Printed Scaffolds in Tissue Engineering
Thara Tom
Mar Thoma College, Tiruvalla, Kerala, India
School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
Search for more papers by this authorSamanta Sam
School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India
Search for more papers by this authorM.S. Sreekala
School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
Search for more papers by this authorSabu Thomas
School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and International and Inter University Centre for Nanoscience and Technology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, India
Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
TrEST Research Park, Sreekariyam, Trivandrum, Kerala, India
Search for more papers by this authorThara Tom
Mar Thoma College, Tiruvalla, Kerala, India
School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
Search for more papers by this authorSamanta Sam
School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala, India
Search for more papers by this authorM.S. Sreekala
School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala, India
Search for more papers by this authorSabu Thomas
School of Energy Materials, School of Nanoscience and Nanotechnology, School of Polymer Science and Technology, School of Chemical Science and International and Inter University Centre for Nanoscience and Technology (IIUCNN), Mahatma Gandhi University, Kottayam, Kerala, India
Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg, South Africa
TrEST Research Park, Sreekariyam, Trivandrum, Kerala, India
Search for more papers by this authorManojit Ghosh
Indian Institute of Engineering Science and Technology (IIEST), Howrah, India
Search for more papers by this authorSummary
Additive manufacturing (3D printing) is an emerging field of science due to its freedom of fabrication in engineering and biomedical areas. Patient-specific customized medical models can be fabricated within a short time, which is a major advantage of 3D printing. Scaffolds, implants, organ models, and so on are developed for tissue engineering, wound healing, and drug delivery applications using a wide range of materials like polymers, ceramics, hydrogels, etc. Printed scaffolds help in the efficient regeneration of damaged tissues, which is one of the most essential criteria required in tissue engineering applications. This chapter discusses the potential applications of 3D printing technology, which mainly deals with the application of 3D printed scaffolds in tissue engineering.
References
- Zadpoor , A.A. ( 2017 ). Design for additive bio-manufacturing: from patient-specific medical devices to rationally designed meta-biomaterials . Int. J. Mol. Sci. 18 ( 8 ): 1607 .
- Robles Martinez , P. , Basit , A.W. , and Gaisford , S. ( 2018 ). The history, developments and opportunities of stereolithography . AAPS Adv. Pharm. Sci. Ser. 31 : 55 – 79 .
- Rengier , F. , Mehndiratta , A. , Von Tengg-Kobligk , H. et al. ( 2010 ). 3D printing based on imaging data: review of medical applications . Int. J. Comput. Assist. Radiol. Surg. 5 ( 4 ): 335 – 341 .
-
Shahrubudin , N.
,
Lee , T.C.
, and
Ramlan , R.
(
2019
).
An overview on 3D printing technology: technological, materials, and applications
.
Procedia Manuf.
35
:
1286
–
1296
.
10.1016/j.promfg.2019.06.089 Google Scholar
- Norman , J. , Madurawe , R.D. , Moore , C.M.V. et al. ( 2017 ). A new chapter in pharmaceutical manufacturing: 3D-printed drug products . Adv. Drug Deliv. Rev. 108 : 39 – 50 .
- Ahangar , P. , Akoury , E. , Luna , A.S.R.G. et al. ( 2018 ). Nanoporous 3D-printed scaffolds for local doxorubicin delivery in bone metastases secondary to prostate cancer . Materials (Basel) 11 ( 9 ): 1485 .
- Rosenzweig , D.H. , Carelli , E. , Steffen , T. et al. ( 2015 ). 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposustissue regeneration . Int. J. Mol. Sci. 16 ( 7 ): 15118 – 15135 .
- Chaput , C. , De , T.C. , Céramiques , D.T. , and Technopole , E. ( 2020 ). Fabrication of ceramics by stereolithography . R Tejournal - Forum für Rapid Technologie 9 ( 1 ): 1 – 15 .
- Masood , S.H. and Song , W.Q. ( 2004 ). Development of new metal/polymer materials for rapid tooling using fused deposition modelling . Mater. Des. 25 ( 7 ): 587 – 594 .
- Cansiz , E. , Arslan , Y.Z. , Turan , F. , and Atalay , B. ( 2014 ). Computer-assisted design of patient-specific sagittal split osteotomy guide and soft tissue retractor . J. Med. Biol. Eng. 34 ( 4 ): 363 – 367 .
