl. Chem., 1984, 56, 151.
- 35C. Eaborn, K. Izod, and J. D. Smith, J. Organomet. Chem., 1995, 500, 89.
- 36E. Weiss, Angew. Chem., Int. Ed. Engl., 1993, 32, 1501.
- 37W. Clegg, B. Conway, A. R. Kennedy, J. Klett, R. E. Mulvey, and L. Russo, Eur. J. Inorg. Chem., 2011, 721.
- 38P. C. Andrews, C. L. Raston, B. A. Roberts, B. W. Skelton, and A. H. White, J. Organomet. Chem., 2006, 691, 3325.
- 39E. Weiss and G. J. Hencken, J. Organomet. Chem., 1970, 21, 265.
- 40H. Köster, D. Thoennes, and E. Weiss, J. Organomet. Chem., 1978, 160, 1.
- 41J. Landro, J. A. Gurak, J. W. Chinn Jr and R. J. Lagow, J. Organomet. Chem., 1983, 249, 1.
- 42J. W. Chinn Jr and R. J. Lagow, Organometallics, 1984, 3, 75.
- 43D. Plavšić, D. Srzić, and L. Klasinc, J. Phys. Chem., 1986, 90, 2075.
- 44M. Schlosser, Angew. Chem., Int. Ed. Engl., 1993, 32, 580.
- 45W. Bauer, W. R. Winchester, and P. von R. Schleyer, Organometallics, 1987, 6, 2371.
- 46E. Kaufmann, K. Raghavachari, A. E. Reed, and P. von R. Schleyer, Organometallics, 1988, 7, 1597.
- 47E. Weiss, T. Lambertsen, B. Schubert, and J. K. Cockcroft, J. Organomet. Chem., 1988, 358, 1.
- 48W. McLean, P. T. Munoy, and R. C. Jarnagin, J. Chem. Phys., 1978, 69, 2715.
- 49W. M. Scowell, B. Y. Kimura, and T. G. Spiro, J. Coord. Chem., 1971, 1, 107.
10.1080/00958977108070751 Google Scholar
- 50O. Kwon, F. Sevin, and M. L. McKee, J. Phys. Chem. A, 2001, 105, 913.
- 51C. Eaborn, W. Clegg, P. B. Hitchcock, M. Hopman, K. Izod, P. N. O'Shaughnessy, and J. D. Smith, Organometallics, 1997, 16, 4728.
- 52C. Eaborn, P. B. Hitchcock, K. Izod, A. J. Jaggar, and J. D. Smith, Organometallics, 1994, 13, 753.
- 53P. B. Hitchcock, M. F. Lappert, W.-P. Leung, D.-S. Liu, and T. Shun, J. Chem. Soc., Chem. Commun., 1993, 1386.
- 54J. L. Atwood, T. Fjeldberg, M. F. Lappert, N. T. Luong-Thi, R. Shakir, and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1984, 1163.
- 55P. B. Hitchcock, A. V. Khvostov, and M. F. Lappert, J. Organomet. Chem., 2002, 663, 263.
- 56W. M. Boesveld, P. B. Hitchcock, M. F. Lappert, D.-S. Liu, and S. Tian, Organometallics, 2000, 19, 4030.
- 57B. Teclé, A. F. M. M. Rahman, and J. P. Oliver, J. Organomet. Chem., 1986, 317, 267.
- 58T. Tatic, H. Ott, and D. Stalke, Eur. J. Inorg. Chem., 2008, 208 (24), 3765.
- 59S. E. Baillie, W. Clegg, P. García-Álvarez, E. Hevia, A. R. Kennedy, J. Klett, and L. Russo, Chem. Commmun., 2011, 47, 388.
- 60F. Antolini, P. B. Hitchcock, M. F. Lappert, and X. H. Wei, Organometallics, 2003, 22, 2505.
- 61R. W. Hoffmann, T. Ruhland, and M. Bewersdorf, J. Chem. Soc., Chem. Commun., 1991, 195.
- 62D. Seyferth and R. M. Weinstein, J. Am. Chem. Soc., 1982, 104, 5534.
- 63J. Ashe III and S. Mahmoud, Organometallics, 1988, 7, 1878.
- 64S. M. Barros, J. V. Comasseto, and J. Berriel, Tetrahedron Lett., 1989, 30, 7353.
- 65A. Feit, U. Melamed, H. Speer, and R. R. Schmidt, J. Chem. Soc., Perkin Trans. 1, 1984, 775.
- 66R. Knorr and T.von Roman, Angew. Chem., Int. Ed. Engl., 1984, 23, 366.
- 67J. A. Miller, W. Leong, and G. Zweifel, J. Org. Chem., 1988, 53, 1839.
- 68M. M. Meyer, B. Chan, L. Radom, and S. R. Kass, Angew. Chem. Int. Ed., 2010, 49, 5161.
- 69E. Weiss, Angew. Chem., Int. Ed. Engl., 1993, 32, 1501.
