Cellular Requirements and Preparation for Bioprinting
Shalini Dasgupta
Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
Search for more papers by this authorVriti Sharma
Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
Search for more papers by this authorAnanya Barui
Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
Search for more papers by this authorShalini Dasgupta
Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
Search for more papers by this authorVriti Sharma
Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
Search for more papers by this authorAnanya Barui
Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
Search for more papers by this authorManojit Ghosh
Indian Institute of Engineering Science and Technology (IIEST), Howrah, India
Search for more papers by this authorSummary
3D bioprinting has been an upcoming technique supporting the development of artificial organs in the twenty-first century. While 3D printing has been around for a few decades and has been utilized in construction, robotics, automobile industry etc, bioprinting is a much more specialized niche developed only for healthcare. It comprises of biocompatible material with the physical properties required to maintain fidelity for 3D printed shapes, combined with live cells mixed with the ink and being printed in real time. It involves an extensive understanding of organ dynamics, computational modelling, knowledge of material science and cell biology. Especially, as living cells are now involved in the development of tissue-engineered constructs for organ regeneration. Cell-embedded bioink requires more comprehensive handling and sterile printing parameters with strict limitations upon design, viscosity and pressure in order to prevent tissue damage. In this book chapter, we will discuss the potential of 3D bioprinting for tissue engineering, types of bioink and bioprinters and the different cellular requirements associated with fabrication of a satisfactory 3d printed organ with the requisite features required for growth, differentiation and maturation.
References
- Gu , Z. , Fu , J. , Lin , H. , and He , Y. ( 2020 ). Development of 3D bioprinting: from printing methods to biomedical applications . Asian J. Pharm. Sci. 15 ( 5 ): 529 – 557 .
- Fransen , M.F. , Addario , G. , Bouten , C.V. et al. ( 2021 ). Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques . Essays Biochem. 65 ( 3 ): 587 – 602 .
- Yi , H.G. , Kim , H. , Kwon , J. et al. ( 2021 ). Application of 3D bioprinting in the prevention and the therapy for human diseases . Signal Transduct. Target. Ther. 6 : 177 . https://doi.org/10.1038/s41392-021-00566-8 .
- Jain , P. , Kathuria , H. , and Dubey , N. ( 2022 ). Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models . Biomaterials 287 : 121639 .
- Birla , R.K. and Williams , S.K. ( 2020 ). 3D bioprinting and its potential impact on cardiac failure treatment: an industry perspective . APL Bioeng. 4 ( 1 ): 010903 .
- Agarwal , S. , Saha , S. , Balla , V.K. et al. ( 2020 ). Current developments in 3D bioprinting for tissue and organ regeneration–a review . Front. Mech. Eng. 6 : 589171 .
- He , Y. , Xie , M. , Gao , Q. , and Fu , J. ( 2019 ). Why Choose 3D Bioprinting? Part I: A Brief Introduction of 3D Bioprinting for the Beginners , 221 – 224 . Springer .
- Moldovan , N.I. , Hibino , N. , and Nakayama , K. ( 2017 ). Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting . Tissue Eng. B Rev. 23 ( 3 ): 237 – 244 .
- Gupta , D. and Negi , N.P. ( 2022 ). 3D bioprinting: printing the future and recent advances . Bioprinting 27 : e00211 .
- Tekin , E. , Smith , P.J. , and Schubert , U.S. ( 2008 ). Inkjet printing as a deposition and patterning tool for polymers and inorganic particles . Soft Matter 4 ( 4 ): 703 – 713 .
- Roseti , L. , Cavallo , C. , Desando , G. et al. ( 2018 ). Three-dimensional bioprinting of cartilage by the use of stem cells: a strategy to improve regeneration . Materials 11 ( 9 ): 1749 .
- Mandrycky , C. , Wang , Z. , Kim , K. , and Kim , D.-H. ( 2016 ). 3D bioprinting for engineering complex tissues . Biotechnol. Adv. 34 ( 4 ): 422 – 434 .
- Kwon , H. , Paschos , N.K. , Hu , J.C. , and Athanasiou , K. ( 2016 ). Articular cartilage tissue engineering: the role of signaling molecules . Cell. Mol. Life Sci. 73 : 1173 – 1194 .
- Raveendran , N.T. , Vaquette , C. , Meinert , C. et al. ( 2019 ). Optimization of 3D bioprinting of periodontal ligament cells . Dent. Mater. 35 ( 12 ): 1683 – 1694 .
- Abelseth , E. , Abelseth , L. , De la Vega , L. et al. ( 2018 ). 3D printing of neural tissues derived from human induced pluripotent stem cells using a fibrin-based bioink . ACS Biomater. Sci. Eng. 5 ( 1 ): 234 – 243 .
- Lee , C. , Abelseth , E. , De La Vega , L. , and Willerth , S. ( 2019 ). Bioprinting a novel glioblastoma tumor model using a fibrin-based bioink for drug screening . Mater. Today Chem. 12 : 78 – 84 .
-
Addario , G.
,
Djudjaj , S.
,
Fare , S.
et al. (
2020
).
Microfluidic bioprinting towards a renal in vitro model
.
Bioprinting
20
:
e00108
.
10.1016/j.bprint.2020.e00108 Google Scholar
- Nguyen , D.G. , Funk , J. , Robbins , J.B. et al. ( 2016 ). Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro . PLoS One 11 ( 7 ): e0158674 .
- Xu , T. , Zhao , W. , Zhu , J.-M. et al. ( 2013 ). Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology . Biomaterials 34 ( 1 ): 130 – 139 .
- Chang , C.C. , Boland , E.D. , Williams , S.K. , and Hoying , J.B. ( 2011 ). Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies . J. Biomed. Mater. Res. B Appl. Biomater. 98 ( 1 ): 160 – 170 .
