Printability and Shape Fidelity in Different Bioprinting Processes
Prajisha Prabhakar
International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University Kottayam, Kottayam, Kerala, India
Search for more papers by this authorAiswarya Sathian
International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University Kottayam, Kottayam, Kerala, India
College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
Search for more papers by this authorSabu Thomas
School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and International and Inter University Centre for Nanoscience and Technology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, India
Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
TrEST Research Park, Sreekariyam, Trivandrum, Kerala, India
Search for more papers by this authorPrajisha Prabhakar
International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University Kottayam, Kottayam, Kerala, India
Search for more papers by this authorAiswarya Sathian
International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University Kottayam, Kottayam, Kerala, India
College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
Search for more papers by this authorSabu Thomas
School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and International and Inter University Centre for Nanoscience and Technology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, India
Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
TrEST Research Park, Sreekariyam, Trivandrum, Kerala, India
Search for more papers by this authorManojit Ghosh
Indian Institute of Engineering Science and Technology (IIEST), Howrah, India
Search for more papers by this authorSummary
In the bioprinting field, significant advancements have been made in recent years. Additive manufacturing techniques are employed in three-dimensional bioprinting to automatically create hierarchically structured living constructs. In this chapter, we discuss the overview of bioprinting, its fundamentals, importance, and challenges regarding printability and shape fidelity, and its impact on tissue engineering, regenerative medicine, and drug development. The discussion revolves around the physicochemical factors that affect the preservation of shape accuracy as well as different bioprinting techniques. The chapter also investigates the case studies and applications in bioprinting.
References
- Schwab , A. , Levato , R. , D'Este , M. et al. ( 2020 ). Printability and shape fidelity of bioinks in 3D bioprinting . Chem. Rev. 120 ( 19 ): 11028 – 11055 .
-
Habib , A.
and
Khoda , B.
(
2019
).
Development of clay based novel hybrid bio-ink for 3D bio-printing process
.
J. Manuf. Process.
1
(
38
):
76
–
87
.
10.1016/j.jmapro.2018.12.034 Google Scholar
- Ahn , G. , Min , K.H. , Kim , C. et al. ( 2017 ). Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules . Sci. Rep. 7 ( 1 ): 8624 .
- Deo , K.A. , Singh , K.A. , Peak , C.W. et al. ( 2020 ). Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds . Tissue Eng. A 26 ( 5–6 ): 318 – 338 .
- Hong , S. , Kim , J.S. , Jung , B. et al. ( 2019 ). Coaxial bioprinting of cell-laden vascular constructs using a gelatin–tyramine bioink . Biomater. Sci. 7 ( 11 ): 4578 – 4587 .
- Huang , J. , Fu , H. , Wang , Z. et al. ( 2016 ). BMSCs-laden gelatin/sodium alginate/carboxymethyl chitosan hydrogel for 3D bioprinting . RSC Adv. 6 ( 110 ): 108423 – 108430 .
- Mir , T.A. , Iwanaga , S. , Kurooka , T. et al. ( 2019 ). Biofabrication offers future hope for tackling various obstacles and challenges in tissue engineering and regenerative medicine: A Perspective . Int. J. Bioprinting 5 ( 1 ): 153 .
- Zhang , Z. , Jin , Y. , Yin , J. et al. ( 2018 ). Evaluation of bioink printability for bioprinting applications . Appl. Phys. Rev. 5 ( 4 ): 041304 .
-
Mishra , R.N.
,
Singh , M.K.
, and
Kumar , V.
(
2022
).
Biomechanical analysis of human femur using finite element method: A review study
.
Mater. Today Proc.
1
(
56
):
384
–
389
.
10.1016/j.matpr.2022.01.222 Google Scholar
-
Mora Boza , A.
,
Wlodarczyk-Biegun , M.K.
,
Del Campo , A.
et al. (
2019
).
Chitosan-based inks: 3D printing and bioprinting strategies to improve shape fidelity, mechanical properties, and biocompatibility of 3D scaffolds
.
Biomecánica
https://doi.org/10.5821/sibb.27.1.9199
.
