3D Bioprinting
Materials for Bioprinting Bioinks Selection
Mona Moaness
Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
Search for more papers by this authorMostafa Mabrouk
Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
Search for more papers by this authorMona Moaness
Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
Search for more papers by this authorMostafa Mabrouk
Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
Search for more papers by this authorManojit Ghosh
Indian Institute of Engineering Science and Technology (IIEST), Howrah, India
Search for more papers by this authorSummary
Like 3D printing, 3D bioprinting is an additional fabrication technique that constructs an object, layer-by-layer, using a digital file as a template. Bioprinters, in contrast to 3D printers, use cells and biomaterials to create organ-like structures that allow living cells to multiply. Despite being relatively recent, bioprinting has the opportunity to solve several major deficiencies in medical research, including applications in drug discovery, regenerative therapy, functional tissue repair, and cosmetics screening. To produce the necessary tissue construct, a variety of materials, techniques, and cells can be used, depending on the application. In organ and tissue 3D bioprinting, cultured cells are combined with different biocompatible materials to make bioinks, which then can be 3D bioprinted into functional tissue constructs that need to be treated.
References
- Tibbitt , M.W. , Rodell , C.B. , Burdick , J.A. , and Anseth , K.S. ( 2015 ). Progress in material design for biomedical applications . Proc. Natl. Acad. Sci. 112 ( 47 ): 14444 – 14451 .
- Datta , P. , Barui , A. , Wu , Y. et al. ( 2018 ). Essential steps in bioprinting: from pre- to post-bioprinting . Biotechnol. Adv. 36 ( 5 ): 1481 – 1504 . https://doi.org/10.1016/j.biotechadv.2018.06.003 . (Elsevier Inc., 01 Sept 2018).
- Gungor-Ozkerim , P.S. , Inci , I. , Zhang , Y.S. et al. ( 2018 ). Bioinks for 3D bioprinting: an overview . Biomater. Sci. 6 ( 5 ): 915 – 946 .
-
Williams , D.
,
Thayer , P.
,
Martinez , H.
et al. (
2018
).
A perspective on the physical, mechanical and biological specifications of bioinks and the development of functional tissues in 3D bioprinting
.
Bioprinting
9
:
19
–
36
.
10.1016/j.bprint.2018.02.003 Google Scholar
- Ng , W.L. , Yeong , W.Y. , and Naing , M.W. ( 2017 ). Polyvinylpyrrolidone-based bioink improves cell viability and homogeneity during drop-on-demand printing . Materials (Basel) 10 ( 2 ): 190 .
- Dababneh , A.B. and Ozbolat , I.T. ( 2014 ). Bioprinting technology: a current state-of-the-art review . J. Manuf. Sci. Eng. 136 ( 6 ): 061016 .
- Xu , T. , Binder , K.W. , Albanna , M.Z. et al. ( 2012 ). Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications . Biofabrication 5 ( 1 ): 015001 .
- Müller , M. , Becher , J. , Schnabelrauch , M. , and Zenobi-Wong , M. ( 2015 ). Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting . Biofabrication 7 ( 3 ): 035006 .
- Kolesky , D.B. , Truby , R.L. , Gladman , A.S. et al. ( 2014 ). 3D bioprinting of vascularized, heterogeneous cell -laden tissue constructs . Adv. Mater. 26 ( 19 ): 3124 – 3130 .
- O'Connell , C. , Ren , J. , Pope , L. et al. ( 2020 ). Characterizing bioinks for extrusion bioprinting: printability and rheology . Methods in Molecular Biology 111 – 133 .
- Liu , F. , Chen , Q. , Liu , C. et al. ( 2018 ). Natural polymers for organ 3D bioprinting . Polymers (Basel) 10 ( 11 ): 1 – 26 .
-
Pugliese , R.
,
Beltrami , B.
,
Regondi , S.
, and
Lunetta , C.
(
2021
).
Polymeric biomaterials for 3D printing in medicine: an overview
.
Ann. 3D Print. Med.
2
:
100011
.
10.1016/j.stlm.2021.100011 Google Scholar
-
Luo , Z.
,
Mu , X.
, and
Zhang , Y.S.
(
2022
).
Biomaterials for bioprinting
. In:
Bioprinting
,
51
–
86
.
London
:
Academic, Elsevier
.
10.1016/B978-0-323-85430-6.00001-7 Google Scholar
- Tripathi , S. , Mandal , S.S. , Bauri , S. , and Maiti , P. ( 2023 ). 3D bioprinting and its innovative approach for biomedical applications . MedComm. 4 ( 1 ): e194 .