- Vijayavenkataraman , S. , Yan , W.-C. , Lu , W.F. et al. ( 2018 ). 3D bioprinting of tissues and organs for regenerative medicine . Adv. Drug Deliv. Rev. 132 : 296 – 332 .
- Derakhshanfar , S. , Mbeleck , R. , Xu , K. et al. ( 2018 ). 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances . Bioact. Mater. 3 ( 2 ): 144 – 156 .
- Irvine , S.A. and Venkatraman , S.S. ( 2016 ). Bioprinting and differentiation of stem cells . Molecules 21 ( 9 ): 1188 .
- Colosi , C. , Shin , S.R. , Manoharan , V. et al. ( 2016 ). Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink . Adv. Mater. 28 ( 4 ): 677 – 684 .
- Faulkner-Jones , A. , Fyfe , C. , Cornelissen , D.-J. et al. ( 2015 ). Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D . Biofabrication 7 ( 4 ): 044102 .
- Lawlor , K.T. , Vanslambrouck , J.M. , Higgins , J.W. et al. ( 2021 ). Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation . Nat. Mater. 20 ( 2 ): 260 – 271 .
- Norona , L.M. , Nguyen , D.G. , Gerber , D.A. et al. ( 2019 ). Bioprinted liver provides early insight into the role of Kupffer cells in TGF-β1 and methotrexate-induced fibrogenesis . PLoS One 14 ( 1 ): e0208958 .
- Zhou , X. , Nowicki , M. , Sun , H. et al. ( 2020 ). 3D bioprinting-tunable small-diameter blood vessels with biomimetic biphasic cell layers . ACS Appl. Mater. Interfaces 12 ( 41 ): 45904 – 45915 .
- Bour , R. , Sharma , P. , Turner , J. et al. ( 2020 ). Bioprinting on sheet-based scaffolds applied to the creation of implantable tissue-engineered constructs with potentially diverse clinical applications: tissue-Engineered Muscle Repair (TEMR) as a representative testbed . Connect. Tissue Res. 61 ( 2 ): 216 – 228 .
- Kundu , R. , Mahada , P. , Chhirang , B. , and Das , B. ( 2022 ). Cellulose hydrogels: green and sustainable soft biomaterials . Curr. Res. Green Sustainable Chem. 5 : 100252 .
- Yang , Q. , Peng , J. , Xiao , H. et al. ( 2022 ). Polysaccharide hydrogels: functionalization, construction and served as scaffold for tissue engineering . Carbohydr. Polym. 278 : 118952 .
- Guillotin , B. , Souquet , A. , Catros , S. et al. ( 2010 ). Laser assisted bioprinting of engineered tissue with high cell density and microscale organization . Biomaterials 31 ( 28 ): 7250 – 7256 .
- Murphy , S.V. and Atala , A. ( 2014 ). 3D bioprinting of tissues and organs . Nat. Biotechnol. 32 ( 8 ): 773 – 785 .
- Gruene , M. , Deiwick , A. , Koch , L. et al. ( 2011 ). Laser printing of stem cells for biofabrication of scaffold-free autologous grafts . Tissue Eng. Part C Methods 17 ( 1 ): 79 – 87 .
- Hölzl , K. , Lin , S. , Tytgat , L. et al. ( 2016 ). Bioink properties before, during and after 3D bioprinting . Biofabrication 8 ( 3 ): 032002 .
- Ma , X. , Qu , X. , Zhu , W. et al. ( 2016 ). Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting . Proc. Natl. Acad. Sci. 113 ( 8 ): 2206 – 2211 .
- Choudhury , D. , Anand , S. , and Naing , M.W. ( 2018 ). The arrival of commercial bioprinters–towards 3D bioprinting revolution! Inter. J. Bioprinting 4 ( 2 ): 139 .
- Gruene , M. , Pflaum , M. , Deiwick , A. et al. ( 2011 ). Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells . Biofabrication 3 ( 1 ): 015005 .
- Choi , J.S. , Kang , H.-W. , Lee , I.H. et al. ( 2009 ). Development of micro-stereolithography technology using a UV lamp and optical fiber . Int. J. Adv. Manuf. Technol. 41 : 281 – 286 .
- Fatimi , A. , Okoro , O.V. , Podstawczyk , D. et al. ( 2022 ). Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review . Gels 8 ( 3 ): 179 .
- Klak , M. , Bryniarski , T. , Kowalska , P. et al. ( 2020 ). Novel strategies in artificial organ development: what is the future of medicine? Micromachines 11 ( 7 ): 646 .
- Dey , M. and Ozbolat , I.T. ( 2020 ). 3D bioprinting of cells, tissues and organs . Sci. Rep. 10 ( 1 ): 14023 .
- Rutz , A.L. , Lewis , P.L. , and Shah , R.N. ( 2017 ). Toward next-generation bioinks: tuning material properties pre-and post-printing to optimize cell viability . MRS Bull. 42 ( 8 ): 563 – 570 .
- Galante , R. , Pinto , T.J. , Colaco , R. , and Serro , A.P. ( 2018 ). Sterilization of hydrogels for biomedical applications: a review . J. Biomed. Mater. Res. B Appl. Biomater. 106 ( 6 ): 2472 – 2492 .
- Rutala , W. and Weber , D. ( 1999 ). Infection control: the role of disinfection and sterilization . J. Hosp. Infect. 43 : S43 – S55 .
- Lorson , T. , Ruopp , M. , Nadernezhad , A. et al. ( 2020 ). Sterilization methods and their influence on physicochemical properties and bioprinting of alginate as a bioink component . ACS Omega 5 ( 12 ): 6481 – 6486 .
-
Gupta , A.
,
Avci , P.
,
Dai , T.
et al. (
2013
).
Ultraviolet radiation in wound care: sterilization and stimulation
.
Adv. Wound Care
2
(
8
):
422
–
437
.