- 70R. J. Pulham, D. P. Weston, T. A. Salvesen, and J. J. Thatcher, J. Chem. Res. (S), 1995, 254.
- 71R. J. Pulham and D. P. Weston, J. Chem. Res. (S), 1995, 406.
- 72E. Weiss and H. Plass, Chem. Ber., 1968, 101, 2947.
- 73B. Schubert and E. Weiss, Chem. Ber., 1983, 116, 3212.
- 74B. Goldfuss, P. von R. Schleyer, and F. Hampel, J. Am. Chem. Soc., 1997, 119, 1072.
- 75T. Mukaiyama, K. Suzuki, K. Soai, and T. Sato, Chem. Lett., 1979, 447.
- 76K. Tanaka, K. Kukita, T. Ichibakase, S. Kotani, and M. Nakajima, Chem. Commun., 2011, 47, 5614.
- 77R. E. Dinnebier, U. Behrens, and F. Olbrich, J. Am. Chem. Soc., 1998, 120, 1430.
- 78B. Schiemenz and P. P. Power, Angew. Chem. Int. Ed. Engl., 1996, 35, 2150.
- 79K. Ruhlandt-Senge, J. J. Ellison, R. J. Wehmschulte, F. Pauer, and P. P. Power, J. Am. Chem. Soc., 1993, 115, 11353.
- 80R. J. Wehmschulte and P. P. Power, J. Am. Chem. Soc., 1997, 119, 2847.
- 81A. Hübner, T. Bernert, I. Sänger, E. Alig, M. Bolte, L. Fink, M. Wagner, and H.-W. Lerner, Dalton Trans., 2010, 39, 7528.
- 82E. Wehman, J. T. B. H. Jastrzebski, J.-M. Ernsting, D. M. Grove, and G. von Koten, J. Organomet. Chem., 1988, 353, 133.
- 83E. Wehman, J. T. B. H. Jastrzebski, J.-M. Ernsting, D. M. Grove, and G. von Koten, J. Organomet. Chem., 1988, 353, 145.
- 84H. Hope and P. P. Power, J. Am. Chem. Soc., 1983, 105, 5320.
- 85D. Thoennes and E. Weiss, Chem. Ber., 1978, 111, 3157.
- 86U. Schumann, J. Kopf, and E. Weiss, Angew. Chem., Int. Ed. Engl., 1985, 24, 215.
- 87F. Leroux and M. Schlosser, Angew. Chem., Int. Ed. Engl., 2002, 41, 4272.
10.1002/1521-3773(20021115)41:22<4272::AID-ANIE4272>3.0.CO;2-B CAS PubMed Web of Science® Google Scholar
- 88M. Niemeyer and P. P. Power, Organometallics, 1997, 16, 3258.
- 89O. Desponds and M. Schlosser, J. Organomet. Chem., 1991, 409, 93.
- 90S. C. Chmely and T. P. Hanusa, Eur. J. Inorg. Chem., 2010, 1321.
- 91S. A. Solomon and R. A. Layfield, Dalton Trans., 2010, 39, 2469.
- 92S. A. Sulway, R. Girshfeld, S. A. Solomon, C. A. Muryn, J. Poater, M. Solà, F. M. Bickelhaupt, and R. A. Layfield, Eur. J. Inorg. Chem., 2009, 4157.
- 93S. A. Solomon, C. A. Muryn, and R. A. Layfield, Chem. Commun., 2008, 3142.
- 94K. T. Quisenberry, C. K. Gren, R. E. White, T. P. Hanusa, and W. W. Brennesse, Organometallics, 2007, 26, 4354.
- 95C. K. Simpson, R. E. White, C. N. Carlson, D. A. Wrobleski, C. J. Kuehl, T. A. Croce, I. M. Steele, B. L. Scott, V. G. Young Jr T. P. Hanusa, A. P. Sattelberger, and K. D. John, Organometallics, 2005, 24, 3685.
- 96C. K. Gren, T. P. Hanusa, and W. W. Brennessel, Polyhedron, 2006, 25, 286.
- 97N. J. Rvan, E. Hommes, M. Buhl, P. von R. Schleyer, and Y. D. Wu, J. Organomet. Chem., 1991, 409, 307.
10.1016/0022-328X(91)80017-E Google Scholar
- 98W. R. Winchester, W. Bauer, and P. von R. Schleyer, J. Chem. Soc., Chem. Commun., 1987, 177.
- 99R. T. McDonald and S. Bywater, Organometallics, 1986, 5, 1529.
- 100G. Fraenkel and F. Qiu, J. Am. Chem. Soc., 1997, 119, 3571.
- 101G. Fraenkel, A. Chow, and W. R. Winchester, J. Am. Chem. Soc., 1990, 112, 1382.
- 102G. Fraenkel, A. Chow, and W. R. Winchester, J. Am. Chem. Soc., 1990, 112, 2582.