- Murphy , S.V. and Atala , A. ( 2014 ). 3D bioprinting of tissues and organs . Nat. Biotechnol. 32 ( 8 ): 773 – 785 .
- Ambesi-Impiombato , F.S. , Parks , L.A. , and Coon , H.G. ( 1980 ). Culture of hormone-dependent functional epithelial cells from rat thyroids . Proc. Natl. Acad. Sci. USA 77 : 3455 – 3459 .
- Hamm , A. , Krott , N. , Breibach , I. et al. ( 2002 ). Efficient transfection method for primary cells . Tissue Eng. 8 : 235 – 245 .
- Okumura , N. , Ueno , M. , Koizumi , N. et al. ( 2009 ). Enhancement on primate corneal endothelial cell survival in vitro by a ROCK inhibitor . Invest. Ophthalmol. Vis. Sci. 50 : 3680 – 3687 .
- Yu , Z. , Liu , M. , Fu , P. et al. ( 2012 ). ROCK inhibition with Y27632 promotes the proliferation and cell cycle progression of cultured astrocyte from spinal cord . Neurochem. Int. 61 : 1114 – 1120 .
- Dimri , G.P. , Lee , X. , Basile , G. et al. ( 1995 ). A biomarker that identifies senescent human cells in culture and in aging skin in vivo . Proc. Natl. Acad. Sci. USA 92 : 9363 – 9367 .
- Reubinoff , B.E. , Pera , M.F. , Fong , C.Y. et al. ( 2000 ). Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro . Nat. Biotechnol. 18 : 399 – 404 .
- Dominici , M. , Le Blanc , K. , Mueller , I. et al. ( 2006 ). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement . Cytotherapy 8 : 315 – 317 .
- Zuk , P.A. , Zhu , M. , Ashjian , P. et al. ( 2002 ). Human adipose tissue is a source of multipotent stem cells . Mol. Biol. Cell 13 : 4279 – 4295 .
- De Coppi , P. , Bartsch , G. , Siddiqui , M.M. et al. ( 2007 ). Isolation of amniotic stem cell lines with potential for therapy . Nat. Biotechnol. 25 : 100 – 106 .
-
Murphy , S.
et al. (
2010
).
Amnion epithelial cell isolation and characterization for clinical use
.
Curr. Protoc. Stem Cell Biol.
13
:
1E
–
6E
.
10.1002/9780470151808.sc01e06s13 Google Scholar
- Lin , C.-C. and Anseth , K.S. ( 2009 ). PEG hydrogels for the controlled release of biomolecules inregenerative medicine . Pharm. Res. 26 ( 3 ): 631 – 643 .
- Koons , G.L. and Mikos , A.G. ( 2019 ). Progress in three-dimensional printing with growthfactors . J. Control. Release 295 : 50 – 59 .
- Ionescu , L.C. , Lee , G.C. , Sennett , B.J. et al. ( 2010 ). An anisotropicnanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering . Biomaterials 31 ( 14 ): 4113 – 4120 .
- Caliceti , P. , Salmaso , S. , Lante , A. et al. ( 2001 ). Controlled release of biomolecules from temperature-sensitivehydrogels prepared by radiation polymerization . J. Control. Release 75 ( 1–2 ): 173 – 181 .
- Byambaa , B. , Annabi , N. , Yue , K. et al. ( 2017 ). Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue . Adv. Healthcare Mater. 6 ( 16 ): 1700015 .
- Ashammakhi , N. , Ahadian , S. , Xu , C. et al. ( 2019 ). Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs . Mater. Today Bio 1 : 100008 .
- Daszek , J. , Costantini , M. , Karlsen , T.A. et al. ( 2019 ). 3D bioprinting of hydrogel constructs with cell and material gradients for the regeneration of full-thickness chondral defectusing a microfluidic printing head . Biofabrication 11 : 044101 .
- Choi , Y.J. , Park , H. , Ha , D.H. et al. ( 2021 ). 3D bioprinting of in vitro models using hydrogel-based bioinks . Polymers 13 : 366 .
- Ji , S. and Guvendiren , M. ( 2017 ). Recent advances in bioink design for 3D bioprinting of tissues and organs . Front. Bioeng. Biotechnol. 5 : 1 – 8 . https://doi.org/10.3389/fbioe.2017.00023 .
