An Overview on Established and Emerging Biogas Upgradation Systems for Improving Biomethane Quality
Tinku Casper D'Silva
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorAdya Isha
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorSubodh Kumar
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorSameer Ahmad Khan
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorDushyant Kumar
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorRam Chandra
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorVirendra Kumar Vijay
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorTinku Casper D'Silva
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorAdya Isha
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorSubodh Kumar
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorSameer Ahmad Khan
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorDushyant Kumar
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorRam Chandra
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorVirendra Kumar Vijay
Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
Search for more papers by this authorLalit Prasad
Search for more papers by this authorSubhalaxmi Pradhan
Search for more papers by this authorSummary
Biogas polishing succeeding its production has become a mandate to achieve fuel quality equivalent to conventional fuels. Various physical and chemical biogas upgradation systems have been developed over the past few decades and are available commercially. However, the available technologies have their limitations with respect to the resource, costs, and energy requirements. Recently, newer methane enrichment technologies based on biological processes have emerged. The research development over these techniques has flourished because of their cost-effectiveness and energy-efficient characteristics. Thus, the biological biogas upgradation systems are expected to be developed soon, which is still under laboratory investigation. This chapter focuses on the principles of upgradation of biogas by applying the trending microbial methane enrichment, bio-electrochemical, and algal-based photosynthetic upgradation systems.
References
- A. Isha , T. C. D'Silva , P. M. V. Subbarao , R. Chandra , and V. K. Vijay , “ Stabilization of anaerobic digestion of kitchen wastes using protein-rich additives: Study of process performance, kinetic modelling and energy balance ,” Bioresour. Technol. , vol. 337 , p. 125331 , May 2021 , doi: 10.1016/j.biortech.2021.125331 .
- R. Kadam and N. L. Panwar , “ Recent advancement in biogas enrichment and its applications ,” Renew. Sustain. Energy Rev. , vol. 73 , pp. 892 – 903 , 2017 , doi: 10.1016/j.rser.2017.01.167 .
-
S. Kumar
,
T. C. D'Silva
,
R. Chandra
,
A. Malik
,
V. K. Vijay
, and
A. Misra
, “
Strategies for boosting biomethane production from rice straw: A systematic review
,”
Bioresour. Technol. Reports
, vol.
15
, no.
August
, p.
100813
,
2021
, doi:
10.1016/j.biteb.2021.100813
.
10.1016/j.biteb.2021.100813 Google Scholar
- Chandra , R. , Isha , A. , Kumar , S. , Khan , S.A. , Subbarao , P.M.V. , Vijay , V.K. , Chandel , A.K. , and Chaudhary , V.P. , “ Potentials and Challenges of Biogas Upgradation as Liquid Biomethane ,” in Biogas Production , A. Balaguruswamy , N. Chandel , Ed. Springer , Cham , 2021 , pp. 307 – 328 .
- T. Bansal , N. Tripathi , and G. Chawla , “ Upgradation of biogas using combined method of alkaline water scrubbing and adsoption through carbon molecular sieve ,” Int. J. ChemTech Res. , vol. 5 , no. 2 , pp. 886 – 890 , 2013 .
- S. Sarker , J. J. Lamb , D. R. Hjelme , and K. M. Lien , “ Overview of recent progress towards in-situ biogas upgradation techniques ,” Fuel , vol. 226 , pp. 686 – 697 , 2018 , doi: 10.1016/j.fuel.2018.04.021 .
- M. U. Khan et al ., “ Current status of biogas upgrading for direct biomethane use: A review ,” Renew. Sustain. Energy Rev. , vol. 149 , no. June , p. 111343 , 2021 , doi: 10.1016/j.rser.2021.111343 .
- T. C. D'Silva et al ., “ Enhancing methane production in anaerobic digestion through hydrogen assisted pathways – A state-of-the-art review ,” Renew. Sustain. Energy Rev. , vol. 151 , p. 111536 , 2021 , doi: 10.1016/j.rser.2021.111536 .
- L. N. Nguyen et al ., “ Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques ,” Sci. Total Environ. , vol. 765 , p. 142753 , 2021 , doi: 10.1016/j.scitotenv.2020.142753 .