10.1089/wound.2012.0366 Google Scholar
- Lah , E.F.C. , Musa , R.N.A.R. , and Ming , H.T. ( 2012 ). Effect of germicidal UV-C light (254 nm) on eggs and adult of house dustmites, Dermatophagoides pteronyssinus and Dermatophagoides farinae (Astigmata: Pyroglyhidae) . Asian Pac. J. Trop. Biomed. 2 ( 9 ): 679 – 683 .
- Fakhruddin , K. , Hamzah , M.S.A. , and Razak , S.I.A. editors. ( 2018 ) Effects of extrusion pressure and printing speed of 3D bioprinted construct on the fibroblast cells viability . IOP Conference Series: Materials Science and Engineering, June 25, 2018. Terrengganu, Malaysia : IOP Publishing .
- Mancha Sánchez , E. , Gómez-Blanco , J.C. , López Nieto , E. et al. ( 2020 ). Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior . Front. Bioeng. Biotechnol. 8 : 776 .
- Gagne , F. ( 2014 ). Biochemical Ecotoxicology: Principles and Methods . Elsevier .
- Ning , L. , Guillemot , A. , Zhao , J. et al. ( 2016 ). Influence of flow behavior of alginate–cell suspensions on cell viability and proliferation . Tissue Eng. Part C Methods 22 ( 7 ): 652 – 662 .
- Jin , Y. , Compaan , A. , Bhattacharjee , T. , and Huang , Y. ( 2016 ). Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures . Biofabrication 8 ( 2 ): 025016 .
- Cahall , C.F. , Kaur , A.P. , Davis , K.A. et al. ( 2020 ). Cell death persists in rapid extrusion of lysis-resistant coated cardiac myoblasts . Bioprinting 18 : e00072 .
- Carvalho , A. , Gasperini , L. , Ribeiro , R. et al. ( 2018 ). Control of osmotic pressure to improve cell viability in cell-laden tissue engineering constructs . J. Tissue Eng. Regen. Med. 12 ( 2 ): e1063 – e1067 .
- Mackenzie , C.G. , Mackenzie , J.B. , and Beck , P. ( 1961 ). The effect of pH on growth, protein synthesis, and lipid-rich particles of cultured mammalian cells . J. Cell Biol. 9 ( 1 ): 141 – 156 .
- Hu , J.B. , Tomov , M.L. , Buikema , J.W. et al. ( 2018 ). Cardiovascular tissue bioprinting: physical and chemical processes . Appl. Phys. Rev. 5 ( 4 ): 041106 .
- Diamantides , N. , Wang , L. , Pruiksma , T. et al. ( 2017 ). Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH . Biofabrication 9 ( 3 ): 034102 .
- Lin , D. , Kelly , A.L. , and Miao , S. ( 2022 ). The impact of pH on mechanical properties, storage stability and digestion of alginate-based and soy protein isolate-stabilized emulsion gel beads with encapsulated lycopene . Food Chem. 372 : 131262 .
- Axpe , E. and Oyen , M.L. ( 2016 ). Applications of alginate-based bioinks in 3D bioprinting . Int. J. Mol. Sci. 17 ( 12 ): 1976 .
- Mehrban , N. , Teoh , G.Z. , and Birchall , M.A. ( 2016 ). 3D bioprinting for tissue engineering: stem cells in hydrogels . Inter. J. Bioprinting 2 ( 1 ): 214 .
- Lee , K.Y. and Mooney , D.J. ( 2001 ). Hydrogels for tissue engineering . Chem. Rev. 101 ( 7 ): 1869 – 1880 .
-
Jin , R.
and
Dijkstra , P.J.
(
2010
).
Hydrogels for tissue engineering applications
. In:
Biomedical Applications of Hydrogels Handbook
(ed.
R.M. Ottenbrite
and
T. Okano
),
203
–
225
.
Springer
.
10.1007/978-1-4419-5919-5_11 Google Scholar
- Lee , S.C. , Gillispie , G. , Prim , P. , and Lee , S.J. ( 2020 ). Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks . Chem. Rev. 120 ( 19 ): 10834 – 10886 .
- Dzobo , K. , Motaung , K.S.C.M. , and Adesida , A. ( 2019 ). Recent trends in decellularized extracellular matrix bioinks for 3D printing: an updated review . Int. J. Mol. Sci. 20 ( 18 ): 4628 .
- Naghieh , S. and Chen , X. ( 2021 ). Printability–a key issue in extrusion-based bioprinting . J. Pharm. Anal. 11 ( 5 ): 564 – 579 .
- Jang , J. , Park , J.Y. , Gao , G. , and Cho , D.-W. ( 2018 ). Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics . Biomaterials 156 : 88 – 106 .
- Atanase , L.I. ( 2021 ). Micellar drug delivery systems based on natural biopolymers . Polymers 13 ( 3 ): 477 .
- Bajaj , P. , Schweller , R.M. , Khademhosseini , A. et al. ( 2014 ). 3D biofabrication strategies for tissue engineering and regenerative medicine . Annu. Rev. Biomed. Eng. 16 : 247 – 276 .
- Derby , B. ( 2012 ). Printing and prototyping of tissues and scaffolds . Science 338 ( 6109 ): 921 – 926 .
- Toh , W.S. and Loh , X.J. ( 2014 ). Advances in hydrogel delivery systems for tissue regeneration . Mater. Sci. Eng. C 45 : 690 – 697 .
- Samadian , H. , Maleki , H. , Allahyari , Z. , and Jaymand , M. ( 2020 ). Natural polymers-based light-induced hydrogels: promising biomaterials for biomedical applications . Coord. Chem. Rev. 420 : 213432 .
- Vasvani , S. , Kulkarni , P. , and Rawtani , D. ( 2020 ). Hyaluronic acid: a review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies . Int. J. Biol. Macromol. 151 : 1012 – 1029 .
- Hospodiuk , M. , Dey , M. , Sosnoski , D. , and Ozbolat , I.T. ( 2017 ). The bioink: a comprehensive review on bioprintable materials . Biotechnol. Adv. 35 ( 2 ): 217 – 239 .