10.5821/sibb.27.1.9199 Google Scholar
- Azizi Machekposhti , S. , Mohaved , S. , and Narayan , R.J. ( 2019 ). Inkjet dispensing technologies: recent advances for novel drug discovery . Expert Opin. Drug Discov. 14 ( 2 ): 101 – 113 .
- Jia , J. , Richards , D.J. , Pollard , S. et al. ( 2014 ). Engineering alginate as bioink for bioprinting . Acta Biomater. 10 ( 10 ): 4323 – 4331 .
- Panwar , A. and Tan , L.P. ( 2016 ). Current status of bioinks for micro-extrusion-based 3D bioprinting . Molecules 21 ( 6 ): 685 .
-
Jin , W.
,
Lu , Y.
,
Chen , F.
et al. (
2022
).
On the fidelity of computational models for the flow of milled loblolly pine: A benchmark study on continuum-mechanics models and discrete-particle models
.
Front. Energy Res.
28
(
10
):
855848
.
10.3389/fenrg.2022.855848 Google Scholar
- Saunders , R.E. and Derby , B. ( 2014 ). Inkjet printing biomaterials for tissue engineering: bioprinting . Int. Mater. Rev. 59 ( 8 ): 430 – 448 .
-
Lee , V.K.
,
Dias , A.
,
Ozturk , M.S.
et al. (
2015
).
3D bioprinting and 3D imaging for stem cell engineering
.
Bioprinting in regenerative medicine
33
–
66
.
10.1007/978-3-319-21386-6_2 Google Scholar
- Caviezel , D. , Narayanan , C. , and Lakehal , D. ( 2008 ). Adherence and bouncing of liquid droplets impacting on dry surfaces . Microfluid. Nanofluid. 5 : 469 – 478 .
- Zhou , X. , Cui , H. , Nowicki , M. et al. ( 2018 ). Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration . ACS Appl. Mater. Interfaces 10 ( 10 ): 8993 – 9001 .
- Zhu , W. , Cui , H. , Boualam , B. et al. ( 2018 ). 3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering . Nanotechnology 29 ( 18 ): 185101 .
- Herschdorfer , L. , Negreiros , W.M. , Gallucci , G.O. , and Hamilton , A. ( 2021 ). Comparison of the accuracy of implants placed with CAD-CAM surgical templates manufactured with various 3D printers: an in vitro study . J. Prosthet. Dent. 125 ( 6 ): 905 – 910 .
- Zhang , P. , Wang , H. , Wang , P. et al. ( 2021 ). Lightweight 3D bioprinting with point by point photocuring . Bioact. Mater. 6 ( 5 ): 1402 – 1412 .
- Mankovich , N.J. , Cheeseman , A.M. , and Stoker , N.G. ( 1990 ). The display of three-dimensional anatomy with stereolithographic models . J. Digit. Imaging 3 : 200 – 203 .
- Bill , J.S. , Reuther , J.F. , Dittmann , W. et al. ( 1995 ). Stereolithography in oral and maxillofacial operation planning . Int. J. Oral Maxillofac. Surg. 24 ( 1 ): 98 – 103 .
- Chan , V. , Park , K. , Collens , M.B. et al. ( 2012 ). Development of miniaturized walking biological machines . Sci. Rep. 2 ( 1 ): 857 .
- Raman , R. , Bhaduri , B. , Mir , M. et al. ( 2016 ). Bioprinting: high-resolution projection microstereolithography for patterning of neovasculature (adv. healthcare mater. 5/2016) . Adv. Healthcare Mater. 5 ( 5 ): 622 .
- Bernal , P.N. , Delrot , P. , Loterie , D. et al. ( 2019 ). Biofabrication: volumetric bioprinting of complex living-tissue constructs within seconds (adv. mater. 42/2019) . Adv. Mater. 31 ( 42 ): 1970302 .
- Vaezi , M. , Seitz , H. , and Yang , S. ( 2013 ). A review on 3D micro-additive manufacturing technologies . Int. J. Adv. Manuf. Technol. 67 : 1721 – 1754 .
- Ribeiro , A. , Blokzijl , M.M. , Levato , R. et al. ( 2017 ). Assessing bioink shape fidelity to aid material development in 3D bioprinting . Biofabrication 10 ( 1 ): 014102 .