- G. Shah , E. Ahmad , K. K. Pant , and V. K. Vijay , “ Comprehending the contemporary state of art in biogas enrichment and CO2 capture technologies via swing adsorption ,” Int. J. Hydrogen Energy , vol. 46 , no. 9 , pp. 6588 – 6612 , 2021 , doi: 10.1016/j.ijhydene.2020.11.116 .
- R. Kapoor , P. Ghosh , M. Kumar , and V. K. Vijay , “ Evaluation of biogas upgrading technologies and future perspectives: a review ,” Environ. Sci. Pollut. Res. , vol. 26 , pp. 11631 – 11661 , 2019 , doi: 10.1007/s11356-019-04767-1 .
-
S. Sahota
et al
., “
Review of trends in biogas upgradation technologies and future perspectives
,”
Bioresour. Technol. Reports
, vol.
1
, pp.
79
–
88
,
2018
, doi:
10.1016/j.biteb.2018.01.002
.
10.1016/j.biteb.2018.01.002 Google Scholar
-
A. Toledo-Cervantes
,
M. L. Serejo
,
S. Blanco
,
R. Pérez
,
R. Lebrero
, and
R. Muñoz
, “
Photosynthetic biogas upgrading to bio-methane: Boosting nutrient recovery via biomass productivity control
,”
Algal Res.
, vol.
17
, pp.
46
–
52
,
2016
, doi:
10.1016/j.algal.2016.04.017
.
10.1016/j.algal.2016.04.017 Google Scholar
- S. Nashmin Elyasi et al ., “ Could biological biogas upgrading be a sustainable substitution for water scrubbing technology? A case study in Denmark ,” Energy Convers. Manag. , vol. 245 , p. 114550 , 2021 , doi: 10.1016/j.enconman.2021.114550 .
- I. Angelidaki et al ., “ Biogas upgrading and utilization: Current status and perspectives ,” Biotechnol. Adv. , vol. 36 , no. 2 , pp. 452 – 466 , 2018 , doi: 10.1016/j.biotechadv.2018.01.011 .
- X. Zhu , P. Zhou , Y. Chen , X. Liu , and D. Li , “ The role of endogenous and exogenous hydrogen in the microbiology of biogas production systems ,” World J. Microbiol. Biotechnol. , vol. 36 , no. 6 , pp. 1 – 7 , 2020 , doi: 10.1007/s11274-020-02856-9.
- B. Lecker , L. Illi , A. Lemmer , and H. Oechsner , “ Biological hydrogen methanation – A review ,” Bioresour. Technol. , vol. 245 , pp. 1220 – 1228 , 2017 , doi: 10.1016/j.biortech.2017.08.176 .
- C. Y. Lai , L. Zhou , Z. Yuan , and J. Guo , “ Hydrogen-drivenmicrobial biogas upgrading: Advances, challenges andsolutions ,” Water Res. , vol. 197 , p. 117120 , 2021 , doi: 10.1016/j.watres.2021.117120 .
- X. Zhu , L. Chen , Y. Chen , Q. Cao , X. Liu , and D. Li , “ Differences of methanogenesis between mesophilic and thermophilic in situ biogas-upgrading systems by hydrogen addition ,” J. Ind. Microbiol. Biotechnol. , vol. 46 , pp. 1569 – 1581 , 2019 , doi: 10.1007/s10295-019-02219-w .
- H. Xu , K. Wang , X. Zhang , H. Gong , Y. Xia , and D. E. Holmes , “ Application of in-situ H2-assisted biogas upgrading in high-rate anaerobic wastewater treatment ,” Bioresour. Technol. , vol. 299 , no. October 2019, p. 122598 , 2020 , doi: 10.1016/j.biortech.2019.122598.
- H. Chen et al ., “ Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: Molecular and metabolic insights ,” Water Res. , vol. 168 , p. 115199 , 2020 , doi: 10.1016/j.watres.2019.115199 .
- L. Shen , Q. Zhao , X. Wu , X. Li , Q. Li , and Y. Wang , “ Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors ,” Renew. Sustain. Energy Rev. , vol. 54 , pp. 1358 – 1367 , 2016 , doi: 10.1016/j.rser.2015.10.102 .
- M. K. Nobu et al ., “ Phylogeny and physiology of candidate phylum ‘Atribacteria’ (OP9/JS1) inferred from cultivation-independent genomics ,” ISME J. , vol. 10 , no. 2 , pp. 273 – 286 , 2016 , doi: 10.1038/ismej.2015.97 .