- Gokuldoss , P.K. , Kolla , S. , and Eckert , J. ( 2017 ). Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines . Materials (Basel) 10 ( 6 ).
- Panwar , A. and Tan , L.P. ( 2016 ). Current status of bioinks for micro-extrusion-based 3D bioprinting . Molecules 21 ( 6 ): 685 .
- Murphy , S.V. and Atala , A. ( 2014 ). 3D bioprinting of tissues and organs . Nat. Biotechnol. 32 ( 8 ): 773 – 785 .
-
Anadioti , E.
,
Kane , B.
, and
Soulas , E.
(
2018
).
Current and emerging applications of 3D printing in restorative dentistry
.
Curr. Oral Health Rep.
5
(
2
):
133
–
139
.
10.1007/s40496-018-0181-3 Google Scholar
- Zhang , J. , Allardyce , B.J. , Rajkhowa , R. et al. ( 2021 ). 3D printing of silk powder by Binder Jetting technique . Addit. Manuf. 38 : 101820 .
- Ke , D. and Bose , S. ( 2018 ). Effects of pore distribution and chemistry on physical, mechanical, and biological properties of tricalcium phosphate scaffolds by binder-jet 3D printing . Addit. Manuf. 22 : 111 – 117 .
- Bose , S. , Bhattacharjee , A. , Banerjee , D. et al. ( 2021 ). Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds . Addit. Manuf. 40 : 101895 .
- Castro , N.J. , O'Brien , J. , and Zhang , L.G. ( 2015 ). Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds . Nanoscale 7 ( 33 ): 14010 – 14022 .
- Chen , P. , Zheng , L. , Wang , Y. et al. ( 2019 ). Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration . Theranostics 9 ( 9 ): 2439 – 2459 .
- Lee , Y. , Jung , A. , Heo , S.J. et al. ( 2023 ). Influences of surface topography of porous titanium scaffolds manufactured by powder bed fusion on osteogenesis . J. Mater. Res. Technol. 23 : 2784 – 2797 .
- Ahangar , P. , Cooke , M.E. , Weber , M.H. , and Rosenzweig , D.H. ( 2019 ). Current biomedical applications of 3D printing and additive manufacturing . Appl. Sci. 9 ( 8 ): 1713 .
- Mostafaei , A. , Toman , J. , Stevens , E.L. et al. ( 2017 ). Microstructural evolution and mechanical properties of differently heat-treated binder jet printed samples from gas- and water-atomized alloy 625 powders . Acta Mater. 124 : 280 – 289 .
- Sing , S.L. , Tey , C.F. , Tan , J.H.K. et al. ( 2019 ). 3D printing of metals in rapid prototyping of biomaterials: techniques in additive manufacturing . In: Rapid Prototyping of Biomaterials: Techniques in Additive Manufacturing , 2e , 17 – 40 . Woodhead Publishing Series in Biomaterials .
- Placone , J.K. and Engler , A.J. ( 2018 ). Recent advances in extrusion-based 3D printing for biomedical applications . Adv. Healthcare Mater. 7 ( 8 ): 1 – 11 .
- Prabhakar , P. , Sen , R.K. , Dwivedi , N. et al. ( 2021 ). 3D-printed microfluidics and potential biomedical applications . Front. Nanotechnol. 3 ( March ): 1 – 16 .
- Tan , X.P. , Tan , Y.J. , Chow , C.S.L. et al. ( 2017 ). Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility . Mater. Sci. Eng. C 76 : 1328 – 1343 .
-
Li , J.
,
Wu , C.
,
Chu , P.K.
, and
Gelinsky , M.
(
2020
).
3D printing of hydrogels: rational design strategies and emerging biomedical applications
.
Mater. Sci. Eng. R. Rep.
140
(
January
):
100543
.
10.1016/j.mser.2020.100543 Google Scholar
- Khalyfa , A. , Vogt , S. , Weisser , J. et al. ( 2007 ). Development of a new calcium phosphate powder-binder system for the 3D printing of patient specific implants . J. Mater. Sci. Mater. Med. 18 ( 5 ): 909 – 916 .
- Wu , L. , Virdee , J. , Maughan , E. et al. ( 2018 ). Stiffness memory nanohybrid scaffolds generated by indirect 3D printing for biologically responsive soft implants . Acta Biomater. 80 : 188 – 202 .