- Gopinathan , J. and Noh , I. ( 2018 ). Recent trends in bioinks for 3D printing . Biomater. Res. 22 : 1 – 5 .
- Mora-Boza , A. , Włodarczyk-Biegun , M.K. , Del Campo , A. et al. ( 2020 ). Glycerylphytate as an ionic crosslinker for 3D printing of multi-layered scaffolds with improved shape fidelity and biological features . Biomater. Sci. 8 ( 1 ): 506 – 516 .
- Negrini , N.C. , Celikkin , N. , Tarsini , P. et al. ( 2020 ). Three-dimensional printing of chemically crosslinked gelatin hydrogels for adipose tissue engineering . Biofabrication 12 ( 2 ): 025001 .
- Park , S.H. , Kang , B.K. , Lee , J.E. et al. ( 2017 ). Design and fabrication of a thin-walled free-form scaffold on the basis of medical image data and a 3D printed template: its potential use in bile duct regeneration . ACS Appl. Mater. Interfaces 9 ( 14 ): 12290 – 12298 .
- Kim , M.K. , Jeong , W. , Lee , S.M. et al. ( 2020 ). Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties . Biofabrication 12 ( 2 ): 025003 .
-
Müller , M.
,
Fisch , P.
,
Molnar , M.
et al. (
2020
).
Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering
.
Mater. Sci. Eng. C
1
(
108
):
110510
.
10.1016/j.msec.2019.110510 Google Scholar
- Soltan , N. , Ning , L. , Mohabatpour , F. et al. ( 2019 ). Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds . ACS Biomater. Sci. Eng. 5 ( 6 ): 2976 – 2987 .
-
Shin , J.Y.
,
Yeo , Y.H.
,
Jeong , J.E.
et al. (
2020
).
Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications
.
Carbohydr. Polym.
15
(
238
):
116192
.
10.1016/j.carbpol.2020.116192 Google Scholar
- Göhl , J. , Markstedt , K. , Mark , A. et al. ( 2018 ). Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks . Biofabrication 10 ( 3 ): 034105 .
- Wilson , S.A. , Cross , L.M. , Peak , C.W. , and Gaharwar , A.K. ( 2017 ). Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting . ACS Appl. Mater. Interfaces 9 ( 50 ): 43449 – 43458 .
- Athirasala , A. , Tahayeri , A. , Thrivikraman , G. et al. ( 2018 ). A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry . Biofabrication 10 ( 2 ): 024101 .
- Duarte Campos , D.F. , Blaeser , A. , Korsten , A. et al. ( 2015 ). The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages . Tissue Eng. A 21 ( 3–4 ): 740 – 756 .
- Petta , D. , Grijpma , D.W. , Alini , M. et al. ( 2018 ). Three-dimensional printing of a tyramine hyaluronan derivative with double gelation mechanism for independent tuning of shear thinning and postprinting curing . ACS Biomater. Sci. Eng. 4 ( 8 ): 3088 – 3098 .
- Wang , L. , Xu , M. , Zhang , L. et al. ( 2016 ). Automated quantitative assessment of three-dimensional bioprinted hydrogel scaffolds using optical coherence tomography . Biomed. Opt. Express 7 ( 3 ): 894 – 910 .
-
D'Amore , A.
,
Yoshizumi , T.
,
Luketich , S.K.
et al. (
2016
).
Bi-layered polyurethane–ECM cardiac patch improves ischemic ventricular wall remodeling in a rat model
.
Biomaterials
1
(
107
):
1
–
4
.
10.1016/j.biomaterials.2016.07.039 Google Scholar
-
Mancha Sánchez , E.
,
Gómez-Blanco , J.C.
,
López Nieto , E.
et al. (
2020
).
Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior
.
Front. Bioeng. Biotechnol.
6
(
8
):
776
.
10.3389/fbioe.2020.00776 Google Scholar
-
Unagolla , J.M.
and
Jayasuriya , A.C.
(
2020
).
Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives
.
Appl. Mater. Today
1
(
18
):
100479
.