- S. A. Khan , T. C. D'Silva , S. Kumar , R. Chandra , V. K. Vijay , and A. Misra , “ Mutually trading off biochar and biogas sectors for broadening biomethane applications: A comprehensive review ,” J. Clean. Prod. , vol. 318 , no. August , p. 128593 , 2021 , doi: 10.1016/j.jclepro.2021.128593 .
- C. M. Ajay , S. Mohan , P. Dinesha , and M. A. Rosen , “ Review of impact of nanoparticle additives on anaerobic digestion and methane generation ,” Fuel , vol. 277 , no. June , p. 118234 , 2020 , doi: 10.1016/j.fuel.2020.118234 .
- P. Gahlot et al ., “ Conductive material engineered direct interspecies electron transfer (DIET) in anaerobic digestion: Mechanism and application ,” Environ. Technol. Innov. , vol. 20 , p. 101056 , 2020 , doi: 10.1016/j.eti.2020.101056 .
- G. Luo and I. Angelidaki , “ Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: Process performance and microbial insights ,” Appl. Microbiol. Biotechnol. , vol. 97 , pp. 1373 – 1381 , 2013 , doi: 10.1007/s00253-012-4547-5 .
- V. Siriwongrungson , R. J. Zeng , and I. Angelidaki , “ Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis ,” Water Res. , vol. 41 , no. 18 , pp. 4204 – 4210 , 2007 , doi: 10.1016/j.watres.2007.05.037 .
- P. G. Kougias , L. Treu , D. P. Benavente , K. Boe , S. Campanaro , and I. Angelidaki , “ Ex-situ biogas upgrading and enhancement in different reactor systems ,” Bioresour. Technol. , vol. 225 , pp. 429 – 437 , 2017 , doi: 10.1016/j.biortech.2016.11.124 .
- I. Bassani , P. G. Kougias , L. Treu , H. Porté , S. Campanaro , and I. Angelidaki , “ Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading ,” Bioresour. Technol. , vol. 234 , pp. 310 – 319 , 2017 , doi: 10.1016/j.biortech.2017.03.055 .
- A. Bensmann et al ., “ Biological methanation of hydrogen within biogas plants: A model-based feasibility study ,” Appl. Energy , vol. 134 , pp. 413 – 425 , 2014 , doi: 10.1016/j.apenergy.2014.08.047 .
- G. Luo and I. Angelidaki , “ Hollow fiber membrane based H2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor ,” Appl. Microbiol. Biotechnol. , vol. 97 , pp. 3739 – 3744 , 2013 , doi: 10.1007/s00253-013-4811-3 .
- S. R. Guiot , R. Cimpoia , and G. Carayon , “ Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas ,” Environ. Sci. Technol. , vol. 45 , no. 5 , pp. 2006 – 2012 , 2011 , doi: 10.1021/es102728m .
- G. Luo , W. Wang , and I. Angelidaki , “ A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent ,” Appl. Energy , vol. 132 , pp. 536 – 542 , 2014 , doi: 10.1016/j.apenergy.2014.07.059 .
- L. M. Agneessens et al ., “ In-situ biogas upgrading with pulse H2 additions: The relevance of methanogen adaption and inorganic carbon level ,” Bioresour. Technol. , vol. 233 , pp. 256 – 263 , 2017 , doi: 10.1016/j.biortech.2017.02.016 .
- T. L. Dupnock and M. A. Deshusses , “ Detailed investigations of dissolved hydrogen and hydrogen mass transfer in a biotrickling filter for upgrading biogas ,” Bioresour. Technol. , vol. 290 , no. July , p. 121780 , 2019 , doi: 10.1016/j.biortech.2019.121780.
- L. Rachbauer , G. Voitl , G. Bochmann , and W. Fuchs , “ Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor ,” Appl. Energy , vol. 180 , pp. 483 – 490 , 2016 , doi: 10.1016/j.apenergy.2016.07.109 .
- X. Zhu , Q. Cao , Y. Chen , X. Sun , X. Liu , and D. Li , “ Effects of mixing and sodium formate on thermophilic in-situ biogas upgrading by H 2 addition ,” J. Clean. Prod. , vol. 216 , pp. 373 – 381 , 2019 , doi: 10.1016/j.jclepro.2019.01.245 .