- Duan , B. , Kapetanovic , E. , Hockaday , L.A. , and Butcher , J.T. ( 2014 ). Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells . Acta Biomater. 10 : 1836 – 1846 . https://doi.org/10.1016/j.actbio.2013.12.005 .
- Vafaei , S. , Tuck , C. , Ashcroft , I. , and Wildman , R. ( 2016 ). Surface microstructuring to modify wettability for 3D printing of nano-filled inks . Chem. Eng. Res. Des. 109 : 414 – 420 . https://doi.org/10.1016/j.cherd.2016.02.004 .
- Mandrycky , C. , Wang , Z. , Kim , K. , and Kim , D.H. ( 2016 ). 3D bioprinting for engineering complex tis-sues . Biotechnol. Adv. 34 : 422 – 434 . https://doi.org/10.1016/j.biotechadv.2015.12.011 .
- Xu , C. , Zhang , M. , Huang , Y. et al. ( 2014 ). Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink . Langmuir 30 : 9130 – 9138 . https://doi.org/10.1021/la501430x .
- Rutz , A.L. , Hyland , K.E. , Jakus , A.E. et al. ( 2015 ). A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels . Adv. Mater. 27 : 1607 – 1614 .
- Williams , D.F. ( 2008 ). On the mechanisms of biocompatibility . Biomaterials 29 : 2941 – 2953 .
- Murphy , S.V. , Skardal , A. , and Atala , A. ( 2013 ). Evaluation of hydrogels for bio-printing applications . J. Biomed. Mater. Res. A 101 : 272 – 284 .
- Ringeisen , B.R. , Kim , H. , Barron , J.A. et al. ( 2004 ). Laser printing of pluripotent embryonal carcinoma cells . Tissue Eng. 10 : 483 – 491 .
- Ananthanarayanan , A. , Narmada , B.C. , Mo , X. et al. ( 2011 ). Purpose-driven biomaterials research in liver-tissue engineering . Trends Biotechnol. 29 : 110 – 118 .
- Hutmacher , D.W. ( 2000 ). Scaffolds in tissue engineering bone and cartilage . Biomaterials 21 : 2529 – 2543 .
- Limpanuphap , S. and Derby , B. ( 2002 ). Manufacture of biomaterials by a novel printing process . J. Mater. Sci. Mater. Med. 13 : 1163 – 1166 .
- Miller , J.S. , Stevens , K.R. , Yang , M.T. et al. ( 2012 ). Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues . Nat. Mater. 11 : 768 – 774 .
- Wade , R.J. , Bassin , E.J. , Rodell , C.B. , and Burdick , J.A. ( 2015 ). Protease degradable electrospun fibrous hydrogels . Nat. Commun. 6 : 6639 .
- Hopp , B. , Smausz , T. , Kresz , N. et al. ( 2005 ). Survival and proliferative ability of various living cell types after laser-induced forward transfer . Tissue Eng. 11 : 1817 – 1823 .
- Zhang , S. , Holmes , T.C. , DiPersio , C. et al. ( 1995 ). Self-complementary oligopeptide matrices support mammalian cell attachment . Biomaterials 16 : 1385 – 1393 .
- Hersel , U. , Dahmen , C. , and Kessler , H. ( 2003 ). RGD modified polymers: biomaterials for stimulated cell adhesion and beyond . Biomaterials 24 : 4385 – 4415 .
- Teixeira , A.I. , Nealey , P.F. , and Murphy , C.J. ( 2004 ). Responses of human keratocytes to micro- and nanostructured substrates . J. Biomed. Mater. Res. A 71 : 369 – 376 .
- Karp , J.M. , Yeh , J. , Eng , G. et al. ( 2007 ). Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells . Lab Chip 7 : 786 – 794 .
- Price , R.L. , Haberstroh , K.M. , and Webster , T.J. ( 2003 ). Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina . Med. Biol. Eng. Comput. 41 : 372 – 375 .
- Sullivan , D.C. , Mirmalek-Sani , S.H. , Deegan , D.B. et al. ( 2012 ). Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system . Biomaterials 33 : 7756 – 7764 .
- Hynes , R.O. and Naba , A. ( 2012 ). Overview of the matrisome–an inventory of extracellular matrix constituents and functions . Cold Spring Harb. Perspect. Biol. 4 : a004903 .
-
Kim , D.
,
Kim , M.
,
Lee , J.
, and
Jang , J.
(
2022
).
Review on multicomponent hydrogel bioinks based on natural biomaterials for bioprinting 3D liver tissues
.
Front. Bioeng. Biotechnol.