- Kiyotake , E.A. , Douglas , A.W. , Thomas , E.E. et al. ( 2019 ). Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting . Acta Biomater. 95 : 176 – 187 .
- Ahn , S. , Yoon , H. , Kim , G. et al. ( 2010 ). Designed three-dimensional collagen scaffolds for skin tissue regeneration . Tissue Eng. Part C Methods 16 ( 5 ): 813 – 820 .
- Osidak , E.O. , Kozhukhov , V.I. , Osidak , M.S. , and Domogatsky , S.P. ( 2020 ). Collagen as bioink for bioprinting: a comprehensive review . Int. J. Bioprinting 6 ( 3 ): 1137 .
- Shim , J.-H. , Kim , J.Y. , Park , M. et al. ( 2011 ). Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology . Biofabrication 3 ( 3 ): 034102 .
- Park , J.Y. , Choi , J.-C. , Shim , J.-H. et al. ( 2014 ). A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting . Biofabrication 6 ( 3 ): 035004 .
- Yeo , M. , Lee , J.-S. , Chun , W. , and Kim , G.H. ( 2016 ). An innovative collagen-based cell-printing method for obtaining human adipose stem cell-laden structures consisting of core–sheath structures for tissue engineering . Biomacromolecules 17 ( 4 ): 1365 – 1375 .
-
Shah , P.P.
,
Shah , H.B.
,
Maniar , K.K.
, and
Özel , T.
(
2020
).
Extrusion-based 3D bioprinting of alginate-based tissue constructs
.
Procedia CIRP
95
:
143
–
148
.
10.1016/j.procir.2020.06.007 Google Scholar
- Benwood , C. , Chrenek , J. , Kirsch , R.L. et al. ( 2021 ). Natural biomaterials and their use as bioinks for printing tissues . Bioengineering 8 ( 2 ): 27 .
- Perez-Valle , A. , Del Amo , C. , and Andia , I. ( 2020 ). Overview of current advances in extrusion bioprinting for skin applications . Int. J. Mol. Sci. 21 ( 18 ): 6679 .
- Kim , S.H. , Yeon , Y.K. , Lee , J.M. et al. ( 2018 ). Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing . Nat. Commun. 9 ( 1 ): 1620 .
- Singh , Y.P. , Bandyopadhyay , A. , and Mandal , B.B. ( 2019 ). 3D bioprinting using cross-linker-free silk–gelatin bioink for cartilage tissue engineering . ACS Appl. Mater. Interfaces 11 ( 37 ): 33684 – 33696 .
- Lima , T.P. , Canelas , C.A.A. , Concha , V.O. et al. ( 2022 ). 3D bioprinting technology and hydrogels used in the process . J. Funct. Biomater. 13 ( 4 ): 214 .
- Gopinathan , J. and Noh , I. ( 2018 ). Recent trends in bioinks for 3D printing . Biomater. Res. 22 : 1 – 15 .
- Fan , R. , Piou , M. , Darling , E. et al. ( 2016 ). Bio-printing cell-laden Matrigel–agarose constructs . J. Biomater. Appl. 31 ( 5 ): 684 – 692 .
- López-Marcial , G.R. , Zeng , A.Y. , Osuna , C. et al. ( 2018 ). Agarose-based hydrogels as suitable bioprinting materials for tissue engineering . ACS Biomater. Sci. Eng. 4 ( 10 ): 3610 – 3616 .
- Malikmammadov , E. , Tanir , T.E. , Kiziltay , A. et al. ( 2018 ). PCL and PCL-based materials in biomedical applications . J. Biomater. Sci. Polym. Ed. 29 ( 7–9 ): 863 – 893 .
- Jovic , T.H. , Kungwengwe , G. , Mills , A.C. , and Whitaker , I.S. ( 2019 ). Plant-derived biomaterials: a review of 3D bioprinting and biomedical applications . Front. Mech. Eng. 5 : 19 .
-
Mobaraki , M.
,
Ghaffari , M.
,
Yazdanpanah , A.
et al. (
2020
).
Bioinks and bioprinting: a focused review
.
Bioprinting
18
:
e00080
.
10.1016/j.bprint.2020.e00080 Google Scholar
- Gungor-Ozkerim , P.S. , Inci , I. , Zhang , Y.S. et al. ( 2018 ). Bioinks for 3D bioprinting: an overview . Biomater. Sci. 6 ( 5 ): 915 – 946 .
- Ching , S.H. , Bansal , N. , and Bhandari , B. ( 2017 ). Alginate gel particles–a review of production techniques and physical properties . Crit. Rev. Food Sci. Nutr. 57 ( 6 ): 1133 – 1152 .
- Lee , J. , Hong , J. , Kim , W. , and Kim , G.H. ( 2020 ). Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering . Carbohydr. Polym. 250 : 116914 .
-
Wu , Y.
,
Lin , Z.Y.W.
,
Wenger , A.C.
et al. (
2018
).
3D bioprinting of liver-mimetic construct with alginate/cellulose nanocrystal hybrid bioink
.
Bioprinting
9
:
1
–
6
.
10.1016/j.bprint.2017.12.001 Google Scholar
- Ehrbar , M. , Rizzi , S.C. , Hlushchuk , R. et al. ( 2007 ). Enzymatic formation of modular cell-instructive fibrin analogs for tissue engineering . Biomaterials 28 ( 26 ): 3856 – 3866 .
- Janmey , P.A. , Winer , J.P. , and Weisel , J.W. ( 2009 ). Fibrin gels and their clinical and bioengineering applications . J. R. Soc. Interface 6 ( 30 ): 1 – 10 .
- Xu , F. , Dawson , C. , Lamb , M. et al. ( 2022 ). Hydrogels for tissue engineering: addressing key design needs toward clinical translation . Front. Bioeng. Biotechnol. 10 : 849831 .