- 103G. Fraenkel and W. R. Winchester, Organometallics, 1990, 9, 1314.
- 104G. Fraenkel and W. R. Winchester, J. Am. Chem. Soc., 1989, 111, 3794.
- 105L. M. Pratt and A. Streitwieser, J. Org. Chem., 2000, 65, 290.
- 106E. Cerpa, F. J. Tenorio, M. Contreras, M. Villanueva, H. I. Beltrán, T. Heine, K. J. Donald, and G. Merino, Organometallics, 2008, 27, 827.
- 107F. Feil and S. Harder, Organometallics, 2000, 19, 5010.
- 108S. A. Solomon, F. M. Bickelhaupt, R. A. Layfield, M. Nilsson, J. Poater, and M. Solà, Chem. Commun., 2011, 47, 6162.
- 109H. Ahlbrecht, J. Harbach, T. Hauck, and H. O. Kalinowski, Chem. Ber., 1992, 125, 1753.
- 110G. Fraenkel, J. H. Duncan, K. Martin, and J. Wang, J. Am. Chem. Soc., 1999, 121, 10538.
- 111S. Schade and G. Boche, J. Organomet. Chem., 1998, 550, 381.
- 112M. J. Kaufmann, S. Gronert, and A. Streitwieser Jr J. Am. Chem. Soc., 1988, 110, 2829.
- 113S. Gronert, A. Streitwieser Jr and J. Am, Chem. Soc., 1988, 110, 2836.
- 114S. Gronert, A. Streitwiese Jr and J. Am, Chem. Soc., 1988, 110, 2843.
- 115C. Üffing, R. Köppe, and H. Schnöckel, Organometallics, 1998, 17, 3512.
- 116S. Neander, U. Behrens, and F. Olbrich, J. Organomet. Chem., 2000, 604, 59.
- 117F. Rebiere, O. Samuel, and H. B. Kagan, Tetrahedron Lett., 1990, 31, 3121.
- 118M. A. Edelman, P. B. Hitchcock, M. F. Lappert, D. S. Liu, and S. Tian, J. Organomet. Chem., 1998, 550, 397.
- 119M. J. Harvey, T. P. Hanusa, and M. Pink, J. Chem. Soc., Dalton Trans., 2001, 1128.
- 120R. Michel, R. Herbst-Irmer, and D. Stalke, Organometallics, 2011, 30, 4379.
- 121S. Neander, J. Körnich, and F. Olbrich, J. Organomet. Chem., 2002, 656, 89.
- 122R. Michel, R. Herbst-Irmer, and D. Stalke, Organometallics, 2011, 30, 4379.
- 123N. L. Holy, Chem. Rev., 1974, 74, 243.
- 124M. Szwarc, Acc. Chem. Res., 1972, 5, 169.
- 125R. Stevenson, M. K. Ballard, and R. C. Reiter, J. Org. Chem., 1991, 56, 4070.
- 126A. Sekiguchi, K. Ebata, C. Kabuto, and H. Sakurai, J. Am. Chem. Soc., 1991, 113, 1464.
- 127A. Sekiguchi, K. Ebata, C. Kabuto, and H. Sakurai, J. Am. Chem. Soc., 1991, 113, 7081.
- 128L. Wardell, in Comprehensive Organometallic Chemistry, eds G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon Press, Oxford, 1982, Vol. 1, Chap. 2, p. 43.
10.1016/B978-008046518-0.00002-7 Google Scholar
- 129E. Bartmann, Angew. Chem., Int. Ed. Engl., 1986, 25, 653.
- 130J. F. Barluenga and M. Yus, J. Chem. Soc., Perkin Trans. 1, 1983, 3019.
- 131D. Stucky, Adv. Chem. Ser., 1974, 130, 56.
- 132N. Hu, L. Gong, Z. Jin, and W. Chen, J. Organomet. Chem., 1988, 352, 61.
- 133T. A. Scott, B. A. Ooro, D. J. Collins, M. Shatruk, A. Yakovenko, K. R. Dunbar, and H.-C. Zhou, Chem. Commun., 2009, 65.
- 134M. Jeletic, F. A. Perras, S. I. Gorelsky, J. J. Le Roy, I. Korobkov, D. L. Bryce, and M. Murugesu, Dalton Trans., 2012, 41, 8060.
Further Reading
- 135S. S. Al-Juaid, C. Eaborn, P. B. Hitchcock, K. Izod, M. Mallien, and J. D. Smith, Angew. Chem., Int. Ed. Engl., 1994, 33, 1268.
- 136P. B. Eaborn, K. I. Hitchcock, and J. D. Smith, Angew. Chem., Int. Ed. Engl., 1995, 34, 687.
- 137V. Snieckus, Chem. Rev., 1990, 90, 879.
- 138V. Snieckus, Pure Appl. Chem., 1990, 62, 671.
- 139J. P. Gilday, J. T. Negri, and D. A. Widdowson, Tetrahedron, 1989, 45, 4605.