14
(
10
):
764682
.
https://doi.org/10.3389/fbioe.2022.764682
.
10.3389/fbioe.2022.764682 Google Scholar
- Lee , K. and Cha , C. ( 2020 ). Advanced polymer-based bioink technology for printing soft biomaterials . Macromol. Res. 28 : 689 – 702 .
- Zarrintaj , P. , Manouchehri , S. , Ahmadi , Z. et al. ( 2018 ). Agarose-based biomaterials for tissue engineering . Carbohydr. Polym. 187 : 66 – 84 .
- Aydin , L. , Kucuk , S. , and Kenar , H. ( 2020 ). A universal self-eroding sacrificial bioink that enables bioprinting at room temperature . Polym. Adv. Technol. 31 : 1634 – 1647 .
- Daly , A.C. , Critchley , S.E. , Rencsok , E.M. , and Kelly , D.J. ( 2016 ). A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage . Biofabrication 8 : 045002 .
- Lee , K.Y. and Mooney , D.J. ( 2012 ). Alginate: properties and biomedical applications . Prog. Polym. Sci. 37 : 106 – 126 .
- Emami , Z. , Ehsani , M. , Zandi , M. , and Foudazi , R. ( 2018 ). Controlling alginate oxidation conditions for making alginate-gelatin hydrogels . Carbohydr. Polym. 198 : 509 – 517 .
- Bouhadir , K.H. , Lee , K.Y. , Alsberg , E. et al. ( 2001 ). Degradation of partially oxidized alginate and its potential application for tissue engineering . Biotechnol. Prog. 17 : 945 – 950 .
- Lee , J. , Hong , J. , Kim , W. , and Kim , G.H. ( 2020 ). Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering . Carbohydr. Polym. 250 : 116914 . [CrossRef] [PubMed].
- Müller , M. , Öztürk , E. , Arlov , Ø. et al. ( 2017 ). Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications . Ann. Biomed. Eng. 45 : 210 – 223 .
- Jia , J. , Richards , D.J. , Pollard , S. et al. ( 2014 ). Engineering alginate as bioink for bioprinting . Acta Biomater. 10 : 4323 – 4331 .
- Rajabi , N. , Rezaei , A. , Kharaziha , M. et al. ( 2021 ). Recent advances on bioprinted gelatin methacrylate-based hydrogels for tissue repair . Tissue Eng.-Part A 27 : 679 – 702 .
- Zhang , L. , Zhang , X. , Li , L. et al. ( 2020 ). Fabrication of photothermally responsive nanocomposite hydrogel through 3D printing . Macromol. Mater. Eng. 305 ( 2 ): 1900718 .
- Lee , A.R.H.A. , Hudson , A.R. , Shiwarski , D.J. et al. ( 2019 ). 3D bioprinting of collagen to rebuild components of the human heart . Science 365 ( 6452 ): 482 – 487 .
-
Jain , T.
,
Baker , H.B.
,
Gipsov , A.
et al. (
2021
).
Impact of cell density on the bioprinting of gelatin methacrylate (GelMA) bioinks
.
Bioprinting
22
:
e00131
.
10.1016/j.bprint.2021.e00131 Google Scholar
- Kim , S.H. , Yeon , Y.K. , Lee , J.M. et al. ( 2018 ). Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing . Nat. Commun. 9 : 1 – 14 .
- Singh , Y.P. , Bandyopadhyay , A. , and Mandal , B.B. ( 2019 ). 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering . ACS Appl. Mater. Interfaces 11 : 33684 – 33696 .
- Samadian , H. , Maleki , H. , Allahyari , Z. , and Jaymand , M. ( 2020 ). Natural polymers-based light-induced hydrogels: promising biomaterials for biomedical applications . Coord. Chem. Rev. 420 : 213432 .
- Vasvani , S. , Kulkarni , P. , and Rawtani , D. ( 2020 ). Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies . Int. J. Biol. Macromol. 151 : 1012 – 1029 .
- Hospodiuk , M. , Dey , M. , Sosnoski , D. , and Ozbolat , I.T. ( 2017 ). The bioink: a comprehensive review on bioprintable materials . Biotechnol. Adv. 35 ( 2 ): 217 – 239 .
- Antich , C. , de Vicente , J. , Jiménez , G. et al. ( 2020 ). Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs . Acta Biomater. 106 : 114 – 123 .
- Kiyotake , E.A. , Douglas , A.W. , Thomas , E.E. et al. ( 2019 ). Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting . Acta Biomater. 95 : 176 – 187 .