- Piard , C. , Baker , H. , Kamalitdinov , T. , and Fisher , J. ( 2019 ). Bioprinted osteon-like scaffolds enhance in vivo neovascularization . Biofabrication 11 ( 2 ): 025013 . https://doi.org/10.1088/1758-5090/ab078a . PMID: 30769337; PMCID: PMC7195919.
- Khoeini , R. , Nosrati , H. , Akbarzadeh , A. et al. ( 2021 ). Natural and synthetic bioinks for 3D bioprinting . Adv. NanoBiomed Res. 1 ( 8 ): 2000097 .
- Islam , M. , Shahruzzaman , M. , Biswas , S. et al. ( 2020 ). Chitosan based bioactive materials in tissue engineering applications–a review . Bioact. Mater. 5 ( 1 ): 164 – 183 .
- Nicodemus , G.D. and Bryant , S.J. ( 2008 ). Cell encapsulation in biodegradable hydrogels for tissue engineering applications . Tissue Eng. B Rev. 14 ( 2 ): 149 – 165 .
- Einbu , A. , Grasdalen , H. , and Vårum , K.M. ( 2007 ). Kinetics of hydrolysis of chitin/chitosan oligomers in concentrated hydrochloric acid . Carbohydr. Res. 342 ( 8 ): 1055 – 1062 .
- Wang , L. and Stegemann , J.P. ( 2010 ). Thermogelling chitosan and collagen composite hydrogels initiated with β-glycerophosphate for bone tissue engineering . Biomaterials 31 ( 14 ): 3976 – 3985 .
-
Choi , J.H.
,
Kim , D.K.
,
Song , J.E.
et al. (
2018
).
Silk fibroin-based scaffold for bone tissue engineering
. In:
Novel Biomaterials for Regenerative Medicine
(ed.
Wim E. Crusio
,
Haidong Dong
,
Heinfried H. Radeke
,
Nima Rezaei
,
Ortrud Steinlein
, and
Junjie Xiao
),
371
–
387
.
Springer
.
10.1007/978-981-13-0947-2_20 Google Scholar
- Reddy , M.S.B. , Ponnamma , D. , Choudhary , R. , and Sadasivuni , K.K. ( 2021 ). A comparative review of natural and synthetic biopolymer composite scaffolds . Polymers 13 ( 7 ): 1105 .
- Yang , P. , Ju , Y. , Hu , Y. et al. ( 2023 ). Emerging 3D bioprinting applications in plastic surgery . Biomater. Res. 27 ( 1 ): 1 – 27 .
- Choi , Y.-J. , Park , H. , Ha , D.-H. et al. ( 2021 ). 3D bioprinting of in vitro models using hydrogel-based bioinks . Polymers 13 ( 3 ): 366 .
-
Shan Wong , Y.
,
Yong Tay , C.
,
Wen , F.
et al. (
2012
).
Engineered polymeric biomaterials for tissue engineering
.
Curr. Tissue Eng.
1
(
1
):
41
–
53
.
10.2174/2211542011201010041 Google Scholar
- Rahimi , A. and Mashak , A. ( 2013 ). Review on rubbers in medicine: natural, silicone and polyurethane rubbers . Plast., Rubber Compos. 42 ( 6 ): 223 – 230 .
- Lambert , J.M. ( 2006 ). The nature of platinum in silicones for biomedical and healthcare use . J. Biomed. Mater. Res. Part B: Appl. Biomater. 78 ( 1 ): 167 – 180 .
- Yang , X. , Chen , Q. , Bao , H. et al. ( 2018 ). Preparation and performance of ultraviolet curable silicone resins used for ultraviolet cured coating and ultraviolet-assisted 3D printing materials . OSA Continuum 1 ( 2 ): 542 – 552 .
- Xiang , H. , Wang , X. , Ou , Z. et al. ( 2019 ). UV-curable, 3D printable and biocompatible silicone elastomers . Prog. Org. Coat. 137 : 105372 .
- Aoki , K. and Saito , N. ( 2020 ). Biodegradable polymers as drug delivery systems for bone regeneration . Pharmaceutics 12 ( 2 ): 95 .
-
Nowicki , M.
,
Zhu , W.
,
Sarkar , K.
et al. (
2020
).
3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink
.
Bioprinting
17
:
e00066
.
10.1016/j.bprint.2019.e00066 Google Scholar
- Cheng , Y. , Yang , H. , Yang , Y. et al. ( 2018 ). Progress in TiO2 nanotube coatings for biomedical applications: a review . J. Mater. Chem. B 6 ( 13 ): 1862 – 1886 .
- Kolan , K.C. , Semon , J.A. , Bromet , B. et al. ( 2019 ). Bioprinting with human stem cell-laden alginate-gelatin bioink and bioactive glass for tissue engineering . Inter. J. Bioprinting 5 ( 2.2 ): 204 .
- Magin , C.M. , Alge , D.L. , and Anseth , K.S. ( 2016 ). Bio-inspired 3D microenvironments: a new dimension in tissue engineering . Biomed. Mater. 11 ( 2 ): 022001 .
- Shie , M.-Y. , Chang , W.-C. , Wei , L.-J. et al. ( 2017 ). 3D printing of cytocompatible water-based light-cured polyurethane with hyaluronic acid for cartilage tissue engineering applications . Materials 10 ( 2 ): 136 .
- Hung , K.C. , Tseng , C.S. , and Hsu , S. ( 2014 ). Synthesis and 3D printing of biodegradable polyurethane elastomer by a water-based process for cartilage tissue engineering applications . Adv. Healthcare Mater. 3 ( 10 ): 1578 – 1587 .
- Merceron , T.K. , Burt , M. , Seol , Y.-J. et al. ( 2015 ). A 3D bioprinted complex structure for engineering the muscle–tendon unit . Biofabrication 7 ( 3 ): 035003 .