- Le Guéhennec , L. , Van Hede , D. , Plougonven , E. et al. ( 2020 ). In vitro and in vivo biocompatibility of calcium-phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration . J. Biomed. Mater. Res. – Part A 108 ( 3 ): 412 – 425 .
- Radhakrishnan , S. , Nagarajan , S. , Belaid , H. et al. ( 2021 ). Fabrication of 3D printed antimicrobial polycaprolactone scaffolds for tissue engineering applications . Mater. Sci. Eng. C 118 : 111525 .
-
Antoniac , I.V.
(
2016
).
Handbook of Bioceramics and Biocomposites
,
1
–
1386
.
Springer
.
10.1007/978-3-319-12460-5 Google Scholar
-
Safonov , A.
,
Maltsev , E.
,
Chugunov , S.
et al. (
2020
).
Design and fabrication of complex-shaped ceramic bone implants via 3d printing based on laser stereolithography
.
Appl. Sci.
10
(
20
):
1
–
18
.
10.3390/app10207138 Google Scholar
-
Putlyaev , V.I.
,
Yevdokimov , P.V.
,
Mamonov , S.A.
et al. (
2019
).
Stereolithographic 3D printing of bioceramic scaffolds of a given shape and architecture for bone tissue regeneration
.
Inorg. Mater. Appl. Res.
10
(
5
):
1101
–
1108
.
10.1134/S2075113319050277 Google Scholar
- Wang , J. , Zhang , Y. , Aghda , N.H. et al. ( 2021 ). Emerging 3D printing technologies for drug delivery devices: current status and future perspective . Adv. Drug Deliv. Rev. 174 : 294 – 316 .
- Goyanes , A. , Det-Amornrat , U. , Wang , J. et al. ( 2016 ). 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems . J. Control. Release 234 : 41 – 48 .
- Economidou , S.N. , Pere , C.P.P. , Reid , A. et al. ( 2019 ). 3D printed microneedle patches using stereolithography (SLA)for intradermal insulin delivery . Mater. Sci. Eng. C 102 : 743 – 755 .
- Uddin , M.J. , Scoutaris , N. , Economidou , S.N. et al. ( 2020 ). 3D printed microneedles for anticancer therapy of skin tumours . Mater. Sci. Eng. C 107 : 110248 .
- Arastouei , M. , Khodaei , M. , Atyabi , S.M. , and Jafari , N.M. ( 2021 ). The in-vitro biological properties of 3D printed poly lactic acid/akermanite composite porous scaffold for bone tissue engineering . Mater. Today Commun. 27 : 102176 .
- Wei , P. , Xu , Y. , Gu , Y. et al. ( 2020 ). IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering . Drug Deliv. 27 ( 1 ): 1106 – 1114 .
- Wang , Y. , Sun , L. , Mei , Z. et al. ( 2020 ). 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma . Mater. Des. 186 : 108336 .
- Wu , Y. , Woodbine , L. , Carr , A.M. et al. ( 2020 ). 3d printed calcium phosphate cement (CPC) scaffolds for anti-cancer drug delivery . Pharmaceutics 12 ( 11 ): 1 – 15 .
- Jiang , Y. , Pan , X. , Yao , M. et al. ( 2021 ). Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration . Nano Today 39 : 101182 .
- Kantaros , A. , Laskaris , N. , Piromalis , D. , and Ganetsos , T. ( 2021 ). Correction to: manufacturing zero- waste COVID-19 personal protection equipment: a case study of utilizing 3D printing while employing waste material recycling . Circ. Econ. Sustain. 1 ( 3 ): 871 – 871 .
- Wang , Y. , Ahmed , A. , Azam , A. et al. ( 2021 ). Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: the knowledge evolution of 3D printing . J. Manuf. Syst. 60 ( August ): 709 – 733 .
- François , P.M. , Bonnet , X. , Kosior , J. et al. ( 2021 ). 3D-printed contact-free devices designed and dispatched against the COVID-19 pandemic: the 3D COVID initiative . J. Stomatol. Oral Maxillofac. Surg. 122 ( 4 ): 381 – 385 .