- Guvendiren , M. , Molde , J. , Soares , R.M.D. , and Kohn , J. ( 2016 ). Designing biomaterials for 3D printing . ACS Biomater. Sci. Eng. 2 : 1679 – 1693 .
- Ahn , S. , Yoon , H. , Kim , G. et al. ( 2010 ). Designed three-dimensional collagen scaffolds . Tissue Eng. Part C Methods 16 : 813 – 820 .
- Chan , W.W. , Chen , D. , Yeo , L. et al. ( 2020 ). Additive biomanufacturing with collagen inks . Bioengineering 7 : 66 .
- Shi , Y. , Xing , T.L. , Zhang , H.B. et al. ( 2018 ). Tyrosinase-doped bioink for 3D bioprinting of living skin constructs . Biomed. Mater. 13 ( 3 ): 035008 .
- Wang , H.Y. , Zhang , Y.Q. , and Wei , Z.G. ( 2021 ). Characterization of undegraded and degraded silk fibroin and its significant impact on the properties of the resulting silk biomaterials . Int. J. Biol. Macromol. 176 : 578 – 588 .
- Chakraborty , J. and Ghosh , S. ( 2020 ). Cellular proliferation, self-assembly, and modulation of signaling pathways in silk fibroin gelatin-based 3D bioprinted constructs . ACS Appl. Bio Mater. 3 : 8309 – 8320 .
- Wang , Q. , Han , G. , Yan , S. , and Zhang , Q. ( 2019 ). 3D printing of silk fibroin for biomedical applications . Materials 12 : 504 .
- Oliveira , J.M. ( 2020 ). Current and future trends of silk fibroin-based bioinks in 3D printing . J. 3D Print. Med. 4 : 69 – 73 .
- Wei , L. , Wu , S. , Kuss , M. et al. ( 2019 ). 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering . Bioact. Mater. 4 : 256 – 260 .
- Kim , E. , Seok , J.M. , Bae , S.B. et al. ( 2021 ). Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting . Biomacromolecules 22 : 1921 – 1931 .
- Keane , T.J. , Swinehart , I.T. , and Badylak , S.F. ( 2015 ). Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance . Methods 84 : 25 – 34 .
- Pati , F. , Jang , J. , Ha , D.H. et al. ( 2014 ). Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink . Nat. Commun. 5 : 3935 .
- Han , W. , Singh , N.K. , Kim , J.J. et al. ( 2019 ). Directed differential behaviors of multipotent adult stem cells from decellularized tissue/organ extracellular matrix bioinks . Biomaterials 224 : 119496 .
- Shi , L. , Hu , Y. , Ullah , M.W. et al. ( 2019 ). Cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosa for potential applications in skin tissue engineering . Biofabrication 11 : 035023 .
- Kim , J.-Y. , Ahn , G. , Kim , C. et al. ( 2018 ). Synergistic effects of beta tri-calcium phosphate and porcine-derived decellularized bone extracellular matrix in 3D-printed polycaprolactone scaffold on bone regeneration . Macromol. Biosci. 18 : 1800025 .
- Toprakhisar , B. , Nadernezhad , A. , Bakirci , E. et al. ( 2018 ). Development of bioink from decellularized tendon extracellular matrix for 3D bioprinting . Macromol. Biosci. 18 : e1800024 .
- Zhao , F. , Cheng , J. , Sun , M. et al. ( 2020 ). Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing . Biofabrication 12 : 045011 .
- Jang , J. , Park , H.J. , Kim , S.W. et al. ( 2017 ). 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair . Biomaterials 112 : 264 – 274 .
- Veronese , F.M. and Pasut , G. ( 2005 ). PEGylation, successful approach to drug delivery . Drug Discov. Today 10 ( 21 ): 1451 – 1458 .
- Ozbolat , I.T. and Hospodiuk , M. ( 2016 ). Current advances and future perspectives in extrusion-based bioprinting . Biomaterials 76 : 321 – 343 .
- Bakht , S.M. , Pardo , A. , Gómez-Florit , M. et al. ( 2021 ). Engineering next-generation bioinks with nanoparticles: moving from reinforcement fillers to multifunctional nanoelements . J. Mater. Chem. B 9 ( 25 ): 5025 – 5038 .
- Aoki , K. and Saito , N. ( 2020 ). Biodegradable polymers as drug delivery systems for bone regeneration . Pharmaceutics 12 ( 2 ): 95 .
-
Nowicki , M.