- N. M. C. Saady , “ Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge ,” Int. J. Hydrogen Energy , vol. 38 , no. 30 , pp. 13172 – 13191 , 2013 , doi: 10.1016/j.ijhydene.2013.07.122 .
- G. Ren , J. Liu , J. Wan , Y. Guo , and D. Yu , “ Overview of wind power intermittency: Impacts, measurements, and mitigation solutions ,” Appl. Energy , vol. 204 , pp. 47 – 65 , 2017 , doi: 10.1016/j.apenergy.2017.06.098 .
- W. Wang , L. Xie , G. Luo , Q. Zhou , and I. Angelidaki , “ Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading ,” Bioresour. Technol. , vol. 146 , pp. 234 – 239 , 2013 , doi: 10.1016/j.biortech.2013.07.049 .
- D. G. Mulat et al ., “ Exogenous addition of H2 for an in situ biogas upgrading through biological reduction of carbon dioxide into methane ,” Waste Manag. , vol. 68 , pp. 146 – 156 , 2017 , doi: 10.1016/j.wasman.2017.05.054 .
- I. Bassani , P. G. Kougias , and I. Angelidaki , “ In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate ,” Bioresour. Technol. , vol. 221 , pp. 485 – 491 , 2016 , doi: 10.1016/j.biortech.2016.09.083 .
- C. K. Okoro-Shekwaga , A. B. Ross , and M. A. Camargo-Valero , “ Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis ,” Appl. Energy , vol. 254 , p. 113629 , 2019 , doi: 10.1016/j.apenergy.2019.113629 .
- G. Luo , S. Johansson , K. Boe , L. Xie , Q. Zhou , and I. Angelidaki , “ Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor ,” Biotechnol. Bioeng. , vol. 109 , no. 4 , pp. 1088 – 1094 , 2012 , doi: 10.1002/bit.24360.
- A. Alitalo , M. Niskanen , and E. Aura , “ Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor ,” Bioresour. Technol. , vol. 196 , pp. 600 – 605 , 2015 , doi: 10.1016/j.biortech.2015.08.021 .
- I. Bassani , P. G. Kougias , L. Treu , and I. Angelidaki , “ Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions ,” Environ. Sci. Technol. , vol. 49 , pp. 12585 – 12593 , 2015 , doi: 10.1021/acs.est.5b03451 .
- S. Cheng , D. Xing , D. F. Call , and B. E. Logan , “ Direct biological conversion of electrical current into methane by electromethanogenesis ,” Environ. Sci. Technol. , vol. 43 , no. 10 , pp. 3953 – 3958 , 2009 , doi: 10.1021/es803531g .
- H. T. Dinh , J. Kuever , M. Mußmann , A. W. Hassel , M. Stratmann , and F. Widdel , “ Iron corrosion by novel anaerobic microorganisms ,” Nature , vol. 427 , no. 6977 , pp. 829 – 832 , 2004 , doi: 10.1038/nature02321 .
- Q. Yin et al ., “ Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina ,” J. Environ. Sci. (China) , vol. 42 , no. Daping Li, pp. 210 – 214 , 2016 , doi: 10.1016/j.jes.2015.07.006 .
- Q. Fu , Y. Kuramochi , N. Fukushima , H. Maeda , K. Sato , and H. Kobayashi , “ Bioelectrochemical analyses of the development of a thermophilic biocath-ode catalyzing electromethanogenesis ,” Environ. Sci. Technol. , vol. 49 , no. 2 , pp. 1225 – 1232 , 2015 , doi: 10.1021/es5052233 .
- A. Kadier , Y. Simayi , P. Abdeshahian , N. F. Azman , K. Chandrasekhar , and M. S. Kalil , “ A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production ,” Alexandria Eng. J. , vol. 55 , no. 1 , pp. 427 – 443 , 2016 , doi: 10.1016/j.aej.2015.10.008 .
- M. Su , L. Wei , Z. Qiu , G. Wang , and J. Shen , “ Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes ,” J. Power Sources , vol. 301 , pp. 29 – 34 , 2016 , doi: 10.1016/j.jpowsour.2015.09.108 .
- K. Hagos , C. Liu , and X. Lu , “ Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode ,” Chinese J. Chem. Eng. , vol. 26 , no. 3 , pp. 574 – 582 , 2018 , doi: 10.1016/j.cjche.2017.08.005 .