- Spake , C.S.L. , Carruthers , T.N. , Crozier , J.W. et al. ( 2021 ). 3D printed N-95 masks during the COVID-19 pandemic: lessons learned . Ann. Biomed. Eng. 49 ( 12 ): 3666 – 3675 .
- Vaňková , E. , Kašparová , P. , Khun , J. et al. ( 2020 ). Polylactic acid as a suitable material for 3D printing of protective masks in times of COVID-19 pandemic . PeerJ. 8 : 1 – 20 .
- De Maio , F. , Rosa , E. , Perini , G. et al. ( 2022 ). 3D-printed graphene polylactic acid devices resistant to SARS-CoV-2: Sunlight-mediated sterilization of additive manufactured objects . Carbon N. Y. 194 : 34 – 41 .
-
Sadasivuni , K.K.
,
Maurya , M.R.
,
Houkan , M.T.
et al. (
2023
).
Self-sanitizing reusable glove via 3D-printing and common mold making method
.
Mater. Today Proc.
https://doi.org/10.1016/j.matpr.2023.03.232
.
10.1016/j.matpr.2023.03.232 Google Scholar
- Tarfaoui , M. , Nachtane , M. , Goda , I. et al. ( 2020 ). Additive manufacturing in fighting against novel coronavirus COVID-19 . Int. J. Adv. Manuf. Technol. 110 ( 11–12 ): 2913 – 2927 .
- Cao , S. , Zhao , Y. , Hu , Y. et al. ( 2020 ). New perspectives: in-situ tissue engineering for bone repair scaffold . Compos. Part B Eng. 202 ( August ): 108445 .
- Choi , J.R. , Yong , K.W. , and Choi , J.Y. ( 2018 ). Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering . J. Cell. Physiol. 233 ( 3 ): 1913 – 1928 .
- Liu , J. , Willför , S. , and Xu , C. ( 2015 ). A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications . Bioact. Carbohydr. Dietary Fibre 5 ( 1 ): 31 – 61 .
- Li , G. , Xue , C. , Wang , H. et al. ( 2018 ). Spatially featured porous chitosan conduits with micropatterned inner wall and seamless sidewall for bridging peripheral nerve regeneration . Carbohydr. Polym. 194 : 225 – 235 .
- Van Den Bulcke AI , Bogdanov B , De Rooze N , Schacht EH , Cornelissen M , Berghmans H . 甲基丙烯酰胺改性明胶水凝胶的结构与流变性能 Biomacromolecules 2000 ; 1 ( 1 ): 31 – 8 .
- Meng , Y. , Cao , J. , Chen , Y. et al. ( 2020 ). 3D printing of a poly(vinyl alcohol)-based nano- composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy . J. Mater. Chem. B 8 ( 4 ): 677 – 690 .
- Jahromi , H.K. , Farzin , A. , Hasanzadeh , E. et al. ( 2020 ). Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guidance conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat . Mater. Sci. Eng. C 109 : 110564 .
- Fraczek-Szczypta , A. ( 2014 ). Carbon nanomaterials for nerve tissue stimulation and regeneration . Mater. Sci. Eng. C 34 ( 1 ): 35 – 49 .
- Jung , W. , Jung , Y.H. , Pikhitsa , P.V. et al. ( 2021 ). Three-dimensional nanoprinting via charged aerosol jets . Nature 592 ( 7852 ): 54 – 59 .
- Sadeghianmaryan , A. , Naghieh , S. , Alizadeh Sardroud , H. et al. ( 2020 ). Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering . Int. J. Biol. Macromol. 164 : 3179 – 3192 .
- Yang , X. , Lu , Z. , Wu , H. et al. ( 2018 ). Collagen-alginate as bioink for three- dimensional (3D) cell printing based cartilage tissue engineering . Mater. Sci. Eng. C 83 : 195 – 201 .
- Maihemuti , A. , Zhang , H. , Lin , X. et al. 3D-printed fish gelatin scaffolds for cartilage tissue engineering . Bioact. Mater. 2023 ( 26 ): 77 – 87 .
-
Wang , J.
,
Huang , D.
,
Yu , H.
et al. (
2022
).
Developing tissue engineering strategies for liver regeneration
.
Eng. Regen.
3
(
1
):
80
–
91
.