10.1016/j.apmt.2019.100479 Google Scholar
- Temirel , M. , Hawxhurst , C. , and Tasoglu , S. ( 2021 ). Shape fidelity of 3D-bioprinted biodegradable patches . Micromachines 12 ( 2 ): 195 .
- Ramu , M. , Ananthasubramanian , M. , Kumaresan , T. et al. ( 2018 ). Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications . Biomed. Mater. Eng. 29 ( 6 ): 739 – 755 .
- Rastogi , P. and Kandasubramanian , B. ( 2019 ). Review of alginate-based hydrogel bioprinting for application in tissue engineering . Biofabrication 11 ( 4 ): 042001 .
-
Heid , S.
and
Boccaccini , A.R.
(
2020
).
Advancing bioinks for 3D bioprinting using reactive fillers: a review
.
Acta Biomater.
1
(
113
):
1
–
22
.
10.1016/j.actbio.2020.06.040 Google Scholar
- Top , N. , Şahin , İ. , and Gökçe , H. ( 2021 ). Computer-aided design and additive manufacturing of bone scaffolds for tissue engineering: state of the art . J. Mater. Res. 15 : 1 – 21 .
- Markstedt , K. , Mantas , A. , Tournier , I. et al. ( 2015 ). 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications . Biomacromolecules 16 ( 5 ): 1489 – 1496 .
- Lu , N. , Lu , C. , Yang , S. , and Rogers , J. ( 2012 ). Highly sensitive skin-mountable strain gauges based entirely on elastomers . Adv. Funct. Mater. 22 ( 19 ): 4044 – 4050 .
- Huq , T. , Salmieri , S. , Khan , A. et al. ( 2012 ). Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite films . Carbohydr. Polym. 90 ( 4 ): 1757 – 1763 .
- Xia , Y. , Chen , F. , Klinger , J.L. et al. ( 2021 ). Assessment of a tomography-informed polyhedral discrete element modelling approach for complex-shaped granular woody biomass in stress consolidation . Biosystems Eng. 205 : 187 – 211 .
- Guo , Y. , Chen , Q. , Xia , Y. et al. ( 2020 ). Discrete element modeling of switchgrass particles under compression and rotational shear . Biomass Bioenergy . 141 : 105649 .
- Guo , Y. , Chen , Q. , Xia , Y. et al. ( 2021 ). A nonlinear elasto-plastic bond model for the discrete element modeling of woody biomass particles . Powder Technol . 385 : 557 – 571 .
- Gao , T. , Gillispie , G.J. , Copus , J.S. et al. ( 2018 ). Optimization of gelatin–alginate composite bioink printability using rheological parameters: A systematic approach . Biofabrication 10 ( 3 ): 034106 .
- Bardini , R. and Di Carlo , S. ( 2023 ). Computational modeling and optimization of biofabrication in Tissue Engineering and Regenerative Medicine-a literature review . bioRxiv 23 : 2023 .
-
Dellaquila , A.
,
Campodoni , E.
,
Tampieri , A.
, and
Sandri , M.
(
2020
).
Overcoming the design challenge in 3d biomimetic hybrid scaffolds for bone and osteochondral regeneration by factorial design
.
Front. Bioeng. Biotechnol.
7
(
8
):
743
.
10.3389/fbioe.2020.00743 Google Scholar
- Wu , Q. , Therriault , D. , and Heuzey , M.C. ( 2018 ). Processing and properties of chitosan inks for 3D printing of hydrogel microstructures . ACS Biomater. Sci. Eng. 4 ( 7 ): 2643 – 2652 .
- Yan , Q. , Dong , H. , Su , J. et al. ( 2018 ). A review of 3D printing technology for medical applications . Engineering 4 ( 5 ): 729 – 742 .
- Maver , T. , Smrke , D.M. , Kurečič , M. et al. ( 2018 ). Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials . J. Sol-Gel Sci. Technol. 88 : 33 – 48 .
- Yu , N. , Nguyen , T. , Cho , Y.D. et al. ( 2019 ). Personalized scaffolding technologies for alveolar bone regenerative medicine . Orthod. Craniofacial Res. 22 : 69 – 75 .