- M. C. A. A. van Eerten-Jansen , N. C. Jansen , C. M. Plugge , V. de Wilde , C. J. N. Buisman , and A. ter Heijne , “ Analysis of the mechanisms of bioelectrochemical methane production by mixed cultures ,” J. Chem. Technol. Biotechnol. , vol. 90 , no. 5 , pp. 963 – 970 , 2015 , doi: 10.1002/jctb.4413 .
- M. Villano , F. Aulenta , C. Ciucci , T. Ferri , A. Giuliano , and M. Majone , “ Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture ,” Bioresour. Technol. , vol. 101 , no. 9 , pp. 3085 – 3090 , 2010 , doi: 10.1016/j.biortech.2009.12.077 .
-
D. R. Nevin
,
N.P Woodard
,
T.L. Franks
,
A.E Summers
,
Z.M Lovley
, “
Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds
,”
ASM Journals
, vol.
1
, no.
2
, pp.
1
–
4
,
2010
, doi:
10.1128/mBio.00103-10.Editor
.
10.1128/mBio.00103?10.Editor Google Scholar
- T. Reda , C. M. Plugge , N. J. Abram , and J. Hirst , “ Reversible interconversion of carbon dioxide and formate by an electroactive enzyme ,” Proc. Natl. Acad. Sci. U. S. A. , vol. 105 , no. 31 , pp. 10654 – 10658 , 2008 , doi: 10.1073/pnas.0801290105.
- W. Liu et al ., “ Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production ,” Renew. Energy , vol. 91 , pp. 334 – 339 , 2016 , doi: 10.1016/j.renene.2016.01.082 .
- Y. Bai et al ., “ Bioelectrochemical methane production from CO2 by Methanosarcina barkeri via direct and H2-mediated indirect electron trans-fer ,” Energy , vol. 210 , p. 118445 , 2020 , doi: 10.1016/j.energy.2020.118445 .
- W. Cai , T. Han , Z. Guo , C. Varrone , A. Wang , and W. Liu , “ Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis ,” Bioresour. Technol. , vol. 208 , pp. 13 – 18 , 2016 , doi: 10.1016/j.biortech.2016.02.028 .
- M. Bahr , I. Díaz , A. Dominguez , A. González Sánchez , and R. Muñoz , “ Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents ,” Environ. Sci. Technol. , vol. 48 , no. 1 , pp. 573 – 581 , 2014 , doi: 10.1021/es403596m .
- A. Toledo-Cervantes , R. Lebrero , C. Cavinato , and R. Muñoz , “ Biogas upgrading using algal-bacterial processes ,” Microalgae-Based Biofuels Bioprod. From Feed. Cultiv. to End-Products , pp. 283 – 304 , 2017 , doi: 10.1016/B978-0-08-101023-5.00012-1.
- J. Fu et al ., “ Boosting photo-biochemical conversion and carbon dioxide bio-fixation of Chlorella vulgaris in an optimized photobioreactor with air-foil-shaped deflectors ,” Bioresour. Technol. , vol. 337 , p. 125355 , 2021 , doi: 10.1016/j.biortech.2021.125355 .
- M. L. Serejo , E. Posadas , M. A. Boncz , S. Blanco , P. García-Encina , and R. Muñoz , “ Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes ,” Environ. Sci. Technol. , vol. 49 , no. 5 , pp. 3228 – 3236 , 2015 , doi: 10.1021/es5056116 .
- E. Posadas , M. L. Serejo , S. Blanco , R. Pérez , P. A. García-Encina , and R. Muñoz , “ Minimization of biomethane oxygen concentration during biogas upgrading in algal-bacterial photobioreactors ,” Algal Res. , vol. 12 , pp. 221 – 229 , 2015 , doi: 10.1016/j.algal.2015.09.002 .
- R. Küster , E. Dorusch , F. Altenburger , “ Effect of Hydrogen Sulfide to Vibrio Fischeri, Scenedesmus Vacuolatus, and Daphnia Magna ,” Environ. Toxicol. Chem. , vol. 24 , no. 10 , pp. 2621 – 2629 , 2005 .
- C. Y. Kao , S. Y. Chiu , T. T. Huang , L. Dai , L. K. Hsu , and C. S. Lin , “ Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading ,” Appl. Energy , vol. 93 , pp. 176 – 183 , 2012 , doi: 10.1016/j.apenergy.2011.12.082 .