10.1016/j.engreg.2022.02.003 Google Scholar
- Shin , M. , King , K. , Matsuda , K. et al. ( 2004 ). Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane) . Biomed. Microdevices 6 : 269 – 278 .
- Jiankang , H. , Dichen , L. , Yaxiong , L. et al. ( 2009 ). et al, Preparation of chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering . Acta Biomater. 5 ( 1 ): 453 – 461 .
- Meng , C. , Zhao , J. , Yin , Y. et al. ( 2020 ). Preparation and characterization of PLA film/3D printing composite scaffold for tissue engineering application . Fibers Polym. 21 ( 4 ): 709 – 716 .
-
Supriya Bhatt S
,
Thakur G
,
Nune M
.
Preparation and characterization of PVA/Chitosan cross-linked 3D scaffolds for liver tissue engineering
.
Mater. Today Proc.
2023
https://doi.org/10.1016/j.matpr.2023.02.251
.
10.1016/j.matpr.2023.02.251 Google Scholar
- Yan , J. , Wu , R. , Liao , S. et al. ( 2020 ). Applications of polydopamine-modified scaffolds in the peripheral nerve tissue engineering . Front. Bioeng. Biotechnol. 8 ( October ): 1 – 7 .
- Jung Jo , H. , Sung Kang , M. , Jeong Jang , H. et al. ( 2023 ). Advanced approaches with combination of 2D nanomaterials and 3D printing for exquisite neural tissue engineering . Mater. Sci. Addit. Manuf. 2 ( 2 ): 1 .
-
Saylam , E.
,
Akkaya , Y.
,
Ilhan , E.
et al. (
2021
).
Levodopa-loaded 3d- printed poly (Lactic) acid/chitosan neural tissue scaffold as a promising drug delivery system for the treatment of parkinson's disease
.
Appl. Sci.
11
(
22
).
10.3390/app112210727 Google Scholar
-
Zhang , L.G.
and
Kaplan , D.L.
(
2016
).
Neural Engineering: From Advanced Biomaterials to 3D Fabrication Techniques
,
1
–
306
.
Springer
.
10.1007/978-3-319-31433-4 Google Scholar
- Drury , J.L. and Mooney , D.J. ( 2003 ). Hydrogels for tissue engineering: scaffold design variables and applications . Biomaterials 24 ( 24 ): 4337 – 4351 .
- Ma , C. , Jiang , L. , Wang , Y. et al. ( 2019 ). 3D printing of conductive tissue engineering scaffolds containing polypyrrole nanoparticles with different morphologies and concentrations . Materials (Basel) 12 ( 15 ): 2491 .
- Xu , Y. , Patnaik , S. , Guo , X. et al. ( 2014 ). Cardiac differentiation of cardiosphere-derived cells in scaffolds mimicking morphology of the cardiac extracellular matrix . Acta Biomater. 10 ( 8 ): 3449 – 3462 .
- Liu , Q. , Tian , S. , Zhao , C. et al. ( 2015 ). Porous nanofibrous poly(l-lactic acid) scaffolds supporting cardiovascular progenitor cells for cardiac tissue engineering . Acta Biomater. 26 : 105 – 114 .
- Christensen , K. , Xu , C. , Chai , W. et al. ( 2015 ). Freeform inkjet printing of cellular structures with bifurcations . Biotechnol. Bioeng. 112 ( 5 ): 1047 – 1055 .
- Xu , T. , Baicu , C. , Aho , M. et al. ( 2009 ). Fabrication and characterization of bio- engineered cardiac pseudo tissues . Biofabrication 1 ( 3 ): 035001 .
- Zhu , W. , Qu , X. , Zhu , J. et al. ( 2017 ). Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture . Biomaterials 124 : 106 – 115 .
- Ruther , F. , Roether , J.A. , and Boccaccini , A.R. ( 2022 ). 3D printing of mechanically resistant poly (Glycerol Sebacate) (PGS)-zein scaffolds for potential cardiac tissue engineering applications . Adv. Eng. Mater. 24 ( 9 ): 2101768 .
- Ghaziof , S. , Shojaei , S. , Mehdikhani , M. et al. ( 2022 ). Electro- conductive 3D printed polycaprolactone/gold nanoparticles nanocomposite scaffolds for myocardial tissue engineering . J. Mech. Behav. Biomed. Mater. 132 ( May ): 105271 .