- Garlotta , D. ( 2001 ). A literature review of poly (lactic acid) . J. Polym. Environ. 9 : 63 – 84 .
- Serra , T. , Mateos-Timoneda , M.A. , Planell , J.A. , and Navarro , M. ( 2013 ). 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine . Organogenesis 9 ( 4 ): 239 – 244 .
- Guvendiren , M. , Molde , J. , Soares , R.M. , and Kohn , J. ( 2016 ). Designing biomaterials for 3D printing . ACS Biomater. Sci. Eng. 2 ( 10 ): 1679 – 1693 .
- Asti , A. and Gioglio , L. ( 2014 ). Natural and synthetic biodegradable polymers: different scaffolds for cell expansion and tissue formation . Int. J. Artif. Organs 37 ( 3 ): 187 – 205 .
- Serra , T. , Planell , J.A. , and Navarro , M. ( 2013 ). High-resolution PLA-based composite scaffolds via 3-D printing technology . Acta Biomater. 9 ( 3 ): 5521 – 5530 .
- Schmedlen , R.H. , Masters , K.S. , and West , J.L. ( 2002 ). Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering . Biomaterials 23 ( 22 ): 4325 – 4332 .
- Wu , Z. , Kong , B. , Liu , R. et al. ( 2018 ). Engineering of corneal tissue through an aligned PVA/collagen composite nanofibrous electrospun scaffold . Nanomaterials 8 ( 2 ): 124 .
- Lim , K.S. , Alves , M.H. , Poole-Warren , L.A. , and Martens , P.J. ( 2013 ). Covalent incorporation of non-chemically modified gelatin into degradable PVA-tyramine hydrogels . Biomaterials 34 ( 29 ): 7097 – 7105 .
- Li , J. , Chen , M. , Fan , X. , and Zhou , H. ( 2016 ). Recent advances in bioprinting techniques: approaches, applications and future prospects . J. Transl. Med. 14 ( 1 ): 1 – 15 .
- Roth , E.A. , Xu , T. , Das , M. et al. ( 2004 ). Inkjet printing for high-throughput cell patterning . Biomaterials 25 ( 17 ): 3707 – 3715 .
- Ribeiro , A. , Blokzijl , M.M. , Levato , R. et al. ( 2017 ). Assessing bioink shape fidelity to aid material development in 3D bioprinting . Biofabrication 10 ( 1 ): 014102 .
- Ning , L. , Sun , H. , Lelong , T. et al. ( 2018 ). 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications . Biofabrication 10 ( 3 ): 035014 .
- Paxton , N. , Smolan , W. , Böck , T. et al. ( 2017 ). Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability . Biofabrication 9 ( 4 ): 044107 .
- Ning , L. , Zhu , N. , Mohabatpour , F. et al. ( 2019 ). Bioprinting Schwann cell-laden scaffolds from low-viscosity hydrogel compositions . J. Mater. Chem. B 7 ( 29 ): 4538 – 4551 .
- Mouser , V.H. , Melchels , F.P. , Visser , J. et al. ( 2016 ). Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting . Biofabrication 8 ( 3 ): 035003 .
- Rutz , A.L. , Hyland , K.E. , Jakus , A.E. et al. ( 2015 ). A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels . Adv. Mater. 27 ( 9 ): 1607 – 1614 .
- Blaeser , A. , Duarte Campos , D.F. , Puster , U. et al. ( 2016 ). Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity . Adv. Healthcare Mater. 5 ( 3 ): 326 – 333 .
- Forget , A. , Blaeser , A. , Miessmer , F. et al. ( 2017 ). Mechanically tunable bioink for 3D bioprinting of human cells . Adv. Healthcare Mater. 6 ( 20 ): 1700255 .
- Piedra-Cascón , W. , Krishnamurthy , V.R. , Att , W. , and Revilla-León , M. ( 2021 ). 3D printing parameters, supporting structures, slicing, and post-processing procedures of vat-polymerization additive manufacturing technologies: a narrative review . J. Dent. 109 : 103630 .
- Chaudhuri , O. ( 2017 ). Viscoelastic hydrogels for 3D cell culture . Biomater. Sci. 5 ( 8 ): 1480 – 1490 .
- Schwab , A. , Levato , R. , D'Este , M. et al. ( 2020 ). Printability and shape fidelity of bioinks in 3D bioprinting . Chem. Rev. 120 ( 19 ): 11028 – 11055 .
- Bishop , E.S. , Mostafa , S. , Pakvasa , M. et al. ( 2017 ). 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends . Genes Dis. 4 ( 4 ): 185 – 195 .
- Kourouklis , A.P. , Wahlsten , A. , Stracuzzi , A. et al. ( 2023 ). Control of hydrostatic pressure and osmotic stress in 3D cell culture for mechanobiological studies . Biomater. Adv. 145 : 213241 .
- Shin , J. , Lee , Y. , Li , Z. et al. ( 2022 ). Optimized 3D bioprinting technology based on machine learning: a review of recent trends and advances . Micromachines 13 : 363 . https://doi.org/10.3390/mi13030363 .
- Chimene , D. , Lennox , K.K. , Kaunas , R.R. , and Gaharwar , A.K. ( 2016 ). Advanced bioinks for 3D printing: a materials science perspective . Ann. Biomed. Eng. 44 : 2090 – 2102 .
- Slaughter , B.V. , Khurshid , S.S. , Fisher , O.Z. et al. ( 2009 ). Hydrogels in regenerative medicine . Adv. Mater. 21 ( 32–33 ): 3307 – 3329 .
- Lane , S.W. , Williams , D.A. , and Watt , F.M. ( 2014 ). Modulating the stem cell niche for tissue regeneration . Nat. Biotechnol. 32 ( 8 ): 795 – 803 .