- M. A. Gonzaĺez-Sańchez , A. Revah , S. Deshusses , “ Alkaline Biofiltration of H2S ,” Environ. Sci. Technol. , vol. 42 , pp. 7398 – 7404 , 2008 , doi: 10.1149/1.2133370 .
- G. Mandeno , R. Craggs , C. Tanner , J. Sukias , and J. Webster-Brown , “ Potential biogas scrubbing using a high rate pond ,” Water Sci. Technol. , vol. 51 , no. 12 , pp. 253 – 256 , 2005 , doi: 10.2166/wst.2005.0476 .
- J. L. Conde et al ., “ Biogas purification process using intensive microalgae cultures ,” Biotechnol. Lett. , vol. 15 , no. 3 , pp. 317 – 320 , 1993 , doi: 10.1007/BF00128326.
- C. G. Oswald , W.J. Golueke , “ Biological transformation of Solar Energy ,” in Advances in Applied Microbiology , vol. 2 , 1960 , pp. 223 – 262 .
- A. Mann , G. Schelgel , M. Schumann , R. Saklauskas , “ Biogas-conditioning with microalgae ,” Agron. Res. , vol. 7 , no. 1 , pp. 33 – 38 , 2009 , doi: 10.1007/s00253-014-5842-0.
- A. Converti , R. P. S. Oliveira , B. R. Torres , A. Lodi , and M. Zilli , “ Biogas production and valorization by means of a two-step biological process ,” Bioresour. Technol. , vol. 100 , no. 23 , pp. 5771 – 5776 , 2009 , doi: 10.1016/j.biortech.2009.05.072 .
- A. A. Khan et al ., “ Sustainable options of post treatment of UASB effluent treating sewage: A review ,” Resour. Conserv. Recycl. , vol. 55 , no. 12 , pp. 1232 – 1251 , 2011 , doi: 10.1016/j.resconrec.2011.05.017 .
- D. Marín , A. A. Carmona-Martínez , S. Blanco , R. Lebrero , and R. Muñoz , “ Innovative operational strategies in photosynthetic biogas upgrading in an outdoors pilot scale algal-bacterial photobioreactor ,” Chemosphere , vol. 264 , 2021 , doi: 10.1016/j.chemosphere.2020.128470 .
-
V. K. Kumar
,
S. Isha
,
A. Chandra
,
R. Malik
,
A. Vijay
, “
Algal Biomass: A Promising Source for Future Bioenergy Production
,” in
Bioenergy Engineering
,
CRC Press
,
2021
, pp.
131
–
152
.
10.1201/9781003230878-7 Google Scholar
- M. N. Hasan et al ., “ Recent technologies for nutrient removal and recovery from wastewaters: A review ,” Chemosphere , vol. 277 , p. 130328 , 2021 , doi: 10.1016/j.chemosphere.2021.130328 .
- D. Nagarajan , D. J. Lee , and J. S. Chang , “ Integration of anaerobic digestion and microalgal cultivation for digestate bioremediation and biogas upgrading ,” Bioresour. Technol. , vol. 290 , no. July , p. 121804 , 2019 , doi: 10.1016/j.biortech.2019.121804 .
- L. Wu , W. Wei , L. Song , M. Woźniak-Karczewska , Ł. Chrzanowski , and B. J. Ni , “ Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas ,” Renew. Sustain. Energy Rev. , vol. 150 , no. July , 2021 , doi: 10.1016/j.rser.2021.111448 .
- A. Escapa , R. Mateos , E. J. Martínez , and J. Blanes , “ Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. from laboratory to pilot plant and beyond ,” Renew. Sustain. Energy Rev. , vol. 55 , pp. 942 – 956 , 2016 , doi: 10.1016/j.rser.2015.11.029 .
- Z. Chi , J. V. O'Fallon , and S. Chen , “ Bicarbonate produced from carbon capture for algae culture ,” Trends Biotechnol. , vol. 29 , no. 11 , pp. 537 – 541 , 2011 , doi: 10.1016/j.tibtech.2011.06.006 .
- Park , J. H. , Kang , H. J. , Park , K. H. , and Park , H. D. Direct interspecies electron transfer via conductive materials: a perspective for anaerobic digestion applications . Bioresour. Technol. , 254 , 300 - 311 , 2018 .