,
Zhu , W.
,
Sarkar , K.
et al. (
2020
).
3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink
.
Bioprinting
17
:
e00066
.
10.1016/j.bprint.2019.e00066 Google Scholar
- Izgordu , M.S. , Uzgur , E.I. , Ulag , S. et al. ( 2021 ). Investigation of 3D-printed polycaprolactone-/polyvinylpyrrolidone-based constructs . Cartilage 13 ( 2_suppl ): 626S – 635S .
- Du , X. , Fu , S. , and Zhu , Y. ( 2018 ). 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview . J. Mater. Chem. B 6 ( 27 ): 4397 – 4412 .
- Tamay , D.G. , Usal , T.D. , Alagoz , A.S. et al. ( 2019 ). 3D and 4D printing of polymers for tissue engineering applications . Front. Bioeng. Biotechnol. 7 : 164 .
- Spangenberg , J. , Kilian , D. , Czichy , C. et al. ( 2021 ). Bioprinting of magnetically deformable scaffolds . ACS Biomater. Sci. Eng. 7 ( 2 ): 648 – 662 .
- Gaharwar , A.K. , Peppas , N.A. , and Khademhosseini , A. ( 2014 ). Nanocomposite hydrogels for biomedical applications . Biotechnol. Bioeng. 111 ( 3 ): 441 – 453 .
- Tadic , D. and Epple , M. ( 2004 ). A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone . Biomaterials 25 ( 6 ): 987 – 994 .
- Wang , X. , Schro¨der , H.C. , Wiens , M. et al. ( 2012 ). Bio-silica and bio-polyphosphate: applications in biomedicine (bone formation) . Curr. Opin. Biotechnol. 23 ( 4 ): 570 – 578 .
- Poldervaart , M.T. , Gremmels , H. , Van Deventer , K. et al. ( 2014 ). Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture . J. Control. Release 184 : 58 – 66 .
- Gonzalez-Fernandez , T. , Rathan , S. , Hobbs , C. et al. ( 2019 ). Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues . J. Control. Release 301 : 13 – 27 .
- Deng , Z. , Hu , T. , Lei , Q. et al. ( 2019 ). Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing . Mater. Interfaces 11 ( 7 ): 6796 – 6808 .
- De Sanctis , A. , Mehew , J.D. , Craciun , M.F. , and Russo , S. ( 2018 ). Graphene-based light sensing: fabrication, characterisation, physical properties and performance . Materials 11 ( 9 ): 1762 . https://doi.org/10.3390/ma11091762 .
- Mu , J. , Hou , C. , Wang , H. et al. ( 2015 ). Origami-inspired active graphene-based paper for programmable instant self-folding walking devices . Sci. Adv. 1 ( 10 ): e1500533 .
- Pardo , A. , Pelaz , B. , Gallo , J. et al. ( 2020 ). Synthesis, characterization, and evaluation of superparamagnetic doped ferrites as potential therapeutic nanotools . ACS Nano 32 ( 6 ): 2220 – 2231 .
- Kamdem Tamo , A. , Doench , I. , Walter , L. et al. ( 2021 ). Development of bioinspired functional chitosan/cellulose nanofiber 3D hydrogel constructs by 3D printing for application in the engineering of mechanically demanding tissues . Polymers 13 ( 10 ): 1663 .
- Chen , S.Y. , Cho , Y.C. , Yang , T.S. et al. ( 2021 ). A tailored biomimetic hydrogel as potential bioink to print a cell scaffold for tissue engineering applications: printability and cell viability evaluation . Appl. Sci. 11 ( 2 ): 829 .
- De Santis , R. , Russo , T. , Rau , J.V. et al. ( 2021 ). Design of 3D additively manufactured hybrid structures for cranioplasty . Materials 14 ( 1 ): 181 .
- Chen , Y. , Gong , Y. , Shan , L. et al. ( 2023 ). Research on cartilage 3D printing technology based on SA-GA-HA . Materials 16 ( 15 ): 5312 .
- Kakarla , A.B. , Kong , I. , Kong , C. , and Irving , H. ( 2022 ). Extrusion-based bioprinted boron nitride nanotubes reinforced alginate scaffolds: mechanical, printability and cell viability evaluation . Polymers 14 ( 3 ): 486 .
- Zheng , Z. , Wu , J. , Liu , M. et al. ( 2018 ). 3D bioprinting of self-standing silk-based bioink . Adv. Healthcare Mater. 7 ( 6 ): 1701026 .