- Prowse , A.B. , Chong , F. , Gray , P.P. , and Munro , T.P. ( 2011 ). Stem cell integrins: implications for ex-vivo culture and cellular therapies . Stem Cell Res. 6 ( 1 ): 1 – 12 .
- Gao , G. , Schilling , A.F. , Hubbell , K. et al. ( 2015 ). Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in PEG-GelMA . Biotechnol. Lett. 37 : 2349 – 2355 .
- Huebsch , N. , Arany , P.R. , Mao , A.S. et al. ( 2010 ). Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate . Nat. Mater. 9 ( 6 ): 518 – 526 .
- Engler , A.J. , Sen , S. , Sweeney , H.L. , and Discher , D.E. ( 2006 ). Matrix elasticity directs stem cell lineage specification . Cell 126 ( 4 ): 677 – 689 .
- Engler , A. , Sweeney , H. , Discher , D. , and Schwarzbauer , J.E. ( 2007 ). Extracellular matrix elasticity directs stem cell differentiation . J. Musculoskelet. Nueronal Interact. 7 ( 4 ): 335 .
- Shav , D. and Einav , S. ( 2010 ). The effect of mechanical loads in the differentiation of precursor cells into mature cells . Ann. N. Y. Acad. Sci. 1188 ( 1 ): 25 – 31 .
- Stolberg , S. and McCloskey , K.E. ( 2009 ). Can shear stress direct stem cell fate? Biotechnol. Prog. 25 ( 1 ): 10 – 19 .
- Lopez , J. , Mouw , J. , and Weaver , V. ( 2008 ). Biomechanical regulation of cell orientation and fate . Oncogene 27 ( 55 ): 6981 – 6993 .
- Belgodere , J.A. , King , C.T. , Bursavich , J.B. et al. ( 2018 ). Engineering breast cancer microenvironments and 3D bioprinting . Front. Bioeng. Biotechnol. 6 : 66 .
-
Vanaei , S.
,
Parizi , M.
,
Salemizadehparizi , F.
, and
Vanaei , H.
(
2021
).
An overview on materials and techniques in 3D bioprinting toward biomedical application
.
Eng. Regener.
2
:
1
–
18
.
10.1016/j.engreg.2020.12.001 Google Scholar
- Tripathi , S. , Mandal , S.S. , Bauri , S. , and Maiti , P. ( 2023 ). 3D bioprinting and its innovative approach for biomedical applications . MedComm. 4 ( 1 ): e194 .
- Han , Y. , Li , X. , Zhang , Y. et al. ( 2019 ). Mesenchymal stem cells for regenerative medicine . Cells 8 ( 8 ): 886 .
- Ullah , I. , Subbarao , R.B. , and Rho , G.J. ( 2015 ). Human mesenchymal stem cells-current trends and future prospective . Biosci. Rep. 35 ( 2 ): e00191 .
- Köpf , M. , Nasehi , R. , Kreimendahl , F. et al. ( 2022 ). Bioprinting-associated shear stress and hydrostatic pressure affect the angiogenic potential of human umbilical vein endothelial cells . Int. J. Bioprinting 8 ( 4 ): 606 .
- Choi , J.H. , Gimble , J.M. , Lee , K. et al. ( 2010 ). Adipose tissue engineering for soft tissue regeneration . Tissue Eng. B Rev. 16 ( 4 ): 413 – 426 .
- Maan , Z. , Masri , N.Z. , and Willerth , S.M. ( 2022 ). Smart bioinks for the printing of human tissue models . Biomolecules 12 ( 1 ): 141 .
- Kim , J. , Choi , H.S. , Kim , Y.M. , and Song , S.C. ( 2023 ). Thermo-responsive nanocomposite bioink with growth-factor holding and its application to bone regeneration . Small 19 ( 9 ): 2203464 .
- Firipis , K. , Nisbet , D.R. , Franks , S.J. et al. ( 2021 ). Enhancing peptide biomaterials for biofabrication . Polymers 13 ( 16 ): 2590 .
- Chen , P. , Zheng , L. , Wang , Y. et al. ( 2019 ). Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration . Theranostics 9 ( 9 ): 2439 .
-
Dobres , S.
,
Mula , G.
,
Sauer , J.
, and
Zhu , D.
(
2022
).
Applications of 3D printed chimeric DNA biomaterials
.
Eng. Regener.
3
(
1
):
13
–
23
.
10.1016/j.engreg.2022.02.001 Google Scholar
- Pan , T. , Song , W. , Xin , H. et al. ( 2022 ). MicroRNA-activated hydrogel scaffold generated by 3D printing accelerates bone regeneration . Bioact. Mater. 10 : 1 – 14 .
- Liu , F. , Chen , Q. , Liu , C. et al. ( 2018 ). Natural polymers for organ 3D bioprinting . Polymers 10 ( 11 ): 1278 .
- Kumar , S. ( 2021 ). Synthetic polymer-derived single-network inks/bioinks for extrusion-based 3D printing towards bioapplications . Mater. Adv. 2 ( 21 ): 6928 – 6941 .
- Kajave , N.S. , Schmitt , T. , Nguyen , T.-U. et al. ( 2021 ). Bioglass incorporated methacrylated collagen bioactive ink for 3D printing of bone tissue . Biomed. Mater. 16 ( 3 ): 035003 .
- Kim , W. and Kim , G. ( 2019 ). Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration . Biofabrication 12 ( 1 ): 015007 .
- Levato , R. , Visser , J. , Planell , J.A. et al. ( 2014 ). Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers . Biofabrication 6 ( 3 ): 035020 .
- Gu , Y. , Forget , A. , and Shastri , V.P. ( 2022 ). Biobridge: an outlook on translational bioinks for 3D bioprinting . Adv. Sci. 9 ( 3 ): 2103469 .
- Zhang , T. , Zhao , W. , Xiahou , Z. et al. ( 2021 ). Bioink design for extrusion-based bioprinting . Appl. Mater. Today 25 : 101227 .
- Zhang , Z. , Xu , C. , Xiong , R. et al. ( 2017 ). Effects of living cells on the bioink printability during laser printing . Biomicrofluidics 11 ( 3 ): 034120 .
- Reina-Romo , E. , Mandal , S. , Amorim , P. et al. ( 2021 ). Towards the experimentally-informed in silico nozzle design optimization for extrusion-based bioprinting of shear-thinning hydrogels . Front. Bioeng. Biotechnol. 9 : 701778 .
-
Wang , Q.
,
Backman , O.
,
Nuopponen , M.
et al. (
2021
).
Rheological and printability assessments on biomaterial inks of nanocellulose/photo-crosslinkable biopolymer in light-aided 3D printing
.
Front. Chem. Eng.
3
:
723429
.
10.3389/fceng.2021.723429 Google Scholar
- Ashammakhi , N. , Ahadian , S. , Xu , C. et al. ( 2019 ). Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs . Mater. Today Bio 1 : 100008 .
- Chen , Y. , Ju , L. , Rushdi , M. et al. ( 2017 ). Receptor-mediated cell mechanosensing . Mol. Biol. Cell 28 ( 23 ): 3134 – 3155 .
- Langenbach , F. and Handschel , J. ( 2013 ). Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro . Stem Cell Res. Ther. 4 ( 5 ): 1 – 7 .
- Zhou , G.-S. , Zhang , X.-L. , Wu , J.-P. et al. ( 2009 ). 5-Azacytidine facilitates osteogenic gene expression and differentiation of mesenchymal stem cells by alteration in DNA methylation . Cytotechnology 60 : 11 – 22 .
- Tharakan , S. , Khondkar , S. , and Ilyas , A. ( 2021 ). Bioprinting of stem cells in multimaterial scaffolds and their applications in bone tissue engineering . Sensors 21 ( 22 ): 7477 .
- Chen , E.P. , Toksoy , Z. , Davis , B.A. , and Geibel , J.P. ( 2021 ). 3D bioprinting of vascularized tissues for in vitro and in vivo applications . Front. Bioeng. Biotechnol. 9 : 664188 .
- Goverdhana , S. , Puntel , M. , Xiong , W. et al. ( 2005 ). Regulatable gene expression systems for gene therapy applications: progress and future challenges . Mol. Ther. 12 ( 2 ): 189 – 211 .
- Pan , X. , Veroniaina , H. , Su , N. et al. ( 2021 ). Applications and developments of gene therapy drug delivery systems for genetic diseases . Asian J. Pharm. Sci. 16 ( 6 ): 687 – 703 .
- Paolini , A. , Leoni , L. , Giannicchi , I. et al. ( 2018 ). MicroRNAs delivery into human cells grown on 3D-printed PLA scaffolds coated with a novel fluorescent PAMAM dendrimer for biomedical applications . Sci. Rep. 8 ( 1 ): 1 – 11 .
- Shende , P. and Trivedi , R. ( 2021 ). 3D printed bioconstructs: regenerative modulation for genetic expression . Stem Cell Rev. Rep. 14 : 1 – 12 .
- Walker , C. , Mojares , E. , and del Río , H.A. ( 2018 ). Role of extracellular matrix in development and cancer progression . Int. J. Mol. Sci. 19 ( 10 ): 3028 .
- Lamhamedi-Cherradi , S.-E. , Santoro , M. , Ramammoorthy , V. et al. ( 2014 ). 3D tissue-engineered model of Ewing's sarcoma . Adv. Drug Deliv. Rev. 79 : 155 – 171 .
- Arif , Z.U. , Khalid , M.Y. , Zolfagharian , A. , and Bodaghi , M. ( 2022 ). 4D bioprinting of smart polymers for biomedical applications: recent progress, challenges, and future perspectives . React. Funct. Polym. 179 : 105374 .
- Datta , P. , Dey , M. , Ataie , Z. et al. ( 2020 ). 3D bioprinting for reconstituting the cancer microenvironment . npj Precis. Oncol. 4 ( 1 ): 18 .
- Liu , Q. , Zhang , H. , Jiang , X. et al. ( 2017 ). Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis . Mol. Cancer 16 : 1 – 19 .
- Winkler , J. , Abisoye-Ogunniyan , A. , Metcalf , K.J. , and Werb , Z. ( 2020 ). Concepts of extracellular matrix remodelling in tumour progression and metastasis . Nat. Commun. 11 ( 1 ): 5120 .
- Jung , M. , Skhinas , J.N. , Du , E.Y. et al. ( 2022 ). A high-throughput 3D bioprinted cancer cell migration and invasion model with versatile and broad biological applicability . Biomater. Sci. 10 ( 20 ): 5876 – 5887 .
- Horder , H. , Guaza Lasheras , M. , Grummel , N. et al. ( 2021 ). Bioprinting and differentiation of adipose-derived stromal cell spheroids for a 3D breast cancer-adipose tissue model . Cells 10 ( 4 ): 803 .
- Germain , N. , Dhayer , M. , Dekiouk , S. , and Marchetti , P. ( 2022 ). Current advances in 3D bioprinting for cancer modeling and personalized medicine . Int. J. Mol. Sci. 23 ( 7 ): 3432 .
- Zervantonakis , I.K. , Hughes-Alford , S.K. , Charest , J.L. et al. ( 2012 ). Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function . Proc. Natl. Acad. Sci. 109 ( 34 ): 13515 – 13520 .
- Suzuka , J. , Tsuda , M. , Wang , L. et al. ( 2021 ). Rapid reprogramming of tumour cells into cancer stem cells on double-network hydrogels . Nat. Biomed. Eng. 5 ( 8 ): 914 – 925 .
- Samadian , H. , Jafari , S. , Sepand , M. et al. ( 2021 ). 3D bioprinting technology to mimic the tumor microenvironment: tumor-on-a-chip concept . Mater. Today Adv. 12 : 100160 .