-
Khoshnood , N.
and
Zamaniain , A.
(
2020
).
A comprehensive review on scaffold-free bioinks for bioprinting
.
Bioprinting
19
:
e00088
.
10.1016/j.bprint.2020.e00088 Google Scholar
- Xiaorui , L. , Fuyin , Z. , Xudong , W. et al. ( 2023 ). 1Biomaterial inks for extrusion-based 3D bioprinting: Property, classification, modification, and selection . Int. J. Bioprinting 9 ( 2 ): 649 .
- Ooi , H.W. , Mota , C. , Ten Cate , A.T. et al. ( 2018 ). Thiol–Ene alginate hydrogels as versatile bioinks for bioprinting . Biomacromolecules 19 : 3390 – 3400 . https://doi.org/10.1021/acs.biomac.8b00696 .
- Choudhury , D. , Anand , S. , and Naing , M.W. ( 2018 ). The arrival of commercial bioprinters-Towards 3D bioprinting revolution! Int. J. Bioprinting 4 : 139 .
- Emmermacher , J. , Spura , D. , Cziommer , J. et al. ( 2020 ). Engineering considerations on extrusion-based bioprinting: interactions of material behavior, mechanical forces and cells in the printing needle . Biofabrication 12 : 025022 .
- Bedell , M.L. , Torres , A.L. , Hogan , K.J. et al. ( 2022 ). Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting . Biofabrication 14 : 045012 . https://doi.org/10.1088/1758-5090/ac8768 .
- Li , X. , Liu , B. , Pei , B. et al. ( 2020 ). Inkjet bioprinting of biomaterials . Chem. Rev. 120 : 10793 – 10833 .
- Gudapati , H. and Ozbolat , I.T. ( 2020 ). The role of concentration on drop formation and breakup of collagen, fibrinogen, and thrombin solutions during inkjet bioprinting . bioRxiv 36 : 15373 – 15385 . https://doi.org/10.1021/acs.langmuir.0c02926 .
- Dufour , A. , Gallostra , X.B. , O'Keeffe , C. et al. ( 2022 ). Integrating melt electrowriting and inkjet bioprinting for engineering structurally organized articular cartilage . Biomaterials 283 : 121405 . https://doi.org/10.1016/j.biomaterials.2022.121405 .
-
Kumar , H.
and
Kim , K.
(
2020
).
Stereolithography 3D Bioprinting
, vol.
2140
,
93
–
108
.
Germany
:
Springer
; Berlin/Heidelberg.
10.1007/978-1-0716-0520-2_6 Google Scholar
- Lam , T. , Dehne , T. , Krüger , J.P. et al. ( 2019 ). Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue-engineered cartilage . J. Biomed. Mater. Res. Part B Appl. Biomater. 107 : 2649 – 2657 .
- Yang , H. , Yang , K.-H. , Narayan , R.J. , and Ma , S. ( 2021 ). Laser-based bioprinting for multilayer cell patterning in tissue engineering and cancer research . Essays Biochem. 65 : 409 – 416 .
- Sorkio , A. , Koch , L. , Koivusalo , L. et al. ( 2018 ). Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks . Biomaterials 171 : 57 – 71 . https://doi.org/10.1016/j.biomaterials.2018.04.034 .
- Dou , C. , Perez , V. , Qu , J. et al. ( 2021 ). A state-of-the-art review of laser-assisted bioprinting and its future research trends . ChemBioEng Rev. 8 : 517 – 534 . https://doi.org/10.1002/cben.202000037 .
- Pfister , A. , Landers , R. , Laib , A. et al. ( 2004 ). Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing . J. Polym. Sci. Part A Polym. Chem. 42 ( 3 ): 624 – 638 .
- O'Brien , C.M. , Holmes , B. , Faucett , S. , and Zhang , L.G. ( 2014 ). Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration . Tissue Eng. B Rev. 21 ( 1 ): 103 – 114 .
- Chimene , D. , Alge , D.L. , and Gaharwar , A.K. ( 2015 ). Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects . Adv. Mater. 27 ( 45 ): 7261e84 .
- Kang , H.-W. , Lee , S.J. , Ko , I.K. et al. ( 2016 ). A 3D bioprinting system to produce human-scale tissue constructswith structural integrity . Nat. Biotechnol. 34 ( 3 ): 312 .
- Xavier , J.R. , Thakur , T. , Desai , P. et al. ( 2015 ). Bioactive nanoengineered hydrogels for bone tissue engineering: agrowth-factor-free approach . ACS Nano 9 ( 3 ): 3109e18 .
- Hong , S. , Sycks , D. , Chan , H.F. et al. ( 2015 ). 3D printing of highly stretchable and tough hydrogels into complex,cellularized structures . Adv. Mater. 27 ( 27 ): 4035e40 .
- Markstedt , K. , Mantas , A. , Tournier , I. et al. ( 2015 ). 3D bioprinting human chondrocytes with nanocelluloseealginate bioink for cartilage tissue engineering applications . Biomacromolecules 16 ( 5 ): 1489e96 .
- Mannoor , M.S. , Jiang , Z. , James , T. et al. ( 2013 ). 3D printed bionic ears . Nano Lett. 13 ( 6 ): 2634e9 .
- Mosadegh , B. , Xiong , G. , Dunham , S. et al. ( 2015 ). Current progress in 3D printing for cardiovascular tissue engineering . Biomed. Mater. 10 ( 3 ): 034002 .
- Duan , B. , Kapetanovic , E. , Hockaday , L.A. et al. ( 2014 ). Three-dimensional printed trileaflet valve conduits using biologicalhydrogels and human valve interstitial cells . Acta Biomater. 10 ( 5 ): 1836e46 .
- Dolati , F. , Yu , Y. , Zhang , Y. et al. ( 2014 ). In vitro evaluation of carbon-nanotube-reinforced bioprintablevascular conduits . Nanotechnology 25 ( 14 ): 145101 .
- Talelli , M. , Rijcken , C.J. , Lammers , T. et al. ( 2009 ). Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: toward a targeted nanomedicine suitable for image-guided drug delivery . Langmuir 25 ( 4 ): 2060e7 .
- Agung , N.P. , Nadhif , M.H. , Irdam , G.A. , and Mochtar , C.A. ( 2021 ). The role of 3D-printed phantoms and devices for organ-specified appliances in urology . Int. J. Bioprinting 7 : 333 . https://doi.org/10.18063/ijb.v7i2.333 .
- Farhat , W. , Chatelain , F. , Marret , A. et al. ( 2021 ). Trends in 3D bioprinting for esophageal tissue repair and reconstruction . Biomaterials 267 : 120465 .
- Nam , H. , Jeong , H.-J. , Jo , Y. et al. ( 2020 ). Multilayered free-form 3D cell-printed tubular construct with decellularized inner and outer esophageal tissue-derived bioinks . Sci. Rep. 10 : 7255 .
- Hu , H. and Xu , F.-J. ( 2020 ). Rational design and latest advances of polysaccharide-based hydrogels for wound healing . Biomater. Sci. 8 : 2084 – 2101 .
- Cubo , N. , Garcia , M. , del Cañizo , J.F. et al. ( 2016 ). 3D bioprinting of functional human skin: production and in vivo analysis . Biofabrication 9 : 015006 .
- Shafiee , A. , Cavalcanti , A.S. , Saidy , N.T. et al. ( 2021 ). Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy . Biomaterials 268 : 120558 .
- Zhou , F. , Hong , Y. , Liang , R. et al. ( 2020 ). Rapid printing of bio-inspired 3D tissue constructs for skin regeneration . Biomaterials 258 : 120287 .
- Chan , K.M. , Gordon , T. , Zochodne , D.W. , and Power , H.A. ( 2014 ). Improving peripheral nerve regeneration: from molecular mechanisms to potential therapeutic targets . Exp. Neurol. 261 : 826e35 .
- Ahn , H.-S. , Hwang , J.Y. , Kim , M.S. et al. ( 2015 ). Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve . Acta Biomater. 13 : 324e34 .
- Zhu , W. , O'Brien , C. , O'Brien , J.R. et al. ( 2014 ). 3D nano/microfabrication techniques and nanobiomaterials for neuraltissue regeneration . Nanomedicine 9 ( 6 ): 859e75 .
- Ozbolat , I.T. , Peng , W. , and Ozbolat , V. ( 2016 ). Application areas of 3D bioprinting . Drug Discov. Today 21 ( 8 ): 1257 – 1271 .
- Novak , C.M. , Horst , E.N. , Taylor , C.C. et al. ( 2019 ). Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upreg- ulating PLAU in a 3D bioreactor . Biotechnol. Bioeng. 116 ( 11 ): 3084 – 3097 .
- Cui , X. , Li , J. , Hartanto , Y. et al. ( 2020 ). Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks . Adv. Healthc. Mater. 9 : 